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A B S T R A C T

The spontaneous activity of the brain interacts with stimulus-induced activity which is manifested in event-related amplitude and its trial-to-trial variability (TTV).
TTV describes the variability in the amplitude of the stimulus-evoked response across trials, and it is generally observed to be reduced, or quenched. While such TTV
quenching has been observed on both the cellular and regional levels, its exact behavioral relevance and neuronal basis remains unclear. Applying a novel paradigm
for testing neural markers of individuality in internally-guided decision-making, we here investigated whether TTV (i) represents an individually specific response by
comparing individualized vs shared stimuli; and (ii) is mediated by the complexity of prestimulus activity as measured by the Lempel-Ziv Complexity index (LZC). We
observed that TTV - and other electrophysiological markers such as ERP, ERSP, and ITC – showed first significant differences between individualized and shared
stimuli (while controlling for task-related effects) specifically in the alpha and beta frequency bands, and secondly that TTV in the beta band correlated significantly
with reaction time and eLORETA activity. Moreover, we demonstrate that the complexity (LZC) of neuronal activity is higher in the prestimulus period while it
decreases during the poststimulus period, with the former also correlating specifically with poststimulus individualized TTV in alpha (but not with shared TTV).
Together, our results show that the TTV represents a marker of ‘neural individualization’ which, being related to internal processes on both neural and psychological
levels, is mediated by the information complexity of prestimulus activity. More generally, our results inform the pre-post-stimulus dynamics of rest-stimulus inter-
action, which is a basic and ubiquitous neural phenomenon in the brain and highly relevant for mental features including their individuality.
1. Introduction

1.1. General background – variability as marker of neural and
psychological individuality

Variability in brain activity between participants has long been
treated as meaningless noise or measurement error (Arazi et al., 2017a;
Seghier and Price, 2018). This neural variability, especially in
task-evoked responses, however, has recently been shown to explain the
behavioral and perceptual differences of individual participants (Haigh
et al., 2015; Arazi et al., 2017b, 2017a), thus challenging this view. The
finding may provide measures of specifically individual features of brain
activity (Arazi et al., 2017b, 2017a), and so address an urgent desire for
individualized neural markers, a growing concern in both basic and
clinical neuroscience (Braver et al., 2010; Reineberg et al., 2015; Fried-
man and Miyake, 2016; Jang et al., 2017; Seghier and Price, 2018).
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What purpose, though, does a better understanding of these interin-
dividual differences serve? Cognitive studies often show major intra- and
interindividual differences in both neuronal and behavioral responses to
stimuli. Given that the stimuli or tasks are the same for all subjects, one
would rather expect similar changes in neural and behavioral responses
across subjects, however this is not the case. It raises the question as to
the origin of this interindividual variability and its neural markers.
Determining these sources of variability is even more pressing in clinical
settings. Here, intersubject variability may provide explanations as to
why symptoms differ between patients with similar lesions, or those with
the same symptoms have different outcomes (Seghier and Price, 2018).
Investigating these differences may shed light on the underlying mech-
anisms of these clinically significant variances.

Variability of task-evoked activity, as manifested in trial-to-trial
variability quenching, has been consistently observed on multiple
levels of neural activity, including cellular recordings (Arieli et al., 1996;
, 1145 Carling avenue, Ottawa, ON, K1Z 7K4, Canada.
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Monier et al., 2003; Finn et al., 2007; Churchland et al., 2010, 2011;
Hussar and Pasternak, 2010; Scaglione et al., 2011; Chang et al., 2012;
White et al., 2012; Goris et al., 2014; Mazzucato et al., 2015, 2016; Liu
et al., 2016), electroencephalography/electrocorticography (EEG/ECoG)
(He and Zempel, 2013; Schurger et al., 2015; Arazi et al., 2017b, 2017a),
and functional magnetic resonance imaging (He, 2013; Ferri et al., 2015;
Huang et al., 2017a) (see also (Dinstein et al., 2015) for review of TTV).
These data demonstrate that TTV quenching is a ubiquitous phenomenon
of neural activity and is a result of a nonlinear interaction between the
brain's ongoing spontaneous activity and activity induced by the stimulus
(He, 2013; Huang et al., 2017a). The exact behavioral relevance and
underlying neuronal mechanisms of TTV quenching, however, remain
unclear.

In humans, this quenching of activity is unchanging in the individual
over time and across tasks (Arazi et al., 2017b), and is related to
behavioral performance (He and Zempel, 2013; Haigh et al., 2015;
Schurger et al., 2015; Arazi et al., 2017a, 2017b); stronger TTV
quenching is associated with faster reaction times (He, 2013), superior
perceptual abilities (Schurger et al., 2015; Arazi et al., 2017b; Baria et al.,
2017), and superior memory recall (Xue et al., 2010). When taken
together, these results suggest that TTV quenching is strongly related to
internal - individual or self-specific - neural processing; TTV may thus be
a marker of an individualized neural response.

What, however, are the sources of TTV? It has been shown that
prestimulus (He, 2013) and resting state activity (Huang et al., 2017a)
influence trial-to-trial variability, which suggests that TTV is partly due
to internal - pre-stimulus - rather than external - stimulus-related -
sources. The influence of the two – internal and external – implies that
TTV is a hybrid of the impact of both internal prestimulus activity levels
and external stimulus-related effects (Huang et al., 2017a). To test this
hypothesis, we require an operational distinction between the effects of
internal activity and those of the external stimulus on the commonly
shared output, the stimulus-induced or task-evoked activity in the
post-stimulus period.

The operational distinction between internal and external effects can,
on a psychological level, be studied comparing internally-guided (IDM)
and externally-guided decision-making (EDM) (Nakao et al., 2009, 2012,
2013a). In IDM, no correct answer based on external criteria exist; par-
ticipants respond based on their own internal preferences – this reflects
individuality on a psychological level (Nakao et al., 2012). In contrast, in
EDM there is one correct answer based on external criteria (Nakao et al.,
2012) as would be the case if given two words and asked which was
longer (Nakao et al., 2009). These studies show differential neural cor-
relates for IDM and EDM (Nakao et al., 2012, 2013a, b, 2016); the dif-
ferential impact of IDM and EDM on TTV, as well as potentially different
roles of pre-stimulus activity, however, remain to be studied. We there-
fore combine here an investigation of TTV and pre-stimulus effects in the
context of IDM vs EDM to probe for the neural correlates of internal and
external effects on TTV.

1.2. Main aim – internal prestimulus origin of poststimulus trial-to trial
variability

The main aim of our study, then, was to determine if internal, pre-
stimulus ongoing neural activity contributes to the source of task-
evoked variability as measured with TTV. We hypothesize that TTV is
a marker of neural individuality as it can originate only from the internal
neural activity and, more specifically, its pre-stimulus complexity (see
below). To test this hypothesis, we converged an IDM/EDM paradigm
with TTV measures and analysis of pre-stimulus activity; this allowed us
to study the internal and external sources of individuality with respect to
TTV on both the neural and psychological levels.

A study in which participants were presented with identical stimuli -
in one condition they made internally guided decisions while the second
condition demanded externally guided decisions (Nakao et al., 2009,
2012, 2013a) –was designed to specifically investigate this question. The
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IDM condition employed here was a task adapted from previous studies
(Sarlo et al., 2012; Manfrinati et al., 2013; Pletti et al., 2016) and cited as
an example of IDM which allowed us to test for individuality on the
psychological level of the task (Greene, 2001; Greene et al., 2004; Moll
et al., 2006, 2008; Moll and de Oliveira-Souza, 2007; Greene and Paxton,
2009; Nakao et al., 2012).

