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Multi-variate pattern analysis (MVPA) applied to BOLD-fMRI has proven successful at decoding complicated fMRI
signal patterns associated with a variety of cognitive processes. One cognitive process, not yet investigated, is the
mental representation of “Yes/No” thoughts that precede the actual overt response to a binary “Yes/No” question.
In this study, we focus on examining: (1) whether spatial patterns of the hemodynamic response carry sufficient
information to allow reliable decoding of “Yes/No” thoughts; and (2) whether decoding of “Yes/No” thoughts is
independent of the intention to respond honestly or dishonestly. To achieve this goal, we conducted two separate
experiments. Experiment 1, collected on a 3T scanner, examined the whole brain to identify regions that carry
sufficient information to permit significantly above-chance prediction of “Yes/No” thoughts at the group level.
In Experiment 2, collected on a 7T scanner, we focused on the regions identified in Experiment 1 to examine
the capability of achieving high decoding accuracy at the single subject level. A set of regions - namely right
superior temporal gyrus, left supra-marginal gyrus, and left middle frontal gyrus - exhibited high decoding
power. Decoding accuracy for these regions increased with trial averaging. When 18 trials were averaged, the
median accuracies were 82.5%, 77.5%, and 79.5%, respectively. When trials were separated according to deceptive
intentions (set via experimental cues), and classifiers were trained on honest trials, but tested on trials where
subjects were asked to deceive, the median accuracies of these regions still reached 66%, 75%, and 78.5%. These
results provide evidence that concealed “Yes/No” thoughts are encoded in the BOLD signal, retaining some
level of independence from the subject’s intentions to answer honestly or dishonestly. These findings also
suggest the theoretical possibility for more efficient brain-computer interfaces where subjects only need to
think their answers to communicate.
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Introduction within the auditory cortex (Meyer et al., 2010); and free choices of

abstract intentions from patterns in the medial prefrontal and parietal

Despite Blood Oxygenation Level Dependent (BOLD) functional
Magnetic Resonance Imaging (fMRI) being an indirect, relatively low-
resolution measure of neural activity (Buxton, 2012; Fox, 2012;
Logothetis et al., 2001), the spatiotemporal response patterns reflected
in fMRI signals contain detailed information about mental processes.
In fact, using a variety of multivariate pattern analysis (MVPA)(Norman
et al., 2006), researchers have successfully decoded the category of
viewed objects from BOLD signals in the ventral temporal cortex
(Haxby et al., 2001); the subjective mnemonic status of visual stimuli
using the BOLD patterns from a distributed network of parietal and
frontal regions (Rissman et al., 2010); a sound category associated
with sound-implying, silent, visual stimuli looking solely at patterns
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cortices (Soon et al., 2013). All this evidence suggests that although
fMRI signal has insufficient temporal and spatial resolution to depict
fine-scale neuronal events, spatiotemporal hemodynamic response
patterns recorded via fMRI permit successful and robust decoding of
low- to high-level representations of information (Haynes and Rees,
2006; Xu et al., 2012; Yang et al., 2012).

In this study, we attempt to decode one type of high-level
information: An individual's concealed true thoughts when answering
questions. Previous psychological research has established that when
answering a question, a true thought is always generated and kept in
mind; even when people intend to lie (Johnson et al., 2004; Langleben
etal., 2002; Spence et al,, 2001, 2004; Sun et al., 2013). Here, the defini-
tion of “true thought” is subjective, in the sense that the individual’s
thoughts may or may not be objectively correct (e.g., inaccurate
knowledge may lead a subject to believe New York is the capital of
the U.S. For this subject this is a “true thought”, despite Washington,
DC being the objectively correct answer). Moreover, in the context of
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this work, a true thought is not a verbal or motoric response, but a piece
of information that is generated by a cognitive process and represented
as signature patterns of brain activity. When one intends to lie, a true
thought can be intentionally superseded to form an overt lie (Spence
et al,, 2001, 2004). The possibility of being able to reliably decode such
(concealed) true thoughts directly from mental activity could have
deep implications for the legal community, as well as, for the develop-
ment of efficient brain-computer interfaces that could open new
means of communication with locked-in patients (Monti et al., 2010;
Owen et al., 2006).

Previous functional neuroimaging studies of deception have focused
mainly on detecting the neural correlates of the complex cognitive pro-
cesses that convert true thoughts into lies (Christ et al., 2009; Johnson
et al., 2004; Langleben et al., 2002, 2005; Sip et al., 2010), and on segre-
gating honest and dishonest intentions from the neuroimaging data
(Spence etal.,2001; Sun et al,, 2013). Here, we take a different approach
and focus on the mental representations of the true thoughts that
precede honest or dishonest overt responses. In particular, we are
interested in examining whether spatial patterns of fMRI signals contain
sufficient information to reliably detect the neural response that follows
questioning; and whether the intention to deceive affects the
robustness of these patterns.

As a proof-of-principle, here we examine the theoretical possibility
of decoding true “Yes/No” thoughts to simple binary questions inde-
pendently of one’s honest/dishonest intentions when generating
overt responses. Precisely, we try to address two specific questions:
1) Whether spatial patterns of hemodynamic responses carry
sufficient information to allow reliable decoding of true “Yes/No”
thoughts? 2) To what extent is decoding of these “Yes/No” thoughts
independent of the honest/dishonest intentions for generating an
explicit overt answer?

To address these questions, we adopt a two-step experimental
approach, as previously suggested by Etzel et al. (2013). First, in
Experiment 1, we conduct an exploratory analysis to identify brain
regions that contain sufficient information to permit decoding of true
“Yes/No” thoughts with accuracy significantly above chance at the
group-level. This first experiment is akin to a “functional localizer”
session (see (Cukur et al., 2013; Fox et al. 2009) for examples of this ap-
proach). To identify these target regions, we adopted a well-established
task-cueing paradigm (Barber and Carter, 2005; Meiran et al., 2000) and
a MVPA searchlight procedure (Hampton and O'Doherty, 2007; Haynes
et al., 2007; Kriegeskorte et al., 2006; Soon et al., 2008). In Experiment 2,
using a completely independent dataset obtained at a higher magnetic
field (7T), we evaluate the capability to achieve high decoding accuracy
at the single-subject level. The decoding power is quantified by the
decoding accuracies obtained at different levels of trial averaging. If
true “Yes/No” thoughts generate consistent differentiable patterns of
hemodynamic activity in any of the target regions detected in
Experiment 1, trial averaging should produce an increase in decoding
accuracy as noise decreases. Conversely, if these regions do not contain
such stable and differentiable patterns, averaging should not produce
any significant changes in decoding accuracy. Finally, in Experiment 2
we also evaluate how deceiving intentions for overt responses affect
decoding accuracy.

In Experiment 1 we found a series of 8 regions — namely left para-
hippocampal gyrus, left middle frontal gyrus, left inferior frontal gyrus,
right inferior frontal gyrus, left medial frontal gyrus, left supra-
marginal gyrus, right superior temporal gyrus, and left superior tempo-
ral gyrus-which performed significantly above chance at the group
level. In Experiment 2, a subset of these regions — namely right superior
temporal gyrus, left supra-marginal gyrus, and left middle frontal
gyrus - were found to provide median decoding accuracies of
82.5%, 77.5%, and 79.5%, respectively, when 18 trials were averaged
regardless of deceiving intentions (mixed-intentions analysis).
When decoding was attempted in a cross-intention setup (e.g., classifier
was trained only with “Honest” trials, but decoding was attempted in

“Dishonest” trials), classification accuracy for these regions still stayed
at 66%, 75%, and 78.5% (median values across subjects). Overall, our
results suggest that decoding of true “Yes/No” thoughts from fMRI
may be possible, yet achievable decoding accuracies with the current
approach is not yet sufficient for real world applications.

