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Determining the level of consciousness in patients with disorders of consciousness (DOC) 1 

remains challenging. To address this challenge, resting-state fMRI (rs-fMRI) has been widely 2 

used for detecting the local, regional, and network activity differences between DOC patients 3 

and healthy controls. Although substantial progress has been made towards this endeavor, the 4 

identification of robust rs-fMRI-based biomarkers for level of consciousness is still lacking. 5 

Recent developments in machine learning show promise as a tool to augment the discrimination 6 

between different states of consciousness in clinical practice. Here, we investigated whether 7 

machine learning models trained to make a binary distinction between conscious wakefulness 8 

and anesthetic-induced unconsciousness would then be capable of reliably identifying 9 

pathologically induced unconsciousness. We did so by extracting rs-fMRI-based features 10 

associated with local activity, regional homogeneity, and interregional functional activity in 44 11 

subjects during wakefulness, light sedation, and unresponsiveness (deep sedation and general 12 

anesthesia), and subsequently using those features to train three distinct candidate machine 13 

learning classifiers: support vector machine, Extra Trees, artificial neural network. First, we 14 

show that all three classifiers achieve reliable performance within-dataset (via nested cross-15 

validation), with a mean area under the receiver operating characteristic curve (AUC) of 0.95, 16 

0.92, and 0.94, respectively. Additionally, we observed comparable cross-dataset performance 17 

(making predictions on the DOC data) as the anesthesia-trained classifiers demonstrated a 18 

consistent ability to discriminate between unresponsive wakefulness syndrome (UWS/VS) 19 

patients and healthy controls with mean AUC's of 0.99, 0.94, 0.98, respectively. Lastly, we 20 

explored the potential of applying the aforementioned classifiers towards discriminating 21 

intermediate states of consciousness, specifically, subjects under light anesthetic sedation and 22 

patients diagnosed as having a minimally conscious state (MCS). Our findings demonstrate that 23 
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machine learning classifiers trained on rs-fMRI features derived from participants under 1 

anesthesia have potential to aid the discrimination between degrees of pathological 2 

unconsciousness in clinical patients.  3 

Keywords: fMRI, resting-state, disorders of consciousness, anesthesia, functional connectivity, 4 

machine learning, deep learning, consciousness 5 

Introduction 6 

Determining the level of consciousness in patients with disorders of consciousness (DOC) 7 

remains a challenging clinical problem. The primary diagnostic tool, a behavioral assessment, is 8 

prone to erroneous conclusions (over 40% misdiagnosis rate) when relying solely on the 9 

clinician’s judgment without standardized assessment (Schnakers et al., 2009b). Though 10 

standardized behavioral exams, like the Coma Recovery Scale-Revised (CRS-R) (Giacino et al., 11 

2004), are now widely used, misdiagnoses may also occur if patients are not assessed repeatedly 12 

within a short time window (Wannez et al., 2017). In some cases, covert consciousness (i.e., 13 

awareness without overt responsiveness) can occur due to central nervous system lesions that 14 

prevent motor activity (Fernández-Espejo et al., 2015; Monti et al., 2010; Owen et al., 2006). An 15 

analogous phenomenon, intraoperative awareness during general anesthesia, has been reported 16 

with explicit recall in 0.15% of all surgical cases (Mashour et al., 2013, 2012), and without 17 

explicit recall in 5% of all cases (Sanders et al., 2017). Further, covert consciousness was 18 

recently demonstrated by a healthy participant during propofol anesthesia using an active fMRI-19 

based paradigm. (Huang et al., 2018b). Thus, the identification of preserved consciousness is of 20 

substantial importance in the clinical setting as the reliable detection of preserved consciousness 21 

in DOC patients can lead to an increased focus on rehabilitative efforts that may foster recovery 22 
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(Fins et al., 2007; Giacino et al., 2014). Therefore, the need to establish reproducible brain 1 

markers linked to different levels of consciousness independent of behavior is paramount. 2 

Within the last decade, there has been a surge of interest in identifying more objective techniques 3 

for measuring levels of consciousness. A wealth of previous research has explored possible 4 

neural correlates of consciousness derived from neuroimaging techniques, like functional 5 

magnetic resonance imaging (Bekinschtein et al., 2005, 2004; Chen et al., 2018; Coleman et al., 6 

2009; Mäki-Marttunen et al., 2013) and positron emission tomography (Boly et al., 2008, 2004; 7 

Silva et al., 2010) as well as measures of neurophysiological responses to stimuli captured by 8 

electroencephalography (Bekinschtein et al., 2009; Schnakers et al., 2009a, 2008). For a review 9 

see (Laureys and Schiff, 2012; Mashour and Hudetz, 2018; Owen, 2013). Each methodological 10 

approach has unique advantages and disadvantages depending on the specific goals and 11 

application (Boly et al., 2012). 12 

Of these techniques, resting-state fMRI (rs-fMRI)-based measurements appear especially fruitful 13 

as they are capable of providing key components in understanding the dynamic functional 14 

organization of brain activity across multiple scales (i.e., local, regional, network) that appears 15 

necessary for consciousness (Huang et al., 2018a). Accordingly, particular features of intrinsic 16 

brain activity have been associated with physiologic, pharmacologic, and pathologic states of 17 

unconsciousness (Boveroux et al., 2010; Demertzi et al., 2011; Di Perri et al., 2016; Heine et al., 18 

2012; Roquet et al., 2016; Soddu et al., 2009). Although substantial progress has been made 19 

towards this endeavor, a robust rs-fMRI-based classification for states of consciousness is still 20 

lacking. However, recent developments in machine learning show promise as a tool to augment 21 

the discrimination between different states of consciousness in clinical practice. In the last 22 

decade, researchers have successfully built models capable of distinguishing between different 23 
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degrees of awareness—locked-in syndrome, minimally conscious state (MCS), and unresponsive 1 

wakefulness syndrome/vegetative state (UWS/VS)—based on each patient's neuroimaging data 2 