To further test the specificity of TTV quenching, participants were
presented with four stimuli, two individualized to them and two shared
by all participants (Wolff et al., 2018), similar to the high- and
low-conflict stimuli used in a past IDM/EDM study (Nakao et al., 2013a).
In this 2� 2 factorial design, our aim was to determine if TTV quenching
was significantly different in IDM when compared to EDM, and if there
was a difference – across conditions or specific to one condition – in TTV
between individualized stimuli and stimuli shared by all participants.
This allowed us to operationalize individuality on the psychological level
with respect to both task – IDM vs EDM – and stimuli – individualized vs
shared.

TTV quenching is related to event-related desynchronization which
has been shown in alpha, beta and gamma (Arazi et al., 2017a). Specif-
ically, the alpha frequency band seems to exhibit a special role for in-
dividuality as it has long been shown to be highly individual (Posthuma
et al., 2001; Klimesch et al., 2007; Br€oltzner et al., 2014; Gruber et al.,
2014; Mierau et al., 2017) and related to self-related stimuli (Bai et al.,
2016). For that reason, we investigated TTV quenching in specific fre-
quency bands, with a specific focus on alpha as a possible marker of
neural individuality. That extends previous TTV investigations that have
been conducted only in the broadband, not in specific frequency bands
such as alpha.

1.3. Specific aims – TTV as individual neural marker and its pre-stimulus
complexity

The first specific aim of our EEG study consisted in testing TTV as an
individual neural marker by applying a novel study design in an IDM
paradigm (Lieberman and Pfeifer, 2005; Volz et al., 2006; Nakao et al.,
2012, 2016). We hypothesized that there would be significant differences
in TTV quenching - specifically in alpha, beta and gamma bands previ-
ously shown to correlate with decreases in power (Arazi et al., 2017b) - as
well as differences in other electrophysiological markers (ERP, ERSP,
ITC) in response to individualized stimuli compared to stimuli shared by
all participants.

In addition to its modulation by different stimuli (Churchland et al.,
2010, 2011; Hussar and Pasternak, 2010; Arazi et al., 2017b), TTV is also
dependent upon the degree of the brain's internal prestimulus variance as
observed on both cellular (Kisley and Gerstein, 1999; Curto et al., 2009;
Schurger et al., 2010; Pachitariu et al., 2015) and regional levels (He,
2013; Schurger et al., 2015; Huang et al., 2018). This strongly suggests
that features of the prestimulus activity, such as its complexity, mediate
TTV quenching.

Based on these findings, the second aim of our study was to charac-
terize prestimulus activity in terms of its informational complexity. This
was achieved by applying the well-known Lempel-Ziv complexity mea-
sure (LZC) (Lempel and Ziv, 1976) which has been used widely in
EEG/MEG studies (Fern�andez et al., 2009, 2011; 2012; Takahashi, 2013;
Ib�a~nez-Molina et al., 2015; Mateos et al., 2018). We hypothesized that
the degree of prestimulus complexity, as measured through LZC (Mateos
et al., 2018), is directly related to the degree of TTV quenching in
response to individualized (rather than shared) stimuli.

Notably, to disentangle internal (prestimulus) and external (stimulus-
related) effects on TTV, we introduced a novel method for TTV calcula-
tion in EEG by calculating TTV independent of the variance at stimulus
onset. This would confound prestimulus effects and TTV calculation. This
was accomplished by using pseudotrials - trials when a stimulus is absent
(Huang et al., 2017a,b) - to compare with actual trials and to calculate
poststimulus variability through TTV (see Huang et al., 2017a,b for an
analogous method in fMRI).
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1.4. Overview – from ERP, ERSP, and ITC over TTV to pre-stimulus
Lempel-Ziv complexity

We recorded electroencephalography (EEG) and response activity in
human subjects while they performed a visual IDM and EDM task
adapted from previous studies (Sarlo et al., 2012; Manfrinati et al., 2013;
Pletti et al., 2016). To individualize two of the four stimuli presented in
the EEG session, a behavioral session was completed prior to it to
determine the response thresholds of the participants. As done in a pre-
vious study (Arazi et al., 2017a), we started by measuring event-related
potentials (ERPs) to determine that there was an effect of the stimuli on
evoked activity. Next, we measured the event-related spectral perturba-
tion (ERSP) and intertrial coherence (ITC) to establish if there were
differences between stimuli or conditions in frequency band power and
phase consistency, and if so, which bands.

We then measured TTV by calculating the TTV index, a new measure,
which incorporates pseudotrials (Huang et al., 2017a), and investigated
the effect of stimulus and condition in the broadband and individual
frequency bands. In only those bands found to have significant differ-
ences, we correlated the TTV index values to the response-related mea-
sures from the EEG session (threshold, reaction time) to see if our neural
measure related to the behavior of the individual participants. Finally, we
measured LZC in the internal prestimulus activity and correlated it with
the TTV index values in the significant bands; this served the purpose of
determining if, and for which stimulus or condition, the prestimulus
complexity relates to the poststimulus effect of the external stimulus.

2. Methods

2.1. Participants

Thirty-four right-handed (Oldfield, 1971) participants (age:
mean¼ 30.6� 11.0 years, range¼ 18–55 years; 18 female) completed
this study. All participants were free of psychiatric diagnoses or history of
psychiatric illness, neurological illness or history of head injury, and had
perfect or corrected-to-perfect vision. The experimental protocols were
approved by the research ethics committee of the University of Ottawa
Institute of Mental Health Research (REB # 2009018), and the study was
carried out with their permission. Written informed consent was ob-
tained from each participant prior to study participation.

2.2. Determining individualized stimuli

For the EEG session, two of the four stimuli presented were individ-
ualized according to a response threshold in the IDM condition. The IDM
task was a consequential moral dilemma adapted from previous studies
(Sarlo et al., 2012; Manfrinati et al., 2013; Pletti et al., 2016) as an
example of IDM (Greene, 2001; Greene et al., 2004; Moll et al., 2006,
2008; Moll and de Oliveira-Souza, 2007; Greene and Paxton, 2009;
Nakao et al., 2012).

The moral dilemma scenarios presented a situation in which partici-
pants would push some strangers to their deaths to save another group of
strangers. They were adjusted from EEG studies (Sarlo et al., 2012;
Manfrinati et al., 2013; Pletti et al., 2016) only to generalize the number
of bystanders and victims. The purpose of this was to determine the
maximum acceptable ratio of people killed to people saved in the sce-
nario for each participant. Since we were varying the number of by-
standers sacrificed and the number of victims saved, the text was changed
from specific numbers to ‘several’, ‘some’, and so on.

After the participants had read the scenario at their own pace, the
stimuli presented were composed of twelve two-dimensional stick-people
on the left and right side of the screen, with a white line and a fixation
cross down the middle separating both (Fig. 1A). The number of people
on the left side represent the number of people that are killed in the
scenario, and the number on the right side denote the number of people
that are saved because of the others dying.
3

The task of the participant in this threshold determining behavioral
block – as well as during the IDM task of the EEG session - was to decide
whether the ratio presented was acceptable to them. Each stimulus was
presented for 2 s and their response took the form of either a YES or NO,
with the left and right arrow key being counterbalanced across partici-
pants as to which constituted a YES response. The participants were
presented with 10 repetitions of each stimulus, in a random order. All
stimuli included twelve two-dimensional people however the ratio be-
tween the left and right side differed. A fixation cross was presented
between each stimulus as the intertrial interval with a jittered duration of
5000ms, 5500ms or 6000ms.