Materials and methods
Experiment 1

Participants

Ten right-handed college students (6 females, age range 20-29
years, mean age = 25) participated in this experiment. All participants
had normal or corrected-to-normal vision and had no history of
neurological or psychiatric disorder. After a full description of the
study, written informed consent was obtained for each participant
following a protocol approved by the Ethical Committee at Institute of
Psychology, Chinese Academy of Sciences.

Experimental materials

We composed 160 “Yes/No” questions (binary questions) about
simple facts (e.g., “Is one minute 60 seconds?”; “Is Beijing the capital
of China?”). The questions were stated in Chinese using 5 to 12 characters.
Half the questions were expected to produce “Yes” true thoughts
on average.

Experimental paradigm

Prior to entering the scanner, all participants answered all 160
questions to the best of their knowledge by filling out a paper
questionnaire. We used these responses to ensure participants un-
derstood the questions and to have a record of what each subject
considered the true answers to the questions (based on their prior
knowledge and experiences). We used these recorded responses to
label trials during the analysis. Each question was presented twice
inside the scanner.

The experimental paradigm for the functional runs in Experiment 1
was constructed on the basis of a fast event-related task-cueing
paradigm previously developed for studies about overcoming existing
response tendencies (Barber and Carter, 2005; Meiran et al., 2000). As
shown in Fig. 1, each trial starts with an intentional cue (2 seconds)
that informs the subjects whether they should answer the following
question honestly or dishonestly. The word “Honest” was used to in-
struct participants to answer the following question honestly, while
the word “Dishonest” was used to instruct participants to overtly re-
spond the opposite of what they consider true. This cue was followed
by a visually presented question (4 seconds). Participants were
instructed to read the question but not to respond immediately. After
a variable delay period (2, 4, or 6 seconds), during which the question
was no longer visible, a “Please Answer” prompt appeared for 2 seconds
on the screen. Participants were instructed to respond using an MRI
compatible response box at that moment. Subjects were instructed to
use the right thumb to answer “Yes” and the left thumb to answer
“No”. Button assignment remained constant for the whole duration of
this experiment, but was counter-balanced across subjects. Recorded
responses were used to eliminate invalid trials in which participants
did not complete the task successfully.

Each participant had to answer a total of 320 questions distributed
across 10 functional runs (32 trials per run). Trial types were counter-
balanced so that each run contained 8 trials in which the expected
true thought was “Yes” and subjects were instructed to be honest
(“Honest-Yes”), 8 trials in which the expected true thought was “Yes”
and subjects were instructed to be dishonest (“Dishonest-Yes”), 8 trials
in which the expected true thought was “No” and subjects were
instructed to be honest (“Honest-No”), and 8 trials in which the expected
true thought was “No” and subjects were instructed to be dishonest
(“Dishonest-No”). Stimuli were programmed with E-Prime (Psychology
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Fig. 1. One trial of experimental paradigm for Experiment 1. At the beginning of each trial, an instruction cue is displayed for 2 s, asking subjects to be either honest or dishonest when
answering the following question. Then a question on simple facts is presented for 4 s. The question is a binary question expecting either “Yes” or “No” answer. After a random delay period
of 2-6 s, an instruction is displayed asking subjects to report the final answer with MRI compatible button boxes. The mental processes that accompany task performance are summarized
below the paradigm. With this task, subjects generate a true thought to the question, process it according to the instructed “Honest” or “Dishonest” intention, and report the final answer

when prompted to make motor response.

Software Tools, Inc., Pittsburgh, PA, USA). Stimuli presentations were
driven by scanner trigger signals so the onsets of the cues, questions,
and response prompts were all synchronized to the acquisitions of
volumes. Prior to the fMRI scan, the participants received a 20-minute
training session to get familiar with the task.

Data acquisition

A Siemens 3T Trio scanner (Siemens, Erlangen, Germany),
equipped with a standard head coil, was used in Experiment 1.
Functional scans were obtained using a gradient-echo EPI sequence
(33 slices, TR/TE = 2000/30 ms, slice thickness = 5 mm, FOV = 192
mm, flip angle = 90°, image matrix: 64 x 64, 266 volumes) covering
the whole brain. A high-resolution anatomical scan was acquired for
each participant (MPRAGE; TR/TE/TI = 2530/3.39/1100 ms, FA = 7°,
FOV = 256 x 256 mm, 128 sagittal slices, slice thickness/gap = 1.33/
0 mm, in-plane resolution = 1 x 1 mm). The entire experiment lasted
for approximately 1.8 hours. The stimuli were presented via a video
projector (resolution 1024 x 768 pixel, 60 Hz) onto a screen located
behind the scanner bore. Participants viewed the stimuli through
mirror glasses.

Preprocessing/response estimation

The correct button-press response for each trial was generated
combining the answer provided in the pre-scan questionnaire with
the given intentional cue. Incorrect trials were excluded from further
analysis (see Results).

Image preprocessing was conducted using AFNI (Cox, 1996) (http://
afni.nimh.nih.gov/afni). For functional scans, the first five volumes in
each run were discarded. Pre-processing steps included: slice time cor-
rection, head motion correction, and intensity normalization (e.g., signal
percent change). No spatial smoothing was performed. Co-registration
transformations between high-resolution anatomical scans and func-
tional images were estimated. The high-resolution anatomical scans
were transformed into Talairach coordinate space (Talairach and
Tournoux, 1988) using the Talairach template provided with the AFNI
software. Parameters for spatial normalization of the functional images
were then obtained by combining the co-registration and the
anatomical spatial normalization transformations. Spatial normalization
was applied to the regression coefficient maps (see below).

Each functional run for each subject was subsequently input to a
separate regression analysis using a finite impulse response (FIR)
model. The FIR model uses six Dirac delta functions (each for a time
bin) centered at acquisitions times (TRs) ranging from cue onset to 8 s
after question onset. Each trial type (“Honest-Yes”, “Honest-No”,
“Dishonest-Yes”, “Dishonest-No”) was modeled separately. Additionally
the FIR model was also used to model the two possible motor responses
(“Yes” or “No”). This procedure estimated hemodynamic response
patterns (beta coefficient maps) for each of the six time bins following
cue onset and for each trial type. Motion parameters obtained during

head motion correction were used as additional nuisance regressors. Be-
cause each run was analyzed separately, we obtained ten different
estimations (beta coefficient maps) at each time bin for each trial type.
These maps were then transformed into Talairach space using the
parameters estimated above and resampled to 3x3x3 mm?>,

Searchlight decoding

To identify brain regions carrying predictive information for
distinguishing between true “Yes” and “No” thoughts, we used a
MVPA searchlight procedure (Kriegeskorte et al., 2006) based on a
Gaussian Naive Bayesian (GNB) classifier implemented in the Princeton
MVPA toolbox (http://code.google.com/p/princeton-mvpa-toolbox/)
for MATLAB™ (MathWorks, Natick, MA). This approach allows
searching for informative voxels in an unbiased manner across the
whole brain at every time bin (Soon et al., 2008). The GNB classifier is
a linear model that has been widely applied in both basic neuroscience
research (Mitchell et al., 2004; Norman et al., 2006) and clinical applica-
tions (Coutanche et al., 2011). Several studies show that GNB is able to
provide almost equal performance to the commonly used linear support
vector machine (I-SVM) (Misaki et al., 2010; Mitchell et al., 2004);
however, because of the relatively small computational cost of GNB,
we decided to use this model for the current study.