(Demertzi et al., 2019, 2015; Engemann et al., 2018; Phillips et al., 2011; Sitt et al., 2014).  3 

Despite this progress, one persistent challenge to the study of DOC patients is the etiological 4 

heterogeneity—DOC may be induced through focal injury to neural tissues (e.g., traumatic brain 5 

injury, stroke) or more diffuse damage (e.g., Alzheimer’s disease)—each of which affects the 6 

structural integrity and functional dynamics of the brain in distinct ways (Amemiya et al., 2013; 7 

Sours et al., 2015). Taken together, the differences between DOC patients, the high misdiagnosis 8 

rate associated with behavioral assessment, and the lack of ground-truth data, pose a critical 9 

problem in establishing a robust and reproducible machine learning model. In contrast, a 10 

proposed surrogate model of study, namely anesthetic-induced unconsciousness in healthy 11 

volunteers, offers the possibility of a within-subjects design, and consequently, rigorously 12 

controlled experimental settings (Alkire et al., 2008; Mashour and Avidan, 2013). Using this 13 

paradigm, the consciousness-altering effects of a range of anesthetics have been evaluated in 14 

humans, including ketamine (Bonhomme et al., 2016), sevoflurane (Palanca et al., 2015), and 15 

propofol (Schroter et al., 2012).  16 

The present study sought to further improve the understanding and diagnosis of DOC by 17 

systematically comparing popular machine learning approaches to classification, and by 18 

evaluating a novel source of model training data, namely the use of participants during 19 

anesthetic-induced unconsciousness. To this end, our aims were to (1) build, optimize and 20 

evaluate three distinct classes of machine learning models (i.e. support vector machine, Extra 21 

Trees, and artificial neural network) for use in distinguishing conscious wakefulness from 22 

anesthetic-induced unresponsiveness using rs-fMRI based measures, including local activity 23 
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(amplitude of low-frequency fluctuations, ALFF), regional homogeneity (ReHo), and inter-1 

regional functional activity. (2) Evaluate whether machine learning models trained on data 2 

collected during anesthesia make reliable generalizations to UWS/VS patients, and (3) explore 3 

the feasibility of using the above machine learning models to distinguish intermediate states of 4 

consciousness—subjects under light sedation and patients within a minimally conscious state 5 

(MCS)—from fully conscious or unconscious subjects. 6 

Methods 7 

Participants and fMRI Data Acquisition 8 

The fMRI data were collected from a cohort of 83 subjects scanned at two independent research 9 

sites (Shanghai and Wisconsin). Dataset 1 involving propofol and sevoflurane anesthesia was 10 

collected in Shanghai and is hereafter referred to as Anesthesia-SHH. Dataset 2 involving 11 

propofol anesthesia was collected in Wisconsin, hereafter referred to as Anesthesia-WI. Dataset 12 

3, hereafter referred to as DOC, had no anesthetic component, and instead included patients with 13 

disorders of consciousness, in addition to healthy controls, and was collected in Shanghai. 14 

Dataset 1: Anesthesia-SHH 15 

The dataset has been previously published using analyses different from those applied here 16 

(Huang et al., 2018c, 2018a, 2014). The study was approved by the Institutional Review Board 17 

(IRB) of Huashan Hospital, Fudan University. Informed consent was obtained by all the subjects 18 

to participate in the study. Thirty-two right-handed subjects were recruited (male/female: 15/17; 19 

age: 26-64 years), who were undergoing an elective trans-sphenoidal approach for resection of a 20 

pituitary microadenoma. The pituitary microadenomas were diagnosed by their size (<10 mm in 21 

diameter without growing out of the sella) based on radiological examinations and plasma 22 

endocrinal parameters. These subjects were ASA (American Society of Anesthesiologists) 23 
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physical status I or II grade, with no history of craniotomy, cerebral neuropathy, vital organ 1 

dysfunction or administration of neuropsychiatric drugs. The subjects had no contraindication for 2 

an MRI examination, such as vascular clips or metallic implants. Among them, three subjects 3 

had to be excluded from the study and further data analysis because of excessive movements, 4 

resulting in 29 subjects for the following analysis. 5 

Twenty-three subjects received propofol anesthetics with light sedation (17 out of 23) and 6 

general anesthesia (n=23), during which intravenous anesthetic propofol was infused through an 7 

intravenous catheter placed into a vein of the right hand or forearm. Propofol was administered 8 

using a target-controlled infusion (TCI) pump to obtain constant effect-site concentration, as 9 

estimated by the pharmacokinetic model (Marsh et al., 1991). Remifentanil (1.0 µg/kg) and 10 

succinylcholine (1.5 mg/kg) were administered to facilitate endotracheal intubation at general 11 

anesthesia. TCI concentrations were increased in 0.1 µg/ml steps beginning at 1.0 µg/ml until 12 

reaching the appropriate effect-site concentration. A 5-min equilibration period was allowed to 13 

ensure equilibration of propofol repartition between compartments. The TCI propofol was 14 

maintained at a stable effect-site concentration of 1.3 µg/ml for light sedation, and 4.0 µg/ml for 15 

general anesthesia of which the dose reliably induces an unconscious state (Xu et al., 2009). In 16 

addition, six subjects received sevoflurane general anesthesia. Induction was completed with 8% 17 

sevoflurane in 100% oxygen, adjusting fresh gas flow to 6 L/min, combined with remifentanil 18 