To calculate the response threshold of each participant, two sigmoid
functions were fit, one to the YES responses and one to the NO responses
using the glmfit function in MATLAB (Fig. 1B). The point at which these
two functions cross was determined to be their threshold. Therefore, the
stimulus immediately below and above the threshold were the individ-
ualized stimuli presented in the EEG session while two stimuli at the
extreme ends of the ratios (1:11 and 10:2, all participants responded YES
and NO consistently during the behavioral session) were presented to all
participants as the shared stimuli (Fig. 1C). For all 34 participants, there
was variability in the response threshold with each participant falling
under one of five thresholds (Fig. 1D).

2.3. EEG session

EEG recordings were made using a 64-channel Quik-Cap (Compu-
medics, Charlotte, NC, USA). Additional channels were added for offline
referencing (mastoids) and Independent Component Analysis (ICA)
decomposition (vertical and horizontal ocular). The impedance of all
channels was measured at less than 5kΩ before recording was initiated.
During analysis, all files were re-referenced to the average of the two
(left, right) mastoids.

Participants were seated in a dark, quiet room, between 55 and 60 cm
away from the computer screen, as per their comfort. The experimental
paradigm was presented using E-Prime 2.0 software (Psychology Soft-
ware Tools, Inc., Sharpsburg, PA, USA). The EEG data was recorded with
no high-pass, low-pass or notch filters at a sampling rate of 1 kHz and
referenced online to the right mastoid.

The EEG session was identical to the behavioral session, with two
important differences: 1) the participant was only presented with four
stimuli (two shared by all participants and two individualized (Fig. 1C)),
and 2) each scenario had two blocks of 60 trials, with each stimulus
repeated 15 times per block. All participants were presented with two
stimuli to which they had responded YES more than 80% of the time –

1:11 and just below threshold – and two stimuli to which they had
responded NOmore than 80% of the time – above the threshold and 10:2.
The order of scenarios was counter-balanced across participants.

For EDM blocks, the same stimuli were presented, though the task
was different as is consistent with previous IDM/EDM paradigms (Nakao
et al., 2009, 2013b). The participant was asked whether there were more
people on the left side of the screen than the right side. The same number
of trials, same ITI, and same scenarios were presented before the
beginning of the trials. The order of the IDM or EDM blocks was
counter-balanced across participants.

2.4. EEG preprocessing

All EEG data preprocessing was completed using EEGLAB (v12, v13)
(Delorme andMakeig, 2004), which requiredMATLAB (TheMathWorks)
v2018a, including the use of the Optimization, Statistics and Signal
Processing Toolboxes. All statistical analysis (except for the event-related
spectral perturbation and intertrial coherence measures) was completed
using SPSS v24 (IBM).

Data was resampled to 500Hz using EEGLAB's resample function. The
continuous data was then low- and high-pass filtered (FIR filter) from
0.5 Hz to 70Hz, and a notch filter applied at 60 Hz to eliminate electrical



Fig. 1. Study threshold determination and behavioral session results. A) Determination of threshold in behavioral session. Participants read a scenario (see Wolff
et al., 2018) in the behavioral session. Participants were presented with 10 repetitions of each stimulus. B) Based on the percentage of YES and NO responses for each
stimulus in the behavioral session, the threshold (dashed red vertical line) was calculated. C) The stimuli immediately below and above the threshold - the indi-
vidualized stimuli - as well as two other stimuli shared by all participants - 1:11 and 10:2 - were the only stimuli presented to participants in the subsequent EEG
session. D) Response results from the behavioral session for all participants. Thresholds were calculated in MATLAB using their glmfit function. Five participants had a
threshold of 1:11, 2:10, and 4:8, while four participants had one of 3:9. The largest group was 5:7 with fifteen participants.
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line noise.
The data was then visually inspected. If channels were flat longer than

5s, had less than 0.80 correlation with neighboring channels, or had line
noise greater than 4 standard deviations difference compared to other
channels, they were removed. The mode of channels removed for all
participants were 2, with the range being 0 to 5.

The continuous data was then epoched with a baseline of �200ms to
stimulus onset. All files were referenced to the average of the two mas-
toids. All stationary artifacts, specifically eye movements, were reduced
using Independent Component Analysis (ICA) and the Multiple Artifact
Rejection Algorithm (Winkler et al., 2011, 2014).
2.5. Event-related potential, event-related spectral perturbation and
intertrial coherence analysis

To begin, wemeasured two event-related potential (ERP) components
to establish the effect of stimulus and condition: the N100 and the P300.
Both components were measured at electrode Pz which was determined
according to previous literature (Chen et al., 2009; Veit et al., 2013;
Wang et al., 2014; Cui et al., 2016; Gan et al., 2016) and visual inspection
of the ERP grand average waveforms for both conditions and groups of
stimuli. The peak amplitude of each component was measured in a 2� 2
(condition, stimulus) repeated measures ANOVA from time intervals
taken from previous studies (Chen et al., 2009; Veit et al., 2013):
100–220ms for the N100, 350–450ms for the P300.

After finding a significant effect of stimulus in the ERP analysis, event-
related spectral perturbation (ERSP) and intertrial coherence (ITC) was
measured from stimulus onset to 450ms (end of P300 interval) at the
same electrode. This was done to determine if there was a difference in
frequency band power and phase coherence between conditions or
stimuli, and if so, in which bands.

A three-cycle Morlet Wavelet analysis was employed in EEGLAB, with
a Hanning tapered window. For these two measures, statistical differ-
ences were calculated in EEGLAB with a paired sample t-test using its
statistics (significance level of 0.05) and applying the False Discovery
Rate (Benjamini and Hochberg, 1995) to account for multiple
comparisons.

To determine if there was a difference in activity related to the
4

response, an ERP and ERSP at Pz was time-locked to the response in each
trial. A repeated measures t-test found no significant difference between
the conditions or stimuli.

For ITC, the coherence for each stimulus in each condition was
extracted between 0 and 100ms and between 3.92 and 6.13 Hz (the
nearest data points between 4 and 6 Hz) to measure correlations with
ERP peak amplitudes (Fig. 3B and C). The data was extracted from 0 to
100ms due to the significant results found in the ITC analysis in Fig. 3B.
2.6. Trial-to-trial variability index calculation

Next, we measured trial-to-trial variability (TTV) to investigate the
quenching of neural activity after stimulus onset. In this study, TTV was
measured as the variability changes with respect to stimulus onset (see
(He and Zempel, 2013; Arazi et al., 2017a, 2017b) for related methods).
This method allowed for the calculation of a time-resolved TTV; each
poststimulus timepoint measured variability relative to stimulus onset. In
addition, to separate effects in the TTV related to the stimulus from the
effects of ongoing variability, the use of pseudotrials (Huang et al.,
2017a), trials without a stimulus (Dinstein et al., 2015), were used.

Pseudotrials were calculated from the intertrial intervals (ITIs) in
which a virtual stimulus was inserted (Fig. 4A). ITIs were jittered to be 5s,
5.5s and 6s while the stimulus duration was 2s, so pseudotrials were
inserted during this ITI period. The actual trials – and therefore the
pseudotrials –were extracted from 500ms prior to stimulus onset until 2s
after stimulus onset. For a 5s ITI, the pseudo stimulus onset was inserted
3.5s prior to the actual stimulus onset. Before this, a 1s buffer between
the actual trial and the pseudo trial was taken to allow for any activity
related to the fixation cross onset to return to baseline. In the 5.5s and 6s
ITIs, the buffer between the pseudotrial and the actual trial increased
from 1s in the shortest ITI to 1.5s and 2s in the longest.

Though neural activity was only analyzed from stimulus onset to
450ms, the duration of the stimulus continued to 2000ms. From the
inserted pseudotrials, TTV of the pseudo stimulus was calculated in the
same way as the actual stimulus (Fig. 4A) (see Huang et al., 2017a,b for a
similar method in fMRI).