In each of the 10 runs per subject the beta estimates resulted in
four hemodynamic responses. The responses within each run for
the “Honest-Yes” and “Dishonest-Yes” were averaged to create a
mean beta-map hemodynamic response for true “Yes” thought.
Similarly the responses for “Honest-No” and “Dishonest-No” were
averaged to create a mean beta-map hemodynamic response for
true “No” thought. The true “Yes” and “No” beta maps from the 10
runs (20 maps for each time bin) were input to a searchlight analysis,
where classifiers were trained to distinguish between true “Yes” and
“No” thoughts regardless of intentions. The general procedure
described below was applied separately for each of the six time
bins. A graphical description of the procedure is shown in Supplementary
Fig. S1.

Around each voxel in the gray matter (a gray matter mask was ob-
tained from the Colin atlas (Eickhoff et al., 2005) in AFNI with 34777
voxels), a spherical cluster with a radius of two voxels was defined (33
voxels). Voxels outside of the gray matter mask were removed from
the spherical cluster. Within this spherical cluster, the 20 beta-maps
representing true “Yes” and true “No” were used to train and test a
GNB classifier that distinguishes the true thoughts. A 10-fold cross-
validation procedure (leave-two-out) was conducted to measure the
overall performance of the classifier. In each of the 10 iterations, the
local beta-maps (within the spherical cluster) estimated from a run
acted as the test dataset (two samples for test), while those from the
other nine runs were used as the training datasets (18 samples for
training). Overall performance for each voxel was calculated by averaging
the ten classification accuracies from the 10-fold cross-validation. In this
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way, the classification accuracy on each voxel reflected the information
carried in the local neighborhood.

Group-level significance was examined by voxel-wise t-tests com-
paring the mean accuracy maps (from the ten-fold cross-validation)
against 50% (expected chance-level). The resultant group-level t-maps
were thresholded with a voxel-wise significance of p < 0.005. The
multiple comparison error was corrected by applying a cluster size
threshold derived from Monte Carlo simulations (Xiong et al., 1995)
as implemented in AFNI program “AlphaSim”. The smoothness for
the Monte Carlo simulation was estimated using AFNI program
“3dFWHMXx” from the residual time series of the regression analysis.
Smoothness was computed separately for each run of each subject,
and then these estimated values were averaged to compute a single
smoothness value (mean = 5.7mm, standard deviation = 0.15mm).
This resulted in a minimum cluster size threshold of 20 voxels (540
mm?) to reach a cluster level significance of p < 0.05 (family-wise
error, FWE).

For each time bin in the estimated hemodynamic response function,
we conducted a separate group-level statistical test. Although there is
temporal correlation in BOLD signals across time points, we decided to
analyze time bins separately because: (1) several asynchronous mental
processes are required to perform the task; (2) a number of studies have
shown that time points other than the peak of the hemodynamic re-
sponse can carry information about neural activity (Heeger and Ress,
2002; Yacoub et al., 2001); and (3) different regions respond with
very different hemodynamic temporal patterns to the same task
(Gonzalez-Castillo et al., 2012). Moreover, we decided not to correct
for multiple comparisons across time to avoid incurring in an excessive
number of false negatives during this initial explorative phase of the
study. Although this approach help us identify as many target regions
as possible for their further evaluation in Experiment 2, it also precludes
us from making any specific inferences about the exact timing of events.

Confirming inter-subject consistency using ROI pattern classification
analysis

To examine whether the ROIs identified by the group level t-tests
were consistently informative in individual subjects, we performed
ROI-based classification analyses to decode true “Yes/No” thoughts for
individual subjects. For each ROI, we extracted a spatial pattern
representing true “Yes” thought and one representing true “No”
thought from the beta maps in each of the 10 runs. These 20 patterns
were used to train a classifier to distinguish the true “Yes/No” thoughts.
The 10-fold cross-validation procedure was identical to that used in the
searchlight analyses, and an averaged decoding accuracy was obtained
for each ROI in each subject.

We performed permutation tests to determine the significance of
the decoding accuracies. Specifically, for each ROI in each subject, the
“Yes/No” labels of the 20 spatial patterns were randomly permuted be-
fore the samples were used to train and test the classifiers. This proce-
dure was repeated 1000 times to generate a null-distribution of the
decoding accuracy. The significance of the original decoding accuracy
for the given ROI was then determined using the null-distribution. For
each of the ROIs identified in the searchlight analysis, we reported the
number of subjects exhibiting significant decoding accuracy.

Experiment 2

Rationale

In order to verify the decoding performance of the informative brain
regions identified in Experiment 1, an independent data set was used in
Experiment 2. In this second experiment we opted for a slow event
design that permitted us to average across trials without the need to en-
force any a priori assumptions about response shape inherent to most
fitting techniques. As previously mentioned, trial averaging was used
to optimize the signal-to-noise ratio of spatial patterns input to the
classifier. If spatial patterns from a given region genuinely reflect

responses evoked by the “Yes/No” thoughts, then decoding accuracy
should increase towards the desirable goal of 100% as signal-to-noise
ratio increases. If not, decoding accuracy should not change with the
number of averaging. We tested this working hypothesis in all regions
marked as informative in Experiment 1, as well as in a control region
not expected to carry robust predictive information (see below). We
also performed a permutation test, in which we randomized the “Yes/
No” labels of the trials being averaged. This provided a second control
condition to compare against.

Participants

Seven healthy volunteers (2 females, age range 22-43 years,
mean age = 29) were recruited at National Institute of Mental
Health, Bethesda, MD, USA. All participants had normal or corrected-
to-normal vision and had no history of neurological or psychiatric
disorder. After a full description of the study, written informed consent
was obtained from each participant following a protocol approved by
the Ethical Committee at National Institute of Mental Health, USA.

Experimental materials

The visual stimuli and pre-scan questionnaire for this experiment
were presented in English. One hundred and twenty-four “Yes/No”
questions about simple facts were used. Most of these questions corre-
spond to English translations of the questions used in Experiment 1. A
small set of questions was substituted by completely new questions to
fit cultural differences. For half of the questions (62 questions) the
expected answer was “Yes”.

Experimental paradigm

In this second experiment, the paradigm from Experiment 1 was
modified to become a “slow” event-related design with constant long
delay periods (12 s). Thus, the regression step is no longer needed and
hemodynamic responses for each trial type can be obtained by simple
trial averaging (point-to-point averaging of the signal after the question
onset). This paradigm is shown in Fig. 2. Each trial had the following
structure: intentional cue (2 s); simple-fact question (4 s); delay period
(8 s); response prompt (2.3 s); fixation period (11.7 s). The intentional
cue consisted of the word “Honest” written in a green font to instruct
subjects to respond honestly, or the word “Dishonest” written in a red
font to instruct subjects to respond dishonestly. During the question pe-
riod, the question appeared in the center of the screen in white font.
During the delay period, a fixation cross appeared at the center of the
screen and subjects were instructed to keep their answer in mind. For
the prompt to respond, one of two possible texts appeared in the center
of the screen: “Y N”, which instructed participants to use the button box
in their left hands to answer “Yes” and the one in their right hands to an-
swer “No”; or “N Y”, which corresponded to the opposite assignment of
“Yes/No” to the right/left hands. Which prompt screen appeared at the
end of each trial was randomized. This randomization precluded sub-
jects from keeping their responses in mind during the delay period in
terms of motor actions, as they don’t know which button signals “Yes”
and which button signals “No” until the end of the delay period. The
124 questions (62 expecting a “Yes”, and 62 expecting a “No”) were ran-
domly assigned into 6 runs. The intentions (“Honest/Dishonest”) and
the two types of response prompts (“Y N” and “N Y”) were assigned to
the questions in a counter-balance manner.