1.0 µg/kg, succinylcholine 1.0 mg/kg and maintained with 2.6% (1.3 MAC) ETsevo in 100% 19 

oxygen, fresh gas flow at 2.0 L/min.  20 

Behavioral responsiveness was assessed by the Ramsay scale (Ramsay et al., 1974) (Fig. 1a). 21 

The subjects were asked to strongly squeeze the hand of the investigator. The subject is 22 

considered fully awake if the response to verbal command (“strongly squeeze my hand!”) is clear 23 

and strong (Ramsay=1-2), in mild sedation if the response to verbal command is clear but slow 24 

(Ramsay=3-4), and in deep sedation or general anesthesia if there is no response to verbal 25 

command (Ramsay=5–6).  26 
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 1 

Fig 1. Summary of the different behavioral responsiveness assessments used across the three included datasets. (a) 2 
The Ramsay scale (here shown as 1/Ramsay score to facilitate comparison) was applied in the Anesthesia-SHH 3 
dataset, (b) the Observer’s Assessment of Alertness/Sedation (OAAS) scale was applied in the Anesthesia-WI 4 
dataset, and the Coma Recover Scale-Revised (CRS-R) was applied in the DOC dataset. 5 

The subjects continued to breathe spontaneously during wakefulness and light sedation. During 6 

general anesthesia, the subjects were ventilated with intermittent positive pressure ventilation, 7 

setting tidal volume at 8–10 ml/kg, respiratory rate 10-12 beats per minute, and maintaining 8 

PetCO2 (partial pressure of end-tidal CO2) at 35-45 mmHg. Two certified anesthesiologists were 9 

present throughout the study, and complete resuscitation equipment was always available. 10 

Subjects wore earplugs and headphones during the fMRI scanning.  11 

Rs-fMRI data acquisition consisted of three 8-min scans in wakefulness baseline (n=29), light 12 

sedation (n=17) and general anesthesia (n=29), respectively. The subject’s head was fixed in the 13 

scan frame and padded with spongy cushions to minimize head movement. The subjects were 14 

asked to relax and assume a comfortable supine position with their eyes closed during scanning 15 

(an eye patch was applied). The subjects were instructed not to concentrate on anything in 16 

particular during the resting-state scan. A Siemens 3T scanner (Siemens MAGNETOM, 17 

Germany) with a standard 8-channel head coil was used to acquire gradient-echo EPI images of 18 

the whole brain (33 slices, repetition time/echo time [TR/TE]=2000/30ms, slice thickness=5mm, 19 

field of view=210mm, flip angle=90°, image matrix=64 x 64). High-resolution anatomical 20 

images were also acquired for rs-fMRI coregistration.  21 
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Dataset 2: Anesthesia-WI 1 

The dataset has been previously published using analyses different from those applied here 2 

(Huang et al., 2018a; Liu et al., 2017a, 2017b). The Institutional Review Board of Medical 3 

College of Wisconsin (MCW) approved the experimental protocol. Fifteen healthy volunteers 4 

(male/female 9/6; 19-35 years) received propofol sedation. Four conditions of behavioral 5 

responsiveness were determined by OAAS (Observer's Assessment of Alertness/Sedation) score 6 

(Chernik et al., 1990), namely wakefulness baseline (OAAS=5±0), propofol light sedation 7 

(OAAS=4±0), propofol deep sedation (OAAS=1.9±0.4), and recovery (OAAS=5±0). During 8 

light sedation, volunteers showed lethargic response to verbal commands, and during deep 9 

sedation volunteers showed no response to verbal commands (Fig. 1b). The corresponding target 10 

plasma concentrations vary across subjects (light sedation: 0.98 ± 0.18 µg/ml; deep sedation: 11 

1.88 ± 0.24 µg/ml) because of the variability in individual sensitivity to anesthetics. At each level 12 

of sedation, the plasma concentration of propofol was maintained at equilibrium by continuously 13 

adjusting the infusion rate to maintain the balance between accumulation and elimination of the 14 

drug. The infusion rate was manually controlled and guided by the output of a computer 15 

simulation developed for target-controlled drug infusion (Shafer, 1996) based on the 16 

pharmacokinetic model of propofol (Marsh et al., 1991). Standard American Society of 17 

Anesthesiologists (ASA) monitoring was conducted during the experiment, including 18 

electrocardiogram, noninvasive blood pressure cuff, pulse oximetry, and end tidal carbon dioxide 19 

gas monitoring. Supplemental oxygen was administered prophylactically via nasal cannula. 20 

Rs-fMRI data acquisition consisted of four 15-min scans in wakefulness baseline, light and deep 21 

sedation, and recovery, respectively. A 3T Signa GE 750 scanner (GE Healthcare, Waukesha, 22 

Wisconsin, USA) with a standard 32-channel transmit/receive head coil was used to acquire 23 

gradient-echo EPI images of the whole brain (41 slices, TR/TE=2000/25ms, slice 24 

thickness=3.5mm, field of view=224mm, flip angle=77°, image matrix: 64×64). High-resolution 25 

anatomical images were also acquired for rs-fMRI coregistration.  26 
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Dataset 3: DOC  1 

The dataset has been previously published using analyses different from those applied here 2 

(Huang et al., 2018a, 2016, 2014). The study was approved by the Institutional Review Board 3 

(IRB) of Huashan Hospital, Fudan University. Informed consent was obtained from the patients’ 4 

legal representatives, and from the healthy participants. The dataset included 21 patients 5 

(male/female: 18/3) with disorders of consciousness, and 28 healthy control (HC) subjects 6 

(male/female: 14/14). The patients were assessed using a standardized behavioral exam—the 7 

Coma Recovery Scale-Revised (CRS-R) (Giacino et al., 2004)—on the day of fMRI scanning, 8 

both before and after scanning (Fig. 1c). Of those assessed, 13 patients were diagnosed as 9 