To account for the change in variability related to the stimulus itself,
the pseudotrial TTV was subtracted from the actual trial TTV from 200 to
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800ms post stimulus for each timepoint (Fig. 4B). This was done to ac-
count for the ongoing spontaneous fluctuations of the neural activity,
therefore correcting for this in the calculation of the TTV. The mean was
then calculated, yielding one value, the TTV index.

Cognitive tasks are known to have differential effects on frequency
bands (Klimesch, 1999, 2011; 2012; Jokisch and Jensen, 2007; Jensen
et al., 2010, 2014; Klimesch et al., 2011; Fellinger et al., 2011; Buzs�aki
and Silva, 2012; Buzs�aki and Wang, 2012; Zumer et al., 2014; Bonnefond
and Jensen, 2015). For this reason, and the significant differences found
in the ERSP (Fig. 3A) and ITC (Fig. 3B), the continuous EEG data was
filtered into frequency bands before being epoched according to above
methods. The frequency ranges were as follows: broadband was
0.5–70 Hz; theta was 4–8 Hz; alpha was 8–13 Hz; beta was 13–30 Hz;
gamma was 30–70 Hz. The TTV index was calculated in these filtered
bands in the same way as the broadband (Fig. 5, Sup Mats).

To determine if there was an effect of condition or stimulus in each
band, a 2� 2 (condition, stimulus) repeated measures ANOVA was
calculated for each band. All p-values were False Discovery Rate (Ben-
jamini and Hochberg, 1995) corrected for multiple comparisons.

2.7. Effect of threshold on TTV index

After finding significant differences in the TTV index for specific
frequency bands, we sought to relate these neural measures to our
behavioral data. To start, we tested whether the threshold had a signif-
icant effect on the TTV index. Participants were grouped into three
groups (low, middle, high) according to their threshold only in the TTV
index bands found to be significant in the above analysis. This was done
to ensure that roughly an equal number of participants were in each
group (low¼ 10 participants, middle¼ 9 participants, high¼ 15
participants).

To determine if threshold had an effect - or interaction - with either
factor in the significant TTV index bands, a 2� 2� 3 (condition, stim-
ulus, threshold) repeated measures ANOVA, with a between subjects’
factor of threshold, was done on the absolute value of the TTV index.

2.8. Reaction time correlations with TTV index

Next, to determine if the mean reaction times correlated with the TTV
index in either of the significant bands, we performed one-tailed, boot-
strapped (1000 samples) Pearson correlations with significance at 0.05.
Since our experimental design focused on the difference between the
individualized and shared stimuli, we first calculated the differences
between them for each measure; the TTV indices and mean reaction
times shared values were subtracted from the individualized value. This
was done to emphasize the difference between them.

2.9. Lempel-Ziv Complexity analysis

As one of our aims was to determine if prestimulus activity related to
our poststimulus TTV indexmeasure, we applied ameasure of complexity
from information theory (Gershenson and Fernandez, 2012) to the
non-baseline corrected data. Lempel-Ziv Complexity (LZC) was calcu-
lated based on previous studies (Aboy et al., 2006; Casali et al., 2013) in
MATLAB v2018a using a custom script. In both the pre- and poststimulus
periods for which LZC was calculated, 500ms of the signal was
measured.

To calculate LZC, the EEG signal was first converted into a binary
sequence. For each data point in a timeseries xðiÞ, a symbol sequence sðiÞ
is calculated:

sðiÞ ¼
�
0 if xðiÞ < Td

1 if xðiÞ � Td

where Td is the threshold (Aboy et al., 2006). In the complexity equation
used here, the threshold was themedian. This binary sequence sðiÞ is then
5

scanned from left to right and the complexity measure cðnÞ is increased
by one each time a new sequence of consecutive values occurs (Aboy
et al., 2006). Finally, the complexity value CðnÞ is normalized to control
for signal length as follows:

CðnÞ ¼ cðnÞ
n

log2ðnÞ

where n is the length of the cðnÞ sequence.
We first determined if there was a difference between the pre- and

poststimulus LZC in all stimuli (Fig. 7A), the difference between these
two values was calculated, and the difference between stimuli in each
condition was measured (Fig. 7B). Paired-sample bootstrapped (1000
samples) t-tests were done for each of these tests, with the False Dis-
covery Rate (Benjamini and Hochberg, 1995) correction applied to all
p-values.

Finally, to determine if there was a relationship between prestimulus
activity, as measured by LZC, and the TTV indices from the significant
bands, one-tailed bootstrapped (1000 samples) Pearson correlations
were conducted (Fig. 8), with the False Discovery Rate (Benjamini and
Hochberg, 1995) applied to each correlation.
2.10. eLORETA source localization

To support our findings, we investigated whether activity in the visual
cortex (due to the visual paradigm) also has a relationship with the TTV
index in the significant bands. To answer this, we performed source
localization using eLORETA (Pascual-Marqui, 2007) on the software of
the KEY Institute at the University of Zurich (Pascual-Marqui et al.,
1994). We chose one region of interest (ROI), the primary and secondary
visual cortices (BA 17 and 18) and calculated the mean activity in this
ROI from stimulus onset to 200ms, the beginning of the TTV index
calculation. Bootstrapped (1000 samples) one-tailed Pearson correlations
between this activity and the TTV indices were performed for both
stimuli and conditions, with the False Discovery Rate correction (Ben-
jamini and Hochberg, 1995) was applied to all p-values to correct for
multiple comparisons.

After the correlations with our main ROI, we performed a second
group of correlations with three control regions. This was done to
determine if our findings were specific to the visual cortices. We chose
the premotor cortex (BA 6) first as it has not shown to be active during
IDM tasks (Han et al., 2016) and was expected to show no difference
between conditions or stimuli. The other two control regions, the pos-
terior cingulate cortex (BA 29/30, 23/31) (PCC) and inferior parietal
lobules (BA 39, 40) (IPL) are part of the default mode network and have
been shown to be active during IDM tasks (Han et al., 2016; Boccia et al.,
2017). If we found significant correlations in these two regions then the
effect would not be specific to the visual cortices, but rather consistent
across regions known to show activation during IDM tasks.

The same correlations were performed and the False Discovery Rate
correction (Benjamini and Hochberg, 1995) was applied to all p-values.

3. Results

3.1. Threshold determination

The threshold of each participant was determined in the behavioral
session prior to EEG recording. It was calculated in MATLAB from two
sigmoid functions fit to the YES and NO responses of each participant.
The point at which the two functions crossed was determined to be the
threshold (Fig. 1B, D).

Variability across participants was shown by the resulting thresholds.
The distribution was the following: five participants had a threshold of
one to eleven (1:11); five participants had 2:10; four participants had 3:9;
five had 4:8; fifteen had a threshold of 5:7.
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3.2. Event-related potentials

To determine if there were differences in the ERPs related to condi-
tion or stimulus, a 2 (condition: IDM, EDM) x 2 (stimulus: Individualized,
Shared) repeated measures ANOVA on the peak amplitudes for both
components was calculated (Fig. 2).

In the early component, there was a significant effect of stimulus
(Wilks' Lambda¼ 0.639, F(1,33)¼ 18.670, p< .000), but not of condi-
tion (Wilks' Lambda¼ 0.970, F(1,33)¼ 1.028, p¼ .318)(Fig. 1A and B).
The same results were found in the late component. There was a signif-
icant effect of stimulus (Wilks' Lambda¼ 0.790, F(1,33)¼ 8.771,
p¼ .006), while no such difference was seen between conditions (Wilks’
Lambda¼ 1.000, F(1,33)¼ 0.000, p¼ .996)(Fig. 1A, C).