Data acquisition

A Siemens 7T scanner equipped with a 32-channel head coil was
used in Experiment 2. Functional scans were obtained using a gradient-
echo EPI sequence (54 slices, TR/TE = 2000/25ms, slice thickness =
2mm, FOV = 192 mm, flip angle = 50°, image matrix: 96 x 96, 343 vol-
umes) covering the whole brain. An additional high-resolution anatom-
ical scan was acquired in each participant (MPRAGE; TR/TE/TI = 3000/
3.88/1500ms, FA = 6°, FOV = 256 x 256mm, 192 sagittal slices, slice
thickness/gap = 1.00/0.50 mm, in-plane resolution = 1 x 1Tmm). The
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Fig. 2. One trial of experimental paradigm for experiment 2. At the beginning of each trial, an instruction cue is displayed for 2 s, asking subjects to be either honest or dishonest when
answering the following question. Then a question on simple facts is presented for 4 s. The question is a binary question expecting either “Yes” or “No” answer. After a delay period of
8 s, an instruction is displayed asking subjects to report the final answer with MRI compatible button boxes. Two possible instructions may appear: “Y N” or “N Y”. The first type of instruc-
tion indicates the button box on the subject’s left hand signals “Yes”, and the left signals “No”. The second type of instruction indicates the opposite. The subjects do not know which button
to press. The red and green arrows show all possible combinations across the stimuli types and indicate the expected response for all combinations. The mental processes that accompany
task performance are summarized below the paradigm. With this task, subjects generate a mental responses to the question, process it according to the instructed “Honest” or “Dishonest”
intention, and keep it in mind until the response instructions appear to make motor responses.

stimuli were presented via a video projector (resolution 1024 x 768
pixel, 60 Hz) that projected from the head-end of the scanner onto a
screen. Participants viewed the projection through mirror glasses. The
data for subject 6 were acquired in two sessions; those for the other
subjects were acquire in a single session.

Preprocessing

The correct button-press response for each trial was generated com-
bining the answer provided in the pre-scan questionnaire, the given in-
tentional cue, and the response instruction. Incorrect trials were
excluded from further analysis (see Results). The data for one subject
were excluded because the subject fell asleep during the scanning
session.

High-resolution anatomical scans were corrected for coil inhomoge-
neity and transformed into the Talairach space (Talairach and Tournoux,
1988). Pre-processing steps for the functional scans included:
discarding the first five volumes, slice time correction, head motion cor-
rection, co-registration to the anatomical scan following the procedures
described in Gonzalez-Castillo et al. (2013), intensity normalization
(e.g., signal percent change), drift removal (using 4™ order polyno-
mials), and regression of six motion estimates.

Regions of interest (ROIs) showing decoding accuracy significantly
above chance at the group level in Experiment 1 were brought into
each subject’s space using the inverse of the spatial transformation ma-
trices computed during the alignment and spatial normalization steps.
All matrices were combined into a single matrix to avoid multiple inter-
polation steps. Moreover, ROl masks were dilated by 1 voxel in subject’s
space to account for anatomical variability across subjects. The union of
all ROIs was regarded as an additional ROI in the analysis. This ROI al-
lows us to examine the performance of the classifier when combining
all ROIs into a single larger multivariate pattern, instead of treating
each ROI independently.

For each trial, we extracted spatial patterns of the preprocessed
signal for the time points corresponding to 2 s, 4 s, and 6 s after
question onset. According to Experiment 1, these time points were
the most informative outside primary visual and motor. To normal-
ize the intensity scales of the spatial patterns for trial averaging,
the median value (across all voxels in all time points) was subtracted
from each pattern and the results were then divided by the median
absolute deviation. This scaling procedure does not affect the spatial
patterns. We used median value instead of mean value to avoid the
impact of outliers.

Mixed-intention MVPA in regions of interest

Fig. 3 provides a graphical demonstration of the following proce-
dure. All trials were categorized into two classes according to the true
thoughts (“Yes” vs. “No”), and no distinction was made between trials
with “Honest” or “Dishonest” intentions in generating overt responses
(mixed-intention scenario). GNB classifiers were trained and tested
using the response patterns generated by averaging an increasing num-
ber (Navg = 1-18) of randomly selected trials. When averaging, trials of
the same type (e.g., true “Yes”) were randomly chosen without replace-
ment. We conducted classification following a leave-two-trials-out
cross-validation scheme (see Fig. 3 for a demonstration with N,yg = 2).
For each ROI and N, level, all the spatial patterns from the training
trials were pooled together to train a classifier, with the three spatial
patterns in each trial used as three samples in the training. The
classifier was then used to predict the label for each spatial pattern
in the test set. To generate a final prediction (“Yes” vs. “No”) for
each trial (containing 3 patterns, one for each time point), an equal
weight voting system was used to make a second-level decision, so
that the label with the higher number of occurrences (e.g., 2 or 3)
was assigned as the final prediction (see Fig. 3). Given the fixed num-
ber of experimental trials, the number of training samples decreased
with the increase of N,yg. The number of training samples ranged be-
tween 142 (for Navg = 1) and 18 (for N,yg = 18). At all averaging
levels, there were always 6 test samples (due to leave-two-trial-
out cross-validation). Since the trials were randomly selected when
averaging, we repeated the averaging and decoding procedure 50
times and obtained averaged accuracies and their 95% confidence
intervals (computed across the 50 averaged accuracies so that the
sample size is the same across N,y = 2-18).

To summarize the decoding power of each ROI, we computed an
area under curve (AUC) index for each ROI as:

8
AUC = i (ACCNan—SO%)

Navg=1

where ACCyayg is the decoding accuracy obtained at the trial averaging
level N,yg, and 50% is the theoretical chance level of the decoding
accuracy. This index represents the amount of total accuracy gain with
increasing N,ve. The higher AUC value for a given ROI, the higher the
likelihood that such ROI contains an activity pattern that help reliably
differentiate between true “Yes” and true “No” thoughts. ROIs were
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Fig. 3. lllustration of the averaging and voting system used to compute decoding accuracies at the single-subject level in Experiment 2. The left most column (“ORIGINAL”) shows individual
patterns of hemodynamic responses for “Yes” (blue) and “No” (red) trials for a given ROI as cubes. Patterns for the 3 time-points of interest (2 s, 4 s, and 6 s after question onset) are
depicted. The second column (“AVERAGING”) shows an exemplary permutation of how individual patterns are averaged for N,,s = 2. The number of available trials for classification is
reduced as a result of the averaging. To the right of the figure we can see how the leave-two-out cross-validation scheme proceeds. All averaged trials with the exception on one “No” trial
and one “Yes” trial are used for classifier training. The excluded trials comprise the test set for this iteration. The right most part of the figure shows how the voting system works. In this
particular case, when we test the classifier with the “Yes” test trial, the classifier decided “Yes” for time-points 2 s and 6 s, but “No” for 4 s. Because “Yes” is the label with the higher number
of occurrences, the final prediction for this trial becomes “Yes”. A similar scenario is shown for the “No” test trial which has two “No” labels for time-points 4 s and 6 s that translate into a

“No” for the final prediction.

ranked according to this AUC index for presentation and discussion
purposes.