UWS/VS, and 8 were diagnosed as MCS (Table 1).  10 

Table 1. Clinical information for DOC 11 

Patient number Gender/Age Cause 
Time of fMRI 

(days after insult) 
CRS-R Diagnosis 

1 M/37 TBI 301 6 UWS 

2 M/78 TBI 211 7 MCS 

3 M/51 TBI 100 4 UWS 

4 M/23 HIE 244 4 UWS 

5 M/47 SIH 79 9 MCS 

6 M/48 SIH 78 6 UWS 

7 M/58 TBI 83 7 UWS 

8 M/66 HIH 280 10 MCS 

9 M/30 TBI 26 12 MCS 

10 M/8 P-CPR 65 7 UWS 

11 M/18 TBI 30 6 MCS 

12 F/32 TBI 73 12 MCS 

13 M/55 TBI 106 10 MCS 

14 M/16 TBI 803 12 MCS 

15 F/35 TBI 21 5 UWS 

16 M/46 SIH 18 2 UWS 

17 M/60 SIH 109 6 UWS 

18 M/46 TBI 25 2 UWS 

19 M/59 SIH 44 4 UWS 

20 F/52 SIH 51 4 UWS 

21 M/46 TBI 162 5 UWS 

 12 
UWS: unresponsive wakefulness syndrome; MCS: minimally conscious state; CRS-R: Coma Recovery Scale-13 
Revised; TBI: traumatic brain injury; SIH: spontaneous intracerebral hemorrhage; HIH: hypertensive intracerebral 14 
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hemorrhage; HIE, hypoxic ischaemic encephalopathy; P-CPR: post cardiopulmonary resuscitation. 1 

None of the healthy controls had a history of neurological or psychiatric disorders, nor were they 2 

taking any kind of medication. Of note, the labels used for classification were the patient 3 

diagnoses assigned according to their respective CRS-R scores. As mentioned earlier, diagnoses 4 

based on behavioral markers may be inaccurate, especially between MCS and USW/VS. Further, 5 

since our goal was to differentiate UWS/VS patients from healthy controls, rather than separate 6 

UWS/VS patients from MCS patients, we deemed that the CRS-R was the appropriate tool to 7 

coarsely define the groups for our classification task. 8 

Rs-fMRI data were acquired on a Siemens 3T scanner (Siemens MAGNETOM, Germany). A 9 

standard 8-channel head coil was used to acquire gradient-echo EPI images of the whole brain 10 

(33 slices, TR/TE=2000/35ms, slice thickness=4mm, field of view=256 mm, flip angle=90°, 11 

image matrix=64 x 64). Two hundred EPI volumes (6 minutes and 40 seconds), as well as high-12 

resolution anatomical images, were acquired. 13 

fMRI Data Preprocessing and Feature Extraction  14 

The following preprocessing steps were implemented in AFNI (http://afni.nimh.nih.gov/): (1) 15 

The first two frames of each fMRI run were discarded; 2) Slice timing correction; 3) Rigid head 16 

motion correction/realignment within and across runs; frame-wise displacement (FD) of head 17 

motion was calculated using frame-wise Euclidean Norm (square root of the sum squares) of the 18 

six-dimensional motion derivatives. Each frame, and the frame prior, were tagged as zeros (ones, 19 

otherwise) if the given frame’s derivative value has a Euclidean Norm above FD=0.5mm (Huang 20 

et al., 2018c) 4) Coregistration with high-resolution anatomical images; 5) Spatial normalization 21 

into Talaraich stereotactic space; 6) Using AFNI’s function 3dTproject, the time-censored data 22 

were band-pass filtered to 0.01-0.1Hz. At the same time, various undesired components (e.g., 23 

physiological estimates, motion parameters) were removed via linear regression. The undesired 24 

components included linear and nonlinear drift, time series of head motion and its temporal 25 

derivative, binarized FD time series, and mean time series from the white matter and 26 
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cerebrospinal fluid; 7) Spatial smoothing with 6mm full-width at half-maximum isotropic 1 

Gaussian kernel; 8) The time-course per voxel of each run was normalized to zero mean and unit 2 

variance, accounting for differences in variance of non-neural origin (e.g., distance from head 3 

coil). Lastly, global signal regression (GSR) was not included in the following analysis as it may 4 

introduce artificial anti-correlations between regions, and therefore bias the results or 5 

interpretations (Anderson et al., 2011; Fox et al., 2009; Murphy et al., 2009, 2016; Saad et al., 6 

2012). 7 

Definition of Functional Networks 8 

We adopted a well-established node template (Power et al., 2011) that had been slightly modified 9 

for a previous study (Huang et al., 2018a) containing 226 nodes (10mm diameter spheres, 32 10 

voxels per sphere) within 10 functional networks: subcortical (Sub), dorsal attention (DA), 11 

ventral attention (VA), default mode (DMN), frontoparietal task control (FPTC), cingulo-12 

opercular task control (COTC), salience (Sal), sensory/somatomotor (SS), auditory (Audi), and 13 

visual networks (Visual) (Fig. 2a). 14 

 15 

Fig 2. Extraction of model features using fMRI-based measures of resting state activity. (a) Node template 16 
representing anatomical location of 226 seed regions of interest (ROIs) consolidated into 10 networks (Power et al., 17 
2011): subcortical (Sub), ventral attention (VA), frontoparietal task control (FPTC), salience (Sal), auditory (Audi), 18 
dorsal attention (DA), default mode (DMN), cinguloopercular task control (COTC), sensory/somatomotor (SS), 19 
visual (Visual). (b) Raw functional connectivity map (left) generated from seed-based pairwise Pearson correlations 20 
between 226 ROIs. Activity was averaged according to network template yielding measures of between network 21 
(off-diagonal) and within network (on-diagonal) functional connectivity (middle). Two additional measures of 22 
functional segregation, the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo), were 23 
calculated independently using the network templates. 24 