In sum, peak activity from individualized stimuli was significantly
greater than shared in the N100, while the opposite was found in the
P300.
3.3. Event-related spectral perturbation

From the significant ERP findings, we sought to measure changes in
the frequency power due to stimulus onset. To do so, the event-related
spectral perturbation (ERSP) between stimuli for each condition was
measured. There was a significant effect of stimulus for the following
time intervals: from 140 to 263ms between 11.5 and 14 Hz, and between
8.5 and 10.5 Hz from 415 to 500ms in the IDM condition (Fig. 3A).

Therefore, a difference in alpha power between individualized and
shared stimuli was found in the IDM condition.
3.4. Intertrial coherence

After finding significant differences in frequency power, we next
Fig. 2. Event-related potentials (ERPs) at electrode Pz. A) Early N100 and late P300
shaded area) was measured for the N100 while the maximum amplitude between
individualized stimuli were compared with all shared in the early component, a s
compared with all EDM, no significant effect of condition was found (p¼ .424). C)
stimulus (p¼ .012), but no significant effect of condition (p¼ .996). D) Topographica
component at 400ms. P-values are Benjamini-Hochberg FDR corrected for multiple
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wanted to examine the effect of stimuli and condition on phase. To
examine phase consistency across trials, intertrial coherence (ITC) be-
tween stimuli was measured.

There was a significant difference between 3 and 6 Hz from stimulus
onset to 200ms (Fig. 3B). Next, to determine if there was a significant
effect of stimulus or condition on all stimuli, the first 100ms of ITC for
each stimulus in each participant was extracted (Fig. 3C). This time range
was chosen due to the significant results found in the ITC analysis in
Fig. 3B. The frequency range was also from the significant ITC results,
and those specific frequencies were the datapoints nearest to the whole
numbers in which we found results (there was no datapoint for 4 Hz, so
3.92 Hz was the nearest datapoint).

This data was analyzed in the same way as the ERP amplitude values,
using a 2 (condition: IDM, EDM) x 2 (stimulus: Individualized, Shared)
repeatedmeasures ANOVA. It was found that there was a significant effect
of stimulus (Wilks' Lambda¼ 0.573, F(1,33)¼ 24.558, p< .000), but not
of condition, (Wilks’ Lambda¼ 0.990, F(1,33)¼ 0.334, p¼ .567).

Taken together, delta/theta ITC was significantly different between
stimuli - individualized vs shared - but not between conditions - IDM vs
EDM.
3.5. TTV index

To measure the variability across trials related to stimulus onset, a
new index, the trial-to-trial variability (TTV) index, was calculated. The
TTV index – TTV in the actual trials minus TTV in the pseudotrials - was
calculated in broadband and each individual frequency band to measure
neural variability quenching related to stimulus onset.

For each frequency band, a 2 (condition: IDM, EDM) x 2 (stimulus:
Individualized, Shared) repeated measures ANOVA was calculated to
determine if there was an effect of condition or stimulus. Neither the
ERP components. B) The minimum amplitude between 100ms and 220ms (left
350ms and 450ms (right shaded area) was measured for the P300. When all
ignificant effect of stimulus was found (p< .000). When all IDM stimuli were
The same results were found in the late component, with a significant effect of
l maps for the N100 component at 130ms. E) Topographical maps for the P300
comparisons.



Fig. 3. Event-related spectral perturbation (ERSP) and intertrial coherence (ITC) of individualized and shared stimuli in both conditions at electrode Pz. A) There was
a significant effect of stimulus between 140ms to 263ms and 415ms–500ms in the alpha band in the IDM condition. B) There was a significant difference between
individualized and shared stimuli in the IDM condition between 3 and 6 Hz from stimulus onset to 200ms. C) The first 100ms of ITC for each stimulus in each
participant was further analyzed for both stimulus and condition related effects. There was a significant effect of stimulus on ITC, but not of condition. P-values are
Benjamini-Hochberg FDR corrected for multiple comparisons.

Fig. 4. Pseudotrial placement and trial-to-trial variability
(TTV) index calculation. A) Pseudotrials are calculated
from periods of the intertrial intervals (ITIs) in which a
virtual stimulus was inserted. For a 5s ITI, the pseudo
stimulus onset was inserted 3.5s prior to the actual stim-
ulus onset. Before this, a 1s buffer between the actual trial
and the pseudotrial was taken, with the pseudo stimulus
onset (0 ms) in the 5s ITI inserted 3.5s prior to the actual
stimulus. In the 5.5s and 6s ITI's, the buffer between the
pseudotrial and the actual trial increased from 1s in the
shortest ITI to 1.5s and 2s in the longest. From the pseu-
dotrials, TTV of this pseudo (or surrogate) stimulus was
then calculated in the same way as with the actual stim-
ulus (see Huang et al., 2017a,b for a similar method in
fMRI). B) To account for the change in variability specif-
ically related to the stimulus itself, the pseudotrial TTV
was subtracted from the actual trial TTV from 200 to
800ms poststimulus. The mean was then calculated
yielding one value, the TTV index. The pseudotrial was
subtracted to account to the ongoing spontaneous fluctu-
ations of the neural activity.
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stimulus (Wilks' Lambda¼ 0.972, F(1,33)¼ 0.968, p¼ .332), nor the
condition (Wilks' Lambda¼ 0.924, F(1,33)¼ 2.708, p¼ .109) had sig-
nificant effects in the broadband. The same was found in the theta band
(Wilks' Lambda¼ 0.984, F(1,33)¼ 0.553, p¼ .462, and (Wilks’
Lambda¼ 0.946, F(1,33)¼ 0.1.874, p¼ .180, respectively)(Sup Mat).

In contrast, in the alpha band there was a significant effect of stimulus
(Wilks' Lambda¼ .815, F(1,33)¼ 7.258, p¼ .011) but not of condition
(Wilks' Lambda¼ 0.999, F(1,33)¼ 0.035, p¼ .854)(Fig. 5B). The same
was found for the beta band, with a significant effect of stimulus only
(Wilks' Lambda¼ 0.856, F(1,33)¼ 5.556, p¼ .025, and Wilks’
Lambda¼ 0.996, F(1,33)¼ 0.149, p¼ .702, respectively)(Fig. 5C).
7

To determine if this significant difference existed only at electrode Pz,
an adjacent electrode, POz – still in the centroparietal area – was
analyzed with the TTV index in the same two bands. Again, a significant
difference between individualized and shared stimuli (Wilks'
Lambda¼ 0.819, F(1,33)¼ 7.295, p¼ .011, and Wilks’ Lambda¼ 0.856,
F(1,33)¼ 5.556, p¼ .025) was found in the alpha and beta bands
respectively.

Lastly, in the gamma band, neither stimulus (Wilks' Lambda¼ 0.988,
F(1,33)¼ 0.412, p¼ .525) nor condition (Wilks’ Lambda¼ 0.967,
F(1,33)¼ 1.110, p¼ .300) had a significant effect on TTV index (Sup
Mats).



Fig. 5. Trial-to-trial variability (TTV) index for both stimuli and conditions at Pz. A) TTV in the broadband (0.5–70 Hz) grouped according to stimulus. Topographical
maps for the broadband is below each TTV curve. B), C)When the TTV indices for each frequency band were grouped by stimulus (left bars) and condition (right bars),
there was found to be a significant effect of stimulus in the alpha (B) and beta (C) bands. Columns¼ stimulus: individualized (left column); shared (center column); bar
plots of TTV index values by stimulus and condition (right column). Rows¼ frequency bands: broadband of 0.5–70 Hz (top row); alpha between 8 and 13 Hz (middle
row); beta between 13 and 30 Hz (bottom row). Statistics for bar graphs are from a 2� 2 repeated measures ANOVA. P-values are Benjamini-Hochberg corrected for
multiple comparisons.
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In sum, there was a significant effect of stimulus - individualized vs
shared - only in the alpha and beta bands of the TTV index. This features
the TTV index as a marker of individuality on the neural level.
3.6. Effect of threshold on TTV index and reaction times

After calculating the above TTV index results, and upon visualization
of the data, the effect of threshold on TTV index only in the significant
frequency bands was examined. For both alpha and beta, and individu-
alized and shared, a 2 (condition: IDM, EDM) x 2 (stimulus: Individual-
ized, Shared) x 3 (threshold: low, middle, high) repeated measures
ANOVA, with between subjects’ factor of threshold was performed. As
the 2� 2 statistics were identical to the above values, and the test was
done to determine if there was an interaction with the threshold, the
statistical values were ignored.