Additionally, we performed two control analyses. These control
analyses were performed under the null-hypothesis that the spatial pat-
tern of a region does not carry information about the true “Yes/No”
thoughts. For the first control condition, we performed the same analy-
sis described above but using activity patterns from a primary visual
cortex region of size equal to the smallest ROI discovered in Experiment
1. The AUC index for this control region was also computed and com-
pared with the other ROIs. The second control analysis was conducted
by randomizing class labels of the training response patterns. We did
this for 30 permutations (each contained 50 repetitions with random
trial averaging) for each combination of ROI and N, level. This second
control computation provides a null-distribution of accuracy under the
hypothesis that there is no information for distinguishing true “Yes/
No” thoughts in the spatial patterns.

Cross-intention MVPA in regions of interest

To investigate whether decoding performance of true “Yes/No”
thoughts is modulated by intention to respond honestly or dishonestly,
trials were first split into “Honest” and “Dishonest” trials according to
the response intentions, and then a cross-intention MVPA was conduct-
ed. The rationale underlying this analysis is that if a classifier trained
using “Honest” trials can accurately classify the “Yes/No” labels of the
“Dishonest” trials, and verse visa, the spatial patterns representing the
“Yes/No” thoughts should be highly similar across intentions. Specifically,
the GNB classifiers were trained with only one type of trial (e.g., only
“Honest” trials) to predict the true thought labels (“Yes” vs. “No”) for
the other type of trial (e.g., only “Dishonest” trials). The same procedure
described in the above section was employed. The accuracy of the
classifiers was then determined by predicting the “Yes” vs. “No” labels
of the “Dishonest” trials. The roles of the “Honest” and “Dishonest” trials
were then switched, forming a two-fold cross-validation. The two
resulting accuracies were averaged to obtain the final cross-intention

decoding accuracy. Similar to the mixed-intention analysis, we comput-
ed the AUC index for each ROI to quantify the accuracy gain derived from
trial averaging. To examine whether training classifiers with “Honest”
trials and training classifiers with “Dishonest” trials could procedure sim-
ilar decoding performance, we also studied the decoding accuracy for
each of the two cross-validation iterations separately. The two control
analyses described above were also conducted in this cross-intention
decoding scenario.

Results
Experiment 1: explore brain regions encoding “Yes/No” thoughts

The pre-scan inquiries showed that the true thoughts from all sub-
jects agreed with the designed answers to the questions. On average,
the responses in 94.9% (SD = 6.1%) of the trials agreed with those de-
rived by combining the answers from the questionnaire and the given
intentions. Invalid trials with incorrect responses were excluded from
further analyses.

Fig. 4 shows which regions contain information that produces
decoding accuracies significantly above chance and at which time
points the information can be decoded at the group level. The group
mean decoding accuracies within these regions and the coordinates of
the peak voxels are shown in Table 1. At the question onset, no region
showed above-chance decoding accuracy. Two seconds after question
onset, a region within the left para-hippocampal gyrus was identified
(Fig. 4A). Six regions with accuracy significantly above chance,
including the left middle frontal gyrus, left inferior frontal gyrus and
its counterpart on the opposite hemisphere, left medial frontal gyrus,
left supra-marginal gyrus, and right superior temporal gyrus, were
identified at 4 s after question onset (Fig. 4B). One of these regions,
the left middle frontal gyrus, still contained sufficient information to
produce accuracy significantly above chance at 6 s after question
onset. Additionally, a medial portion of the left superior temporal
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6 sec

8 sec =0

Fig. 4. Group-level searchlight maps showing regions with decoding accuracy significantly above chance level. The colors indicate t statistics with a degree of freedom of 9. Each panel
shows significant regions identified at different times (Panel A: 2's, B: 4 s, C: 6 s, and D: 8 s) after question onset. (A) 2 s after question onset: left para-hippocampal gyrus; (B) 4 s
after question onset: left middle frontal gyrus, left inferior frontal gyrus, right inferior frontal gyrus, left medial frontal gyrus, left supra-marginal gyrus, and right superior temporal
gyrus; (C) 6 s after question onset: left middle frontal gyrus and left superior temporal gyrus; (D) 8 s after question onset: bilateral posterior parietal cortex and bilateral ventral occipital cortex.
The maps are threshold at t > 3.7, corresponding to voxel-wise significance of 0.005. The size of all clusters is larger than 20 voxels (540mm?), yielding a family-wise error (FWE) of p < 0.05.

gyrus also appeared in the searchlight results for this moment in time
(Fig. 4C). Finally, at 8 s after question onset, a series of motor and
visual areas appeared to convey information about the “Yes/No”
thoughts, most likely as a result of contamination from the actual
overt response period. To test the credibility of the searchlight
procedure, we applied the same analysis at the onset of the cue. As
expected, no region was found informative in decoding the true
thoughts at this early time point. We also conducted t-tests to exam-
ine the univariate difference between the “Yes” and “No” thoughts,
but failed to detect clusters showing significant difference between
the two conditions.

In addition to the group-level test, we conducted ROI analyses to
evaluate whether the ROIs identified in the searchlight analysis are in-
formative for decoding the true “Yes/No” thoughts in most individual

Table 1

subjects. Here we report the number of subjects for whom the individ-
ual classification accuracy is significantly above chance level (p < 0.05):
left para-hippocampal gyrus (2 s): 8/10; left middle frontal gyrus (4 s):
10/10; left inferior frontal gyrus (4 s): 10/10; right inferior frontal gyrus
(4 s): 8/10; left medial frontal gyrus (4 s): 10/10; left supra-marginal
gyrus (4 s): 7/10; right superior temporal gyrus (4 s): 5/10; left middle
frontal gyrus (6 s): 8/10; and left superior temporal gyrus (6 s): 8/10.
These observations support the findings from the group-level test.

Experiment 2: mixed-intention decoding accuracy at the single-subject level
The pre-scan inquiries showed that the true thoughts from all

subjects agreed with the designed answers to the questions. Combining
the designed answers to the questions, the given intentions, and the

Mean decoding accuracies and peak voxel coordinates of the regions of interest showing significant above-chance accuracies in Experiment 1.