ALFF Calculation 25 
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ALFF was calculated at the voxel level by the AFNI program 3dRSFC for each subject. ALFF 1 

quantifies local resting-state signal fluctuations by measuring the integral of the signal amplitude 2 

in the frequency domain (over a low-frequency range of 0.01–0.1Hz) (Zang et al., 2007). The 3 

original approach to quantifying the ALFF was improved by calculating the ratio of the power of 4 

the low-frequency range to that of the entire frequency range resulting fractional ALFF (fALFF) 5 

(Zou et al., 2008), which was adopted in our analysis. The averaged fALFF values for each of 6 

the pre-defined 10 networks were extracted at the subject-level and separately for each condition. 7 

ReHo Calculation 8 

Regional homogeneity (ReHo) was calculated at the voxel level using Kendall’s coefficient of 9 

concordance (KCC) between the BOLD time series for the specified voxel and those of its 26 10 

nearest neighbors (~2 mm radius sphere) (Zang et al., 2004). ReHo quantifies the intra-regional 11 

signal correlation. ReHo analysis was performed by AFNI program 3dReHo. As spatial 12 

smoothing could artificially enhance ReHo and reduce its reliability (Zuo et al., 2013), we 13 

calculated ReHo from non-smoothed BOLD time series. Spatial smoothing was subsequently 14 

applied, with a 6mm fullwidth at half-maximum (FWHM) Gaussian kernel, to the ReHo maps 15 

(Fisher’s Z transformed). The averaged ReHo values for each of the pre-defined 10 networks 16 

were extracted at the subject-level and separately for each condition. 17 

FC Calculation 18 

Inter-regional functional connectivity (FC) was calculated based on the aforementioned node 19 

template, wherein the minimal Euclidian distance between two centers of any pair of nodes is 20 

2cm. This is notably distinct from ReHo, which reflects connectivity within an ~2mm radius 21 

sphere. We computed the Pearson correlation coefficient of the time courses between each pair 22 

of nodes, yielding a pairwise 226×226 correlation matrix (Fisher’s Z transformed). Based on this 23 

correlation matrix, the within and between network connectivity values were calculated by 24 
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averaging the node-level FC values within the on-diagonal and off-diagonal components of the 1 

correlation matrix, respectively. 2 

Model Training, Validation, & Testing 3 

Following the above procedure, 75 features were extracted from the rs-fMRI activity: ALFF 4 

(10), ReHo (10), within network FC (10), between network FC (55) (Fig. 2b). All machine 5 

learning models were trained on the composite anesthesia dataset (n=44; n=29 from Anesthesia-6 

SHH, n=15 from Anesthesia-WI), and subsequently evaluated for within-dataset prediction 7 

stability (i.e., reliability on the Anesthesia dataset) as well as the capacity to generalize 8 

classifications cross-dataset to pathologically unconscious patients with a DOC.  9 

For the former, we employed a nested cross-validation strategy. First, 100 sub-samples (outer-10 

fold) of the anesthesia dataset were generated through random sampling with replacement. Next, 11 

each outer-fold was separated into two independent datasets, an optimization dataset (80% of 12 

outer-fold) and validation dataset (20% of outer-fold). The optimization dataset was then further 13 

split using k-fold cross-validation, yielding five sub-samples (inner-folds). Each inner-fold 14 

consisted of a training dataset (80% of inner-fold) and a testing dataset (20% of inner-fold). The 15 

inner-folds were used to evaluate and optimize model hyperparameters, whereas the outer-folds 16 

were used to estimate model performance on a novel dataset. When hyperparameter optimization 17 

is used in the absence of nested cross-validation, models are more likely to overfit to the training 18 

data and overestimate performance on unseen data (Cawley and Talbot, 2010). 19 

To quantify the external validity of the models, we used a Bootstrap sampling procedure (Efron 20 

and Tibshirani, 2007) to estimate the cross-dataset (Anesthesia to DOC) model performance; 100 21 
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sub-samples of the DOC data were generated by randomly sampling from the original data with 1 

replacement.  2 

Across both methods, the class distributions were fixed such that there were equal numbers of 3 

both classes in the sub-samples used in model validation and testing. To provide an accurate 4 

estimate of reliability and generalizability, model performance was calculated as the mean across 5 

the 100 sub-samples. All model training and hyperparameter tuning was performed without 6 

exposing the models to the DOC data to ensure that the we did not inadvertently introduce 7 

information that would subsequently influence our analyses of generalization performance.  8 

Model Selection 9 

Three distinct candidate model types were evaluated within the study: support vector machine 10 

(SVM), decision tree, and artificial neural network (ANN). For a review of these commonly used 11 

supervised machine learning methods, and others, see (Caruana and Niculescu-Mizil, 2006). 12 

Both the SVM and decision tree-based models were constructed using scikit-learn (Pedregosa et 13 

al., 2011), a Python-based machine learning library popular within the neuroimaging community 14 

(Abraham et al., 2014). The ANN was built using the open source deep learning library Keras 15 

(https://keras.io) running on top of the TensorFlow platform (Dignam et al., 2016). 16 