A significant interaction (condition, threshold) was found in the alpha
band, (F(2)¼ 4.154, p¼ .026), but not in the beta band (F(2)¼ 0.789,
p¼ .463)(Fig. 6A). There was no significant effect of threshold in either
band.

Next, to link the TTV index to behavioral measures, correlations were
done between the difference of mean reaction times and the difference of
TTV indices in alpha and beta bands. The correlation was significant in
the beta band (ρ¼ 0.461, p¼ .004) (Fig. 6B) in the IDM condition, but
not in the alpha band (ρ¼ 0.321, p¼ .099). Neither the beta (ρ¼�0.119,
p¼ .261) nor the alpha band correlations (ρ¼�0.257, p¼ .162) were
significant in the EDM condition.

In brief, there was a significant effect of threshold on the TTV index in
the individualized stimuli of the alpha band, while there was a significant
relationship with reaction time in the beta band in the IDM condition.
Both findings underline the relevance of TTV for individuality on the
behavioral (reaction time) and psychological (threshold) level.
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3.7. Lempel-Ziv Complexity prior to and after stimulus onset

After examining the results found in the TTV index related to alpha
and beta, and after visualization of the TTV curves, it was decided to
measure the complexity of the signal before and after stimulus onset to
see if this measure - related to information theory -might suggest a
mechanism for our TTV results. Using the LZC measure, 500ms prior to
and after stimulus onset was investigated for complexity (Casali et al.,
2013; Ib�a~nez-Molina et al., 2015; Kalev et al., 2015).

To begin with, we wanted to determine if prestimulus complexity
differed from that after the stimulus appeared. Therefore, paired-samples
t-tests were calculated for all stimuli in both conditions (Fig. 7A). It was
found that stimulus onset had a significant effect on complexity for all
stimuli (individualized IDM: t(33)¼ 9.978, p¼ .002, shared IDM:
t(33)¼ 10.821, p¼ .002, individualized EDM: t(33)¼ 9.845, p¼ .002,
shared EDM: t(33)¼ 12.354, p¼ .002). In contrast, the pseudotrials,
which functioned here as surrogates for the actual trials, showed no
significant difference in either condition (t(33)¼�0.950, p¼ .415, and
t(33)¼�0.848, p¼ .424, respectively).

After seeing visualisations of the LZC distributions both pre- and
poststimulus, a 2 (stimulus: individualized, shared) x 2 (condition: IDM,
EDM) repeated measures ANOVA was done to establish if the differences
seen visually between complexity before and after onset, and between
conditions, were statistically significant (poststimulus complexity minus
prestimulus complexity) (Fig. 7B). It was found that there was no sig-
nificant effect of neither condition (Wilks' Lambda¼ 0.986,
F(1,33)¼ 0.433, p¼ .516) nor stimulus (Wilks' Lambda¼ 0.988,
F(1,33)¼ 0.375, p¼ .545). There was, however, a significant interaction
between these two factors (Wilks’ Lambda¼ 0.831, F(1,33)¼ 6.087,
p¼ .020).

Because of this significant interaction, two paired-sample t-tests were



Fig. 6. The effect of threshold on trial-to-trial variability (TTV) index and TTV index correlations with reaction time. A) In a 2� 2� 3 ANOVA (between subjects'
factor is threshold) with three levels (low, middle, high), threshold had a significant interaction on the absolute value of the TTV index in individualized stimuli in the
alpha band, but not in the beta band. The TTV index values are grouped according to stimulus, not conditions, for both bands only for reasons of illustration. B) In
order to focus on the differences related to stimulus, the differences between mean reaction times (individualized minus shared stimuli) and the TTV index in the beta
band were correlated. There was a significant correlation in the IDM condition. P-values are Benjamini-Hochberg corrected for multiple comparisons.

Fig. 7. Lempel-Ziv complexity (LZC) in the prestimulus and poststimulus periods. A) To examine complexity as a mechanism for TTV, 500ms prior to and after
stimulus onset were investigated for complexity using the LZC measure. In paired samples t-tests, it was found that stimulus onset had a significant effect on complexity
in both groups of stimuli and conditions. In contrast, there was no significant difference in the pseudotrials, which acted as surrogates. The time-resolved LZC seen here
was computed for visualization only using a window of 500ms, overlap of 90%, and step of 50ms. Line curves were smoothed in MATLAB using the function spline. B)
Two paired-samples t-tests was conducted comparing the difference in LZC related to stimulus onset between the individualized and shared stimuli in both conditions.
There was a significant effect of stimulus in the IDM condition, but not in the EDM condition. P-values are Benjamini-Hochberg FDR corrected for multiple
comparisons.
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conducted on these LZC difference values, between the individualized
and shared stimuli (Fig. 7B). A significant effect of stimulus
(t(33)¼�2.381, p¼ .048) was found in the IDM condition, not in the
EDM condition (t(33)¼ 0.934, p¼ .357).
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Finally, to determine if prestimulus LZC was related to poststimulus
TTV in alpha and beta, correlations were calculated. A significant cor-
relation was found in the alpha band only (Fig. 8). Specifically, there was
a significant correlation in the individualized stimuli (ρ¼ 0.477,



Fig. 8. Prestimulus Lempel-Ziv complexity (LZC) correlates with alpha TTV index. A) To determine the relationship between prestimulus LZC on TTV index in alpha,
one-tailed Pearson correlations were calculated. Significant correlations were found in the individualized stimuli in the IDM condition, not the shared. Neither the
individualized nor the shared stimuli had significant correlations in the EDM condition. P-values are Benjamini-Hochberg FDR corrected for multiple comparisons.
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p¼ .008) of the IDM condition and not the shared stimuli (ρ¼ 0.287,
p¼ .067). Neither the individualized (ρ¼ 0.257, p¼ .071) nor the shared
(ρ¼ 0.344, p¼ .052) stimuli had significant correlations in the EDM
condition.

All together, these findings show that complexity decreased after
stimulus onset in all stimuli and conditions, however this pre-to post-
stimulus decrease was significantly different between individualized and
shared stimuli in the IDM condition. In addition, a significant relation-
ship between prestimulus complexity and TTV index in the alpha band
was found in the individualized stimuli of the IDM condition. These
findings suggest that pre-stimulus complexity mediates the individual
features of post-stimulus TTV.
3.8. eLORETA source localization correlations with alpha and beta TTV
index

To support our correlations between the alpha TTV index and pres-
timulus LZC and beta TTV index and reaction time, we performed cor-
relations between these TTV indices and eLORETA source activity in the
visual cortices.

There was a significant correlation between the visual cortices
eLORETA activity from the individualized stimuli and the TTV index in
the beta band (ρ¼�.421, p¼ .032) in the IDM condition (Table 1). The
correlations for the shared IDM (ρ¼�0.178, p¼ .264), individualized
EDM (ρ¼�0.154, p¼ .264), and shared EDM (ρ¼�0.116, p¼ .264)
Table 1
Significance values for correlation between eLORETA activity (0–200ms) and
beta TTV index.