Time bin ROI Size (mm°) x (R-L) Y (A-P) z (I-S) Mean accuracy (%)
2s Left para-hippocampal gyrus 621 28.5L 31.5P 9.51 74.7
4s Left supra-marginal gyrus 3087 46.5L 58.5P 29.58 734
Left middle frontal gyrus 1593 40.5L 7.5A 41.58 72.0
Right superior temporal gyrus 1566 55.5R 49.5P 14.58 704
Left inferior frontal gyrus 891 46.5L 22.5A 2358 732
Right inferior frontal gyrus 756 55.5R 16.5A 23.58 702
Left medial frontal gyrus 702 1.5L 37.5A 35.58 69.3
6s Left superior temporal gyrus 1053 43.5L 13.5A 35.58 70.8
Left middle frontal gyrus 1026 49.5L 34.5P 2.58 69.5
8s Left para-hippocampal gyrus 918 19.5L 52.5P 6.51 70.0
Right fusiform gyrus 918 19.5R 70.5P 6.51 73.1
Right posterior parietal cortex 648 28.5R 55.5P 41.5S 69.0
Left fusiform gyrus 1782 4.5R 64.5P 8.55 68.4
Left posterior parietal cortex 540 51.5L 61.5P 50.58 70.9

Note: The directions in the coordinates are reported using R (right), L (left), A (anterior), P (posterior), I (inferior), and S (superior) to avoid confusions with the “+4/—" signs.
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Fig. 5. Group-level summary of decoding power for all ROIs in mixed-intention decoding (A) and cross-intention decoding (B). The ROIs are ranked according to the “area under curve”
(AUC) in the mixed-intention decoding scenario (A). The AUC indicates the total gain of decoding accuracy with increasing levels of trial averaging (N,y). The bars indicate median value of
AUC across six subjects. The AUC value for individual subjects are marked using different symbols. In the mixed intention decoding (A), the union of all ROIs (pink bar) has the highest
median AUC, followed by the right superior temporal gyrus, the left supra-marginal gyrus, and the two ROIs at the left middle frontal gyrus (identified at 4 s and 6 s after the question
onset in Experiment 1 respectively). As expected, the control region (blue bar) shows the lowest median AUC value that is close to zero. The two ROIs at the left middle front gyrus exhibit
high AUC values for all subjects. In the cross-intention decoding scenario (B), the union of all ROIs (pink bar) still shows the highest median AUC. The left middle frontal gyrus (4 s) shows
comparable median AUC to the union of all ROIs. The individual AUC values are consistently high in this ROL

response rules indicating which button signals “Yes”, we derived the
expected response for each trial. The trials whose responses did not
agree with the expectations were excluded from further analyses. The
ratio of valid trials was 88.2-99.3% for the six subjects.

Fig. 5A shows AUC values (both individual subject and median
values) for the different ROIs. The AUC value indicates the amount of
total accuracy gain with the increasing number of averaged trials. The
ROIs, including the union of all ROIs defined in Experiment 1 and the
control region, were sorted according to median AUC values across all
subjects. The union of all ROIs ranked first, suggesting that combining
the information from all ROIs yields the highest decoding power. The
right superior temporal gyrus (r-STG), the left supra-marginal gyrus
(I-SMG), and the left middle frontal gyrus (I-MFG, including the two
ROIs identified at 4 s and 6 s after question onset in Experiment 1)
were ranked second to fifth. The two ROIs in the I-MFG showed the
highest inter-subject consistency in AUC index. As expected, the control
region was ranked last.

Fig. 6 shows the mean and 95% confidence intervals of decoding ac-
curacy as a function of N,y for all ROIs in all subjects. Rows in the matrix
correspond to subjects and columns represent all ROIs in the analysis.
The ROIs were ordered according to the AUC rank in Fig. 5A. The right
most column (blue lines) show results for left primary visual cortex, a
region not identified as informative for time bins 2 s-6 s in Experiment
1. Grey areas show 95% confidence intervals of decoding accuracy in a
permutation analysis where labels were randomized during classifier
training. The precise accuracies, with significance levels, for Nayg = 1
and N,z = 18 are reported in Supplementary Table 1.

Considerable cross-subject variability in decoding accuracy was
observed in most ROIs. While most subjects showed decoding
accuracy increasing with N,y for all (subject 1) or most regions
(subjects 3-6), subject 2 showed increases only for a limited set of
regions. The top-ranked ROIs in the AUC index (Fig. 5A), r-STG, 1-SMG,
I-MFG (4 s), and I-MFG (6 s), showed significant increases in decoding
accuracy with increasing N,yg. These tendencies were highly consistent
across subjects. The median accuracy values for these ROIs were 82.5%,
77.5%, 78.5%, and 79.5%, respectively when N,z = 18. In particular, the
two I-MFG ROIs exhibited increasing accuracy as a function of Nayg

for all subjects. The single-trial (Na,,g = 1) decoding accuracies for
the I-MFG ranged 56% to 65% (Supplementary Table 1), and were sig-
nificantly above chance for all subjects (p < 0.01, determined using a
null-distribution generated by pooling results from the permutation
tests). When N,,¢ = 18, the decoding accuracy for the I-MFG reached
atleast 76% in all subjects (significantly above chance, p<10~2), and
raised above 90% for two subjects (see Supplementary Table 1). In
contrast, the permutation analyses produced decoding accuracies
around chance (50%) in all regions for all subjects and N,,¢ levels.
Meanwhile, no increasing trend in decoding accuracy was observed
in the left visual cortex control region. When combining all nine
ROIs (the union ROI), the decoding accuracy with N, = 18 ranged
from 71-92% across subjects, except subject 2 (60%). These high accura-
cies obtained with N, = 18 indicate that, for these data, increasing the
signal-to-ratio for individual trials has a greater impact on decoding
performance than increasing the total number of training trials. A few
regions in subject 2 exhibited decreasing performance far below chance
level as N,y increased. This phenomenon has previously been observed
in linear classifications systems and defined as “anti-learning phenom-
enon“ (Kowalczyk and Chapelle, 2005).

Experiment 2: cross-intention decoding accuracy at the single-subject level

Similar to the mixed-intention analysis, we computed AUC for all
ROIs and all subjects for the cross-intention condition. Results for this
analysis are shown in Fig. 5B. For consistency, the ROIs are sorted
according to the mixed-intentions AUC (Fig. 5.A). For this cross-
intention scenario, the union of all ROIs still showed the highest median
AUC value. Echoing the mix-intention analyses, the r-STG, I-SMG,
and I-MFG showed relatively high median AUC values. Particularly,
one I-MFG ROI (the one identified at 4 s after question onset in Experi-
ment 1) exhibited comparable median AUC to the union of all ROIs. Re-
garding the inter-subject consistency, the two I-MFG ROIs again
showed high consistency across all subjects. The r-STG and the 1-SMG
showed larger inter-subject variability in decoding accuracy than the
1-MFG ROIs.
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Fig. 6. Single-subject decoding accuracy results for the mixed-intention scenario as a function of number of averaged trials (Nayg). Each row corresponds to a different subject. Each column
corresponds to a different ROL The ROIs are ordered according to the median AUC rank presented in Fig. 5A. Red lines represent accuracy results for regions identified as informative in
Experiment 1. Purple lines are used to indicate the performance of the union of all ROIs. Gray lines represent results from a permutation control analysis where labels were randomized
during classifier training. Blue lines represent results for an additional control region located in the left visual cortex. Each line shows average values in bold and 95% confidence intervals
across 50 repetitions of random trial averaging as shaded regions. The ROIs at the left middle frontal gyrus show consist trend across all subjects.

Fig. 7 presents the decoding accuracy curves as a function of Nyyg
from the cross-intention decoding attempts. The figure is organized in
a manner similar to Fig. 6. Both control conditions (permutation analy-
sis and the visual cortex control region) produced chance-level
decoding accuracies that remained steady with different levels of trial
averaging. Similar to the mixed-intention scenario, the cross-intention
decoding accuracies exhibited considerable inter-subject variability.
Due to the potentially larger variability in trials used in training
(“Honest” trials) and test (“Dishonest” trials), as well as a smaller
number of samples in classifier training, the cross-intention decoding
accuracies were lower than those in the mixed-intention scenario. The
mean decoding accuracies at Navg = 1 and N,y = 18 for all ROIs and
their union are presented in Supplementary Table 2. The single-trial
decoding accuracy failed to achieve a significance level of p < 0.01 for
most ROIs in most subjects.