 17 

Fig 3. Schematic representation of the three types of supervised machine learning models used in the study.  (a) The 18 
Support vector machine (SVM) is a discriminative model that generates a hyperplane (i.e., decision boundary) 19 
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which maximizes the separation between two classes in N-dimensional space (N = number of features). The 1 
hyperplane is defined by support vectors, the samples which lay at the boundary between classes. (b) Decision tree-2 
based models apply a flowchart-like approach to classification wherein the input data is repeatedly split into smaller 3 
sub-groups according to some decision process until a terminal node (i.e., label) is reached. Shown is a subtype of 4 
the decision-trees class, the Random Forest, which generates many different trees from a random sample of the data, 5 
and uses bootstrap aggregation (i.e., bagging) to average the predictions across all trees. (c) Artificial Neural 6 
Networks (ANNs) represent a broad category of machine learning models which loosely imitate the physical 7 
structure of the brain. The networks are composed of individual nodes (neurons), arranged in a hierarchical 8 
structure; shown is one possible network structure, with a single input layer, two densely-connected hidden layers, 9 
an output layer with one node for each class, and only feed-forward connections throughout. 10 

Support Vector Machine 11 

The Support vector machine (SVM) is a type of discriminative model which generates a 12 

hyperplane (i.e., decision boundary) to maximize the physical separation between two classes in 13 

N-dimensional space, where N represents the number of features (Fig. 3a). The hyperplane is 14 

defined by support vectors, the samples which lay at the boundary between classes. This 15 

technique has been widely implemented in previous neuroimaging analyses (Chennu et al., 2017; 16 

Sitt et al., 2014).  17 

Decision Trees 18 

Decision trees constitute a broad class of non-parametric models that visually resembles a nested 19 

tree structure. The splits (branches) of a decision tree represent points where simple decision 20 

rules are applied to parse the data until a classification is made. Decision trees seek to make high 21 

quality splits by applying metrics like Gini impurity or entropy to maximize information gain. 22 

One particular subtype of the decision trees class, the Random Forest (Fig. 3b), is especially 23 

popular and has shown notable success in multivariate neuroimaging applications (Sarica et al., 24 

2017). The Random Forest differs from a regular decision tree in that a multitude of trees are 25 

constructed from randomly drawn bootstrap samples of the original data. Aggregating 26 

predictions across the ensemble of structurally heterogeneous trees (i.e., bagging) helps to 27 

minimize model variance and mitigate risks of overfitting—a problem of external validity 28 
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encountered often in machine learning, wherein a model is fit too tightly to the training data, and 1 

consequently, generalizes poorly when exposed to new, unseen data. The current study applied 2 

the Extra Trees (ET) variant of the Random Forest (Engemann et al., 2018; Geurts et al., 2006) 3 

which introduces additional randomness into the method for deciding split-points. 4 

Artificial Neural Network 5 

Artificial Neural Networks (ANN) are a class of algorithms which loosely model the neuronal 6 

structure of the brain (Fig. 3c). They are composed of an interconnected network of individual 7 

nodes (neurons) capable of adjusting the strength of their connections via a set of tunable 8 

weights and biases. The output of the neurons is defined by the application of an activation 9 

function (e.g., step function, sigmoid function). ANN’s are capable of “learning” by a process of 10 

repetition, wherein a backpropagation algorithm is repeatedly applied to automatically adjust the 11 

connection weights relative to the difference between the current prediction and expected output 12 

(Hecht-Nielsen, 1989). 13 

We opted to construct a simple ANN with a densely-connected feedforward network structure 14 

(a.k.a multilayer perceptron), composed of: an input layer, two hidden layers, and single node 15 

(sigmoid) output layer. To address the risk of overfitting, we applied dropout to both hidden 16 

layers (20% and 50%, respectively) during training. To speed up the training process, we used 17 

the widely-popular rectified linear units (ReLU) activation function for nodes within the hidden 18 

layers (Lecun et al., 2015). Adaptive moment estimation (Adam) was chosen as the model 19 

optimizer (Kingma, Diederik and Ba, 2015) with binary cross-entropy serving as the loss metric.  20 

Hyperparameter Optimization 21 
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Prior to training a machine learning model, a set of “hyperparameters” must be chosen. These 1 

hyperparameters represent settings that constrain the model’s behavior during training (e.g., the 2 

number of decision trees in a Random Forest model). The combination of hyperparameters 3 

chosen can cause wide variations in model performance and must be tailored to the task demands 4 

as there are no universally optimal set of hyperparameters across all applications (Thornton et al., 5 

2012). 6 

In practice, appropriate model hyperparameters are most often chosen by either the grid search 7 

method (systematically evaluating a range of possible combinations) or the random search 8 

method (repeatedly evaluating random combinations). The computational demands of 9 

performing a grid search rise exponentially as the number of model hyperparameters increases, 10 

therefore, the random search method has been preferred for most applications (Bergstra and 11 

Bengio, 2012).  12 

However, given the methodology underlying grid search and random search, neither approach 13 

guarantees that the optimal combination of hyperparameters will be identified. Consequently, 14 

there has been increased interest in the development of automated hyperparameter optimization 15 

algorithms to aid in the tuning process; see (Luo, 2016) for a review. 16 

We chose to use the Python library Hyperopt-Sklearn (Bergstra et al., 2015; Komer et al., 2018) 17 

for automated hyperparameter optimization given its ease of integration with the scikit-learn 18 

library. The Hyperopt-Sklearn library applies an optimization algorithm (i.e., Tree-Structured 19 

Parzen Estimator) to navigate a pre-defined space of hyperparameters by iteratively evaluating 20 

different combinations and subsequently modeling the likelihood probability of achieving high 21 

performance with other combinations. To improve the computational efficiency, we defined a 22 
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constrained search space composed of the following tunable hyperparameters: SVM (gamma, C), 1 