CORTICAL AREA INDIV.
IDM

INDIV.
EDM

SHAR.
IDM

SHAR.
EDM

VISUAL CORTEX (BA 17, 18) .032 .264 .264 .264
PREMOTOR CORTEX (BA 6) .168 .340 .435 .340
POSTERIOR CINGULATE
CORTEX (BA 29/30, 23/31)

.094 .456 .418 .476

INFERIOR PARIETAL LOBULES
(BA 39,40)

.094 .217 .426 .268

ALL SIGNIFICANCE VALUES ARE BENJAMINI-HOCHBERG FALSE DISCOVERY
RATE CORRECTED.
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were not found to be significant. None of the correlations in the alpha
band were significant (p¼ .104, p¼ .206, p¼ .403, and p¼ .212).

Finally, to determine if the significant correlation was only in the
visual cortices, the same analysis was performed in the premotor cortex,
the posterior cingulate cortex and the inferior parietal lobules as control
regions. For activity in these ROIs, none of the correlations were signif-
icant: premotor cortex - p¼ .168, p¼ .435, p¼ .340, and p¼ .340; pos-
terior cingulate cortex - p¼ .094, p¼ .418, p¼ .456, and p¼ .476;
inferior parietal lobules - p¼ .094, p¼ .426, p¼ .217, and p¼ .268,
respectively.

Together, these eLORETA source localization findings show a corre-
lation between the beta TTV index and individualized stimuli, and that
this activity was specific to the visual cortex.

4. Discussion

We investigated the behavioral relevance and neuronal mechanism of
TTV. Applying a specific paradigm for testing internally-guided decision
making, we observed that TTV, specifically in the alpha and beta bands,
showed significant differences between individualized and shared stim-
uli in specifically IDM (as distinguished from EDM). This finding suggests
that TTV can be considered a marker of the individual specifics of indi-
vidual neural activity and its manifestation on psychological and
behavioral levels.

Crucially, we show that TTV for individualized stimuli is related to
prestimulus complexity, as measured by LZC. This suggests that indi-
vidualized TTV quenching is related to a reduction of prestimulus in-
formation complexity which, as our data suggest, mediates the individual
features of post-stimulus TTV. Together, our data show for the first time
that TTV quenching is a highly individualized neural marker and is
mediated by prestimulus information complexity.

These results carry major implications for our understanding of the
behavioral relevance and neuronal mechanisms of how the more
internally-based spontaneous activity, specifically prestimulus activity,
interacts with external stimuli as during stimulus-induced activity.

4.1. TTV as neural marker of individuality

Arazi et al. (2017b) demonstrated that TTV remains stable within one
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participant across tasks as well as over time. These results suggest that
TTV is a trait marker of the individual participant and distinct from others.
If this is the case and TTV is indeed a neural trait marker of individuality,
one would expect that TTV responds to the individual rather than shared
features of stimuli in perceptual or cognitive paradigms. To test this, we
applied a novel study design of an IDM task. This allowed us to compare
directly individualized stimuli to shared by individualizing the threshold
of our paradigm while simultaneously controlling for task-related effects
(two conditions, IDM and EDM). As expected, our behavioral data shows
that participants differed in their respective thresholds as indexed by the
ratios related to the IDM dilemma presented.

The neural effects of these individualized thresholds, which man-
ifested in individualized stimuli, were then compared with those of
stimuli presented to all participants. As expected, this led to significant
differences in ERP (N100 and P300), ERSP (alpha band power), and ITC
(delta and theta band) between individualized and shared stimuli.
Notably, these differences could not be traced to task-related aspects;
there were no significant differences between IDM and EDM in these
measures. Our results are well in accordance with others showing anal-
ogous effects of individualized stimuli on ERP, ERSP, ITC and other
measures (Houben and Wiers, 2007; Qin et al., 2008; Kessler et al., 2011,
2017; Wiswede et al., 2014; Bai et al., 2016).

As it was the main target of our study, it was of great importance that
we demonstrated significant differences in TTV between individualized
and shared stimuli in the alpha and beta frequency bands, specifically.
Though our examination of TTV is well in accordance with the various
studies in EEG/MEG (He and Zempel, 2013; Schurger et al., 2015; Arazi
et al., 2017a) and fMRI (He, 2013; Ferri et al., 2015; Huang et al., 2017b,
2018), the present results add two important innovations to the growing
TTV literature, first TTV is a marker of neural individualization and
secondly, post-stimulus TTV is mediated by pre-stimulus information
complexity.

We demonstrate that TTV effects are related to the individual neural
response to a stimulus. While previous studies showed interindividual
differences in TTV (Ferri et al., 2015; Arazi et al., 2017a, 2017b), here we
tested the hypothesis of TTV as an individual neural marker by
comparing individualized and shared stimuli directly. This approach
yielded significant differences in TTV related to stimulus, specifically in
the alpha and beta bands (other bands showed TTV but no differences
between stimuli). In addition, the eLORETA results supported this finding
with a significant correlation between the visual cortex and TTV in the
beta band only in individualized stimuli.

Furthermore, the significant correlations in the individualized stimuli
only in the IDM condition suggests that an aspect of the stimulus interacts
with the condition. It may be that individualization is relevant only in
some contexts for some measures as they require more internally ori-
ented criteria (Nakao et al., 2012). Such findings are consistent with
literature related to IDM – preference based – and EDM – objective
response – decision-making (Nakao et al., 2010, 2012, 2016) as in IDM
the response depends on the participants’ own internal criteria as
mediated by their internal pre-stimulus activity, specifically its variance
and complexity. Our findings imply that in certain measures, the context
of the stimulus (IDM or EDM) has a further impact on the stimulus
induced activity as may occur in IDM. Further disambiguation of this,
however, is required.

The special role of individualized TTV in the beta band is further
supported by our finding of a significant correlation between the beta
TTV index in the individualized stimuli and reaction time. Together,
these findings suggest that 1) TTV represents a neural marker of in-
dividuality, and that 2) such ‘neural individualization’ is processed in the
alpha and beta frequency bands specifically. As the need for obtaining
neural markers of individualization grows in both basic and clinical
neuroscience (Braver et al., 2010; Reineberg et al., 2015; Friedman and
Miyake, 2016; Jang et al., 2017; Seghier and Price, 2018), we here
suggest that TTV in the alpha and beta bands can provide a marker of
neural individualization.
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4.2. TTV is mediated by changes in information complexity from pre-to
post-stimulus periods

Previous data at both the cellular (Kisley and Gerstein, 1999; Curto
et al., 2009; Schurger et al., 2010; Pachitariu et al., 2015) and regional
level (He, 2013; Schurger et al., 2015; Huang et al., 2017b) suggest that
prestimulus activity amplitude or variance are central in mediating
poststimulus TTV quenching. Despite these important results, the exact
feature of prestimulus activity which mediates poststimulus TTV
quenching remains unclear.

We therefore asked the following question: is poststimulus TTV also
mediated by the information complexity of prestimulus activity? In a first
step, we investigated the complexity - through the measurement of LZC -
of both prestimulus and poststimulus activity in two 500ms intervals.
LZC, and thus complexity, was significant higher in the prestimulus
period in both individualized and shared stimuli. While new by itself
(Ponce-Alvarez et al., 2015), this higher prestimulus complexity is in
accordance with the above cited findings related to increased prestimulus
activity levels or variance preceding poststimulus TTV. Together, both
suggest that the higher amplitude/variance prior to stimulus onset rep-
resents a higher information complexity, which decreases after the
stimulus is presented. Such a stimulus-related difference in information
complexity appears to be a basic, general neural mechanism since no
differences between conditions (IDM and EDM) were found.