However, the top-ranked ROISs still showed decoding accuracy that
increased with N,ye. The median accuracy values for the r-STG, I-SMG,
I-MFG (4 s), and I-MFG (6 s) ROIs were 66%, 75%, 72%, and 78%, respec-
tively when N,,, = 18. In particular, the two I-MFG ROIs exhibited con-
sistency across all subjects, and achieved decoding accuracy of 68-91%

for all subjects when N,,; = 18. These results suggest that the represen-
tations of the true “Yes/No” thoughts in the spatial activity patterns of
the I-MFG are relatively robust across intention to respond truthfully
or deceivingly (according to the intentional cue). The union of all ROIs
gave accuracies greater than 74% in four of the six subjects (see Supple-
mentary Table 2).

Fig. 8 presents a summary of median decoding accuracy (when
Navg = 18), which separates classification accuracies from the two
predictions in the cross-intention decoding. In one true yes/no
prediction, the classifier was trained only using the “Honest” trials
and tested using the “Dishonest” trials; in the other prediction the
roles of the “Honest” trials and “Dishonest” trials were switched.
The grey band on Fig. 8 represents the 99.99% confidence interval
derived from the permutation tests. The accuracies for individual
subjects are presented in Supplementary Table 3. Fig. 8 indicates
that the inter-subject median accuracy values for all ROIs were
very similar whether the classifier was trained on the “Honest” or
“Dishonest” trials. This similarity was also observed in all ROIs and
all subjects (Supplementary Table 3). These observations indicate
that the accuracies obtained in the cross-intention decoding when
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Fig. 7. Single-subject decoding accuracy results for the cross-intention scenario as a function of number of averaged trials (N,yg). Each row corresponds to a different subject. Each column
shows results for a different ROL The ROIs are ordered according to the median AUC rank presented in Fig. 5A. Red lines represent accuracy results for regions identified as informative in
Experiment 1. Purple lines are used to indicate the performance of the union of all ROIs. Gray lines represent results from a permutation control analysis where labels were randomized
during classifier training. Blue lines represent results for an additional control region located in the left visual cortex. Each line shows average values in bold and 95% confidence intervals
across 50 repetitions of random trial-averaging as shaded regions. The ROIs at the left middle frontal gyrus show consist trend across all subjects.

averaging across conditions in Fig. 7 were due to a high classification
accuracy in only one trial type. Thus, for the ROIs showing consis-
tently high accuracies in the cross-intention decoding, the results
presented here provide additional evidence that the intentions do
not influence the spatial patterns representing true thoughts in
these ROIs. This summary also shows that the median classification
accuracies in both cross-intentional predictions in the r-STG, I-SMG,
and I-MFG ROIs were significantly above chance level at N,yg = 18.

Discussion

This work aims to examine the possibility of decoding true “Yes/No”
thoughts elicited in response to binary common-knowledge questions
using fMRI and MVPA at the single-subject level. It also evaluates the
impact of honest/dishonest intentions in making explicit responses on
the decoding of the true thoughts. A searchlight analysis (Experiment
1) first revealed several distributed cortical regions whose hemody-
namic patterns produced decoding accuracy significantly above chance
at the group level, and revealed that these spatial patterns were most in-
formative at 2 s-6 s after the beginning of the trials. Nonetheless, the

exploratory nature of Experiment 1 does not allow drawing solid con-
clusions about which brain regions carry accurate information to de-
code true thoughts. With the a priori information found in Experiment
1, Experiment 2 further examined these cortical regions on an indepen-
dent dataset acquired on a 7T scanner. This second experiment not only
aimed to verify the findings from Experiment 1, but also evaluated the
influence of the honest/dishonest intentions on the decoding of the
true thoughts. Finally in this second experiment we also evaluated if
trial averaging could help enhance decoding accuracy towards the
goal of 100% at the single-subject level.

Our results revealed that a few regions, namely r-STG, I-SMG, and
I-MFG, were able to produce significant above-chance decoding ac-
curacies for the true “Yes/No” thoughts (median accuracy around
80% when N,,¢ = 18). More importantly, our results also reveal
that accuracy can be greatly enhanced with trial averaging (Figs. 5A
and 6). This indicates that the spatial activity patterns in these ROIs
contain robust response differences between the true “Yes” and
“No” thoughts.

When classification accuracy was computed using a cross-
intention approach (training conducted with “Honest” and testing
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that the cross-intention accuracies shown in Fig. 7 are not biased by a single prediction scheme (“H” or “D”).

with “Dishonest” trials, and vice-versa), the r-STG, I-SMG, and I-MFG
ROIs still exhibited accuracy that improved with trial averaging,
achieving median values around 75% (N,yg = 18). These observations
further suggest that the encodings of true thoughts in these regions
have some degree of independence from the subjects’ intentions to
respond truthfully or deceivably, and that decoding performance can
be enhanced with trial averaging. Further analyses are necessary to
fully evaluate the actual level of independence regarding intentions,
and how this independence may vary across subjects or type of
questions. In the following sections, we focus the discussion on the r-STG,
1-SMG, and I-MFG regions that showed high decoding power in both
mixed-intention and cross-intention analyses (see Figs. 5 and 8).

Encoding of “Yes/No” thoughts in the I-MFG

The left dorsolateral prefrontal cortex (I-DLPFC), which encom-
passes the I-MFG region found in the present study, is known to be
actively involved in perceptual decision-making about both simple
(Kim and Shadlen, 1999) and complex objects (Heekeren et al.,
2004). Perceptual decision-making models suggest that the 1-DLPFC
serves to generate decisions by comparing the inputs from different
selectively-tuned, lower-level perceptual regions. Recent studies
have demonstrated that this integrative role goes beyond simple
perceptual decisions, and that the I-DLPFC is also involved in more
cognitively demanding decisions - such as house/face discriminations
(Heekeren et al., 2004) or delayed face recognition (Druzgal and
D'Esposito, 2001) - and that its integrative role is independent of re-
sponse and stimulus modality (Heekeren et al., 2006; Pleger et al.,
2006). In the present work, we show that BOLD response patterns
within the 1-DLPFC can be used to detect true “Yes/No” thoughts. This
suggests that the integrative capabilities of the 1-DLPFC are more
general than previously discussed, and that this region also plays an
important role in integrating input, such as merging visually posed
question with prior experiences and knowledge that the subjects
possess.

Furthermore, our current observation that encoding of “Yes/No”
thoughts in the I-MFG is somehow independent of intentional cues

extends the findings from prior deception studies. The prefrontal cortex
has been suggested to play a key role in deception, as reflected by its
widespread activity during deceptive behavior (Christ et al., 2009).
Researchers suggested that the prefrontal cortex may play a key
role in suppressing true thoughts and permitting deception (Abe,
2009; Abe et al., 2008). Our current results provide understanding
at a finer-scale; a portion of the I-DLPFC is not fully affected by inten-
tional suppression, and that it encodes the initial “truthful” thoughts
even when subjects are instructed to overtly deceive. Thus, this ob-
servation implies that different regions in the DLPFC may play differ-
ent roles in deception, inviting investigation of DLPFC function at a
finer scale. The psychological theory of deception proposed by
Spence et al. (2004) defined deception as the process of constructing
a lie while also withholding the truth. Our observations provide
brain imaging evidence in support of this theory in that the true
thoughts can be robustly decoded from brain activity under both
honest and dishonest intentions when providing explicit answers.
Thus, the existing true thought proposed in the theory is represented
in the brain activity, parallel to the mental processes producing lies.