ET (max tree depth, max number of features considered at each split, number of trees, decision 2 

criterion). Given the large number of tunable hyperparameters for the ANN, and high 3 

computational demands of repeated training, hyperparameter optimization was not performed on 4 

the ANN. 5 

The default hyperparameters for the scikit-learn SVM and ET were used to compare model 6 

performance before and after hyperparameter optimization. As there is no default network 7 

structure for the Keras ANN, we chose an appropriate number of nodes for each layer through 8 

the application of the algorithmic approach recommended for two-hidden-layer feedforward 9 

networks defined in (Huang, 2003). Accordingly, the default ANN was constructed with 25 10 

neurons in layer one, and 5 neurons in layer two. 11 

Feature Pruning 12 

Using the pipeline described above, we extracted 75 rs-fMRI-based features. Though we expect 13 

some of these features will be far more informative than others, much remains to be discovered 14 

about the specific biomarkers of consciousness. For this reason, we evaluated models trained on 15 

both the full set of 75 features, and models trained on a smaller subset of features isolated 16 

through feature pruning. To test the latter, we included only the features with significant 17 

differences between the awake and unresponsive states (deep sedation and general anesthesia) in 18 

the Anesthesia-SHH and Anesthesia-WI dataset. This method yielded a smaller subset of 32 19 

features: ALFF (3), within network FC (8), between network FC (21). 20 

Model Stress Tests 21 



20 
 

To further distinguish the models used in our analysis, we performed additional computational 1 

stress tests to evaluate whether the model classifications were robust to perturbation. To this end, 2 

we applied (1) a random drop-out of increasing fractions of the model features, and (2) a 3 

gradually reduced the signal to noise (SNR) ratio by adding increasing amounts of noise to the 4 

features. Both stress tests were conducted by making modifications solely to the DOC dataset 5 

used for testing. 6 

To investigate how the models responded to a diffuse, nonspecific reduction in test dataset 7 

information, we randomly dropped increasing fractions of model features from the test dataset 8 

(from 0% to 100%). Features were “dropped” from the DOC dataset by setting the value for that 9 

feature, across all subjects, to zero; zeroing was necessary, rather than pure removal, to ensure 10 

that the number of features in the training dataset and testing dataset were equivalent, as required 11 

by the models. 12 

To decrease the signal to noise ratio (SNR), we systematically introduced noise into the test 13 

dataset. For each feature, a Gaussian distribution of values was generated according to the 14 

calculated mean and variance across all subjects. The noise was added at the subject-level by 15 

randomly sampling a value on a Gaussian distribution around each feature, multiplying that 16 

sampled value by some scaling factor (ranging from 1x-100x), and finally adding the noise back 17 

to the original subject-level feature. The noised feature was then rescaled to match the original 18 

pre-noised mean and variance of the feature. 19 

To provide a stable estimate of the effects, we employed the same, previously described 20 

bootstrap sampling procedure (B=100) in evaluating the model performance before and after 21 

each stress test. 22 
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Intermediate States 1 

To evaluate the feasibility of discriminating intermediate states of consciousness, we applied the 2 

same preprocessing and feature-extraction procedure on data collected from three novel groups 3 

not included in the primary analyses: subjects during light propofol sedation (Light, n=15), 4 

subjects during recovery from propofol sedation (Rec, n=15), and clinical patients in a minimally 5 

conscious state (MCS, n=8). 6 

For subjects in each of the groups not included in model training, a predicted class probability 7 

was generated, serving as a measure of the model’s confidence in the classification relative to a 8 

binary decision threshold, set at 0.5. A predicted class probability at either extremum represents 9 

a strong resemblance to one of the two groups within the anesthesia dataset used for training; 10 

predicted class probabilities greater than 0.5 (more likely awake than unresponsive) were 11 

classified as awake, whereas values less than 0.5 (more likely unresponsive than awake) were 12 

classified as unresponsive.  13 

Statistical Analyses 14 

A two-sample t-test was applied to analyze differences between the distribution of values across 15 

each feature for subjects during wakefulness and unresponsiveness, whereas paired t-tests were 16 

used to analyze differences in model performance before and after hyperparameter optimization 17 

as well as model performance before and after perturbation. Our analysis of each model’s 18 

predicted classification probabilities was conducted first via a one sample t-test comparing the 19 

group distributions to the binary decision threshold, set at 0.5, followed by a two sample t-test 20 

comparing the intermediate states to the two states used in training (i.e., awake, unresponsive).  21 
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Before performing the multivariate analysis, we sought to determine whether reliable 1 

classifications could be made at the single-feature level within-dataset (Anesthesia cross-2 

validation) and cross-dataset (Anesthesia to DOC). This univariate analysis was conducted in 3 

order to explore whether using a more complex multivariate model-based approach was 4 

necessary and to further our knowledge of particular biomarkers highly related to the level of 5 

consciousness. 6 

To quantify classification performance, receiver operating characteristic (ROC) curves were 7 

generated by first analyzing the accuracy of the predictions obtained from the different 8 

classifiers, and subsequently plotting their associated true positive rate against the false positive 9 

rate. Using the ROC curves, the area under the curve (AUC) was calculated, which served as the 10 

metric used throughout in measuring classification performance (AUC scores range from 0-1, 11 

where 0 is totally inaccurate, 1 is fully accurate, and 0.5 represented chance-level performance).  12 

For the analyses of univariate performance and pre-post hyperparameter optimization, a 13 