Remarkably, we found that these high prestimulus complexity levels
were related to TTV in the alpha band in individualized stimuli of the
IDM condition. In contrast, no such correlation was found in shared
stimuli or in EDM. These findings suggest that TTV in the alpha band in
response to individualized stimuli is closely related to prestimulus in-
formation complexity. Given that in the poststimulus period both TTV
and complexity were quenched - reduced compared to prestimulus levels
- we suggest that a reduction in information complexity and variability
during the poststimulus period are central to mediating the individual's
neural response to stimuli. It has previously been shown that resting state
activity interacts with task-evoked activity (Northoff et al., 2007, 2010;
He, 2013; Huang et al., 2017b), and that activity during IDM overlaps
with the default mode network (DMN) (Northoff et al., 2006; Nakao
et al., 2012). From these findings, it has been inferred that IDM is heavily
influenced by the brain's intrinsic activity (Nakao et al., 2012). Our
prestimulus complexity and individualized IDM TTV findings are
strongly guided by the brain's intrinsic activity - its pre-stimulus activity -
which is consistent with this view, however further work is required to
support this.

Broadly, our data indicate, albeit tentatively, that spontaneous pres-
timulus activity and stimulus-induced activity is both nonadditive (He,
2013; Huang et al., 2017b, 2018) and individualized. If an interaction
were additive, one would observe increases in both TTV and complexity;
following the law of variance (He, 2013), the contributions of both
spontaneous activity and stimulus are added during stimulus-induced
activity. Since the opposite results were found with post-stimulus de-
creases in both TTV and complexity, our data strongly support a
nonadditive (He, 2013; Huang et al., 2017b, 2018), rather than additive
(Arieli et al., 1996; Fox et al., 2006; Becker et al., 2011) model of
rest-stimulus interaction. Taken together with our observation of TTV as
a marker of neural individualization, we suppose that nonadditive
rest-stimulus interaction is by itself individualized. This is especially
supported by our finding that TTV only from individualized (but not
shared) stimuli correlated with complexity (and reaction time on a
behavioral level).

The mechanism of TTV reduction has previously been related to the
disambiguation or clarification of stimuli which allows for better infor-
mation processing in the cortex (Monier et al., 2003; Finn et al., 2007;
Churchland et al., 2010; White et al., 2012). Furthermore, modeling
studies have shown that variability reduction can occur from recurrent
network processing; in a multi-attractor system, the stimulus presenta-
tion can stabilize one attractor thereby suppressing the transition to other
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attractors (Deco and Hugues, 2012; Mazzucato et al., 2015). This stabi-
lization of one attractor reduces net neural variability by increasing the
neural orderliness (Deco and Hugues, 2012; Mazzucato et al., 2015).
Spike train data has also shown a similar variability reduction due to
increased regularity of spike train activity (Deco and Hugues, 2012). This
increased uniformity then leads to a decrease in the transfer of infor-
mation - according to Shannon information theory (Shannon, 1948;
Gershenson and Fernandez, 2012) – as reduced variability is associated
with more structure, and hence with increased predictability in data
(Gershenson and Fernandez, 2012).

This decreasing transfer of information and clarification of stimuli
may be evident in the reduced complexity after stimulus onset shown
here. The question, then, is do individualized stimuli reduce the neural
variability less than non-individualized stimuli because of their
decreased regularization of the activity? How is this related to the
prestimulus spontaneous activity since reduced quenching is less devia-
tion from resting state activity? Could early life experiences (Duncan
et al., 2015) and genetic influences (Hensch, 2005) be large contributors
to these mechanisms, as a recent study suggested (Arazi et al., 2017b)?
This hypothesis is tentative, at best, and requires testing in future studies.

4.3. Methodological limitations

One may argue that TTV already includes prestimulus intervals
indirectly, rendering calculations of both poststimulus TTV and presti-
mulus complexity dependent variables rather than independent. This, in
turn, would render their correlation spurious. While indeed TTV is
calculated in most studies in reference to stimulus onset (Ferri et al.,
2015; Schurger et al., 2015; Arazi et al., 2017a, 2017b, Huang et al.,
2017b, 2018), we here introduced a novel method to avoid such
dependence between TTV and prestimulus measures.

We adopted themethod of pseudotrials (Huang et al., 2017b), or trials
when a stimulus is absent (Dinstein et al., 2015), by inserting a
pseudo-stimulus into the intertrial intervals. These pseudotrials had a
buffer which ensured they remained independent of the prestimulus
period and actual trial offset. We then calculated TTV for such pseu-
dotrials and subtracted them from the actual trial TTV during the post-
stimulus period. Such calculation of TTV thus allowed for its
independence from the prestimulus period, including its manifestation at
stimulus onset. This allowed us to calculate prestimulus LZC independent
of poststimulus TTV which, in turn, made the correlation possible as both
were independent variables.

Another methodological issue consists in the lack of control for
threshold proximity. The two individualized stimuli were also the ones
near the threshold since the threshold defined the individualization.
Presenting the participants with two stimuli that were 1) near the
threshold in the same degree as the individualized stimuli, but 2) not
individualized, would have been optimal controls for the proximity to the
threshold. Therefore, the comparison to the individualized stimuli were
stimuli presented to all participants. Their distance from the threshold (if
threshold was 5:7, the shared stimuli were 1:11 and 10:2), however, was
not equal.

The final study limitation relates to a lack of eye-tracking during the
EEG session. Two related papers (Arazi et al., 2017a, 2017b) employed
an eye-tracker while conducting their EEG study. Though we did not use
this technology, we controlled for eye movements in several ways. Dur-
ing the study itself, the stimuli included a fixation cross at the center, and
participants were seated 55–60 cm away from a 34.3� 26.7 cm com-
puter screen. This was done to minimize eye movements and the visual
angle. We also used additional bipolar electrodes, placed at the outer
canthi of the eyes and above and below the left eye, to measure eye
movements and aid in artifact rejection during EEG preprocessing. When
the data were visually inspected, all trials with blinks in the baseline
period (�200ms to stimulus onset) were removed. Finally, to remove
blinks and saccades in the remaining EEG data, independent component
analysis (ICA) and the Multiple Artifact Rejection Algorithm (MARA)
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(Winkler et al., 2011, 2014) of EEGLAB (Delorme and Makeig, 2004),
which standardized the artifact rejection process, were used.

5. Conclusion

The spontaneous activity of the brain interacts with task-evoked ac-
tivity; however, the exact mechanisms of this interaction including its
individually-specific nature remain unclear. We here investigated the
individual behavioral relevance and neural basis of one neural marker of
rest-stimulus interaction, namely trial-to-trial variability (TTV), during
internally-guided decision making. As in previous studies at both the
cellular and regional levels, we observed poststimulus TTV quenching
which, in an extension to this previous work, was found in alpha and beta
bands related to specifically individualized, but not shared, stimuli. We
thus consider TTV in the alpha and beta band a marker of neural indi-
vidualization. Notably, we demonstrated that TTV in the alpha band was
related to prestimulus information complexity, as measured by Lempel-
Ziv Complexity (LZC). Indexing internal neural activity yet unrelated to
the external stimulus, pre-stimulus complexity may thus mediate the
individually-specific features of TTV during the post-stimulus period on
both neural and psychological levels.

Together, we demonstrate, for the first time, that poststimulus TTV
quenching is a marker of ‘neural individualization’ which is mediated by
prestimulus information complexity. Broadly, considering TTV as an
internally-based marker of rest-stimulus interaction, these findings sug-
gest that the interaction between the purely internal spontaneous and
internal-external stimulus-induced activity is both nonadditive and
individualized.
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