Encoding of “Yes/No” thoughts in the I-MFG

The I-SMG showed increasing decoding accuracy with trial
averaging in five of the six subjects in Experiment 2 (Figs. 5 and 6).
The accuracy for the other subject was influenced by “anti-learning
phenomenon,” and, in theory, is correctable (see Supplementary
Discussion). The I-SMG is known to play an important role in language
processing (Jobard et al., 2003; Price, 2010; Simon et al., 2002), particu-
larly in verbal working memory (Henson et al., 2000; Paulesu et al.,
1993). It coordinates with Broca’s area to conform to an articulatory
loop that allows us to keep words ‘in our heads’ (Paulesu et al., 1993).
Consistent decoding accuracy of the 1-SMG in the mixed-intention
condition suggests that some components of the verbal working
memory, as represented in the 1-SMG, may be involved in maintaining
responses in mind during the delay periods. The fact that decoding
accuracy for the 1-SMG was significantly greater than chance and
increased with trial averaging in the cross-intention scenario presents
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a more striking result; it suggests that the true thoughts - which are
necessary to construct a deceptive answer according to Spence et al. de-
ception theory (Spence et al., 2004) - are also encoded in this parietal
region. This further suggests that one still keeps in mind the true
thoughts throughout the entire mental process for telling a lie.
However, our results did not show that all key regions involved in
working memory contained information about true thoughts. Further
investigation is needed to better understand the role of different
working memory regions on the maintenance of the true thoughts.

Encoding of “Yes/No” thoughts in the r-STG

The r-STG showed similar performance to the 1-SMG. This region
showed increasing decoding accuracy with trial averaging in five of
the six subjects in the mixed-intention decoding scenario and exhibited
larger inter-subject variability in the cross-intention decoding scenario.
Previous studies have found that faces familiar to the subjects can evoke
activation in this region (Gobbini and Haxby, 2006, 2007). More recent-
ly, a comprehensive study combining fMRI and electrical physiology
techniques investigated the spatial and temporal neural processing of
deception on face familiarity (Sun et al.,, 2013). The authors suggested
that r-STG is involved in early retrieval of truth, and that this early re-
trieval of truth is necessary in the deception process. Our observation
that the true thought can be decoded in the activity of r-STG supports
and provides further evidence for this theory. Nonetheless, further in-
vestigation is needed to clarify whether the r-STG is involved in visual
processing of the “Yes/No” symbols in the task or the processing of
higher-level information in our paradigm.

Decoding accuracy in other regions

Five additional regions showed accuracy significantly above chance
at the group level in Experiment 1 (Figs. 4A-C). The decoding accuracy
and behavior with trial averaging was considerably more variable across
subjects. This higher inter-subject variability most likely reflects differ-
ences in cognitive strategy across subjects. Nonetheless, as shown in
Fig. 5, when using spatial activity patterns within all these ROIs to de-
code true thoughts, the performance in most subjects was higher than
that obtained only using an individual ROL These findings suggest that
these regions may also contribute to the decoding of true thoughts,
although their contribution may be dependent on individual strategies.

Potential applications and limitations

The possibility of decoding true “Yes/No” thoughts on an individual
subject basis with high accuracy may be attractive for those interested
in clinical and legal applications. Clinically, it may provide an efficient
way to communicate with locked-in patients and help diagnose differ-
ent levels of consciousness. Recent research (Meiran et al., 2000; Naci
etal,, 2013; Owen et al,, 2006) has shown that it is possible to use covert
mental tasks with well-differentiated fMRI activation patterns, such as
motor imaginary, mental spatial navigation, and selective attention, to
attempt simple communication (i.e., “Yes/No” questions) with some
members of this population. Our current results suggest that it may be
possible in principle to bypass this intermediate “translation” step -
i.e. motor imagery = “Yes”; spatial navigation = “No” - and ask sub-
jects to simply keep “Yes” or “No” answers in their mind, which may
greatly increase the efficiency, robustness, and ease of implementation
of this technique. In the legal setting, our results may have some impli-
cations for deception detection. Most fMRI deception studies focus on
understanding and detecting the act of deception (Johnson et al.,
2004; Langleben et al., 2005; Phan et al., 2005; Sip et al., 2008). Here,
guided by the detection theory of Spence et al. (2004 ), we have focused
our efforts on detecting where and when in the brain subjects may en-
code the true thoughts that are intrinsic and necessary to construct a lie.
Our results suggest that a few brain regions may contribute to encoding

this concealed truth; and that it might be possible, in principle, to use
fMRI to directly decode truthful thoughts.

Given the legal and ethical implications associated with these two
applications, caution must be exercised when interpreting the present
results. Our findings can only be considered a proof-of-principle, and
should not be interpreted as a usable technique for real-world applica-
tions. First, although we report decoding accuracies significantly above
chance, we do not report perfect decoding accuracy (100%). Conse-
quently our data do not suggest that decoding of truthful thoughts can
be yet performed with the levels of robustness, efficiency, and accuracy
that applications, such as the ones outlined above, may require. High
decoding accuracy was only achieved after averaging several trials.
Single-trial decoding failed to achieve satisfactory accuracy even when
there were more samples for the classifier. Thus, our study does not
show that a single-instance of decoding can produce an accurate
estimation of true thoughts at signal-to-noise levels such as those
present in our data. Second, our experimental setup presents important
constraints that render it significantly different from real-world situa-
tions. These differences include motivation, stress levels of the subjects,
and the types of questions considered.

Finally, several regions showed promising increases in decoding ac-
curacy with trial averaging, suggesting that improvements in hardware
and experimental design could translate, in the near future, into higher
accuracies with fewer trials. From our results, it is not possible to infer
whether decoding accuracy for data with higher quality will reach levels
in the vicinity of 100%, or if saturation at a lower accuracy may occur.

Future directions

There are still many questions to be answered beyond the current
study. First, a general question in brain decoding is whether the
information is best represented in individual voxels, fine-grained
multi-voxel patterns, or general macroscopic patterns. The answer to
this particular question is required to gain further understanding on
how true thoughts are encoded in neural activity. Although we failed
to detect any significant univariate differences between “Yes” and
“No” thoughts in Experiment 1, a rigorous comparison between univar-
iate and multivariate approaches need to be conducted. Furthermore,
comparing decoding results with different levels of smoothing on the
data can provide insights on how much information about the true
thoughts is actually represented within fine-grained local voxel activity
patterns. An even more interesting question is whether the neural
encoding of the true thoughts is consistent across subjects. Cross-
subject decoding may serve as a powerful tool to examine this question.

Conclusions

The present study shows it is possible to decode true “Yes/No”
thoughts in response to binary questions in the presence of cues to
answer honestly or dishonestly at the single-subject level. The I-MFG,
r-STG, and 1-SMG showed consistent above-chance decoding accuracy.
The decoding accuracy can be enhanced with trial averaging. The
decoding of true thoughts in these regions shows independence from
the intention to overtly deceive.
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