Bonferroni-correction at alpha <0.05 was applied to control for the increased risk of false 14 

positives when making multiple statistical comparisons. Given that our analysis of intermediate 15 

states had a much smaller sample size, no correction was applied. 16 

Data and code availability statement 17 

The resting-state fMRI feature data and code for the above machine-learning pipeline are 18 

accessible at https://github.com/Justin-Campbell/ML-Anes-DOC. 19 

Results 20 

Univariate Performance 21 
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As expected, we observed several features with significant differences between the awake (n=44) 1 

and unresponsive (deep sedation/anesthesia; n=44) groups (paired sample t-test, Bonferroni-2 

corrected p<0.05) (Fig. 4). 3 

 4 

Fig 4. Single feature comparisons between awake and deep sedation groups across anesthesia datasets. (a) 5 
Distribution of values for ALFF (upper-left), ReHo (upper-middle), within network FC (upper-right), and between 6 
network FC (bottom). * indicates Bonferroni-corrected p < 0.05. The ability of single features to discriminate 7 
between the two groups was evaluated using a univariate model-free analysis. The within-dataset (Anesthesia → 8 
Anesthesia; blue) and cross-dataset (Anesthesia → DOC; pink) AUC is listed above the features with significant 9 
group differences.  10 

 A subsequent analysis of the area under the ROC curves (AUC) generated from the features 11 

with group differences revealed a wide-range of univariate model-free classification 12 

performances within-dataset (AUC: 0.65-0.81) and cross-dataset (AUC: 0.52-0.87). In rare cases 13 

where a feature had an AUC of <0.50, indicating an anti-correlation with state of consciousness, 14 

the associated AUC was rectified (|AUC-0.50|+0.50) using a previously described procedure to 15 

improve interpretability (Engemann et al., 2018).  16 

Although the above chance-level performance of univariate classifiers indicates that some 17 

features may be strongly related to different states of consciousness, the performance was not 18 

always consistent within- and cross-dataset (e.g., the dorsal attention and somatosensory 19 

networks’, DA-SS, connectivity feature had an AUC of 0.79 and 0.56, respectively). This 20 
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suggests that inconsistent features may instead be closely associated with some unique aspect of 1 

anesthetic-induced unconsciousness, but does not necessarily entail information generalizable 2 

between the two.  3 

 4 

Fig 5. Single feature comparisons between healthy controls and UWS/VS groups within DOC dataset. (a) 5 
Distribution of values for ALFF (upper-left), ReHo (upper-middle), within network FC (upper-right), and between 6 
network FC (bottom). * indicates Bonferroni-corrected p < 0.05.  7 

To approximate the overall performance within the four types of features (i.e., ALFF, ReHo, 8 

within network FC, between network FC), we quantified a representative ROC curve within each 9 

feature type as the mean across all its associated univariate ROC curves (Fig. 6). An analysis of 10 

the AUC from the representative ROC curves within-dataset revealed that the strongest overall 11 

performance came from between network FC features (M=0.67, SD=0.08), followed by within 12 

network FC (M=0.66, SD 0.03), ALFF (M=0.63, SD=0.05), and ReHo (M= 0.59, SD=0.04). In 13 

contrast, ALFF-based features showed the strongest overall performance cross-dataset (M=0.73, 14 

SD=0.08), followed by within network FC (M=0.68, SD=0.06), between network FC (M=0.64, 15 

SD=0.09), and ReHo (M=0.58, SD=0.03). Across both datasets, the ReHo-derived features 16 

performed the weakest, suggesting an overlap between groups as can be seen by examination of 17 

the ReHo value distributions (Fig. 4a middle). 18 
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 1 

Fig 6. A receiver operating characteristic (ROC) curve, which plots a classifier’s true positive rate against the false 2 
positive rate, was calculated for each feature independently, both for within dataset classification (Anesthesia → 3 
Anesthesia; blue) and cross-dataset classification (Anesthesia → DOC; pink). The univariate ROC curves were 4 
subsequently averaged to yield a representative univariate ROC curve within each of the four analyses of functional 5 
connectivity. The representative ROC curve was used to determine the area under the curve (AUC), which served as 6 
the quantitative measure of univariate classifier performance. The dashed line represents chance-level performance. 7 
Shaded areas represent ± 1SD.  8 

To ensure that the observed performance was not being driven by non-neural activity that may 9 

confound the BOLD signal we performed an analogous model-free univariate analysis using 13 10 

features derived from head motion (standard deviation of head motion in 12 directions, 11 

Euclidean norm of all head motion parameters). Although the motion-based features performed 12 

slightly above chance-level within-dataset (M=0.66, SD=0.15), they had notably low 13 

performance cross-dataset (M=0.20, SD=0.08). 14 

Model Performance 15 

The three models all showed strong classification performance prior to feature pruning and 16 

hyperparameter optimization (Default) (within-dataset; cross-dataset): SVM (M=0.83, SD=0.11; 17 



26 
 

M=0.85, SD=0.04; Fig. 7a,d), ET (M=0.92, SD=0.07; M=0.92, SD=0.02; Fig. 7b,e), ANN 1 

(M=0.94, SD=0.06; M=0.98, SD=0.01; Fig. 7c,f). 2 

 3 

Fig 7. Support vector machine (SVM), Extra Trees (ET), and artificial neural network (ANN) performance without 4 
hyperparameter optimization or feature selection (Default), with feature pruning only (Pruned), and with 5 
hyperparameter optimization only (Optimized). (a,b,c) Within-dataset reliability (Anesthesia → Anesthesia) for 6 
each model was evaluated using 100x5 nested cross-validation. (d,e,f) Cross-dataset generalizability (Anesthesia → 7 
DOC) was evaluated by testing the fully-trained models on 100 bootstrap samples of the DOC data. The solid lines 8 
represent the mean ROC's across 100 evaluations. Shaded areas represent ± 1SD.  The dashed line represents 9 
chance-level performance (AUC = 0.50). * indicates Bonferroni-corrected p < 0.05. 10 

Two of the models showed significantly reduced classification performance within- and cross-11 

dataset following feature pruning (Pruned) (within-dataset; cross-dataset): ET (t(99)=5.83, 12 

p<0.001; t(99)=16.55, p<0.001), ANN (t(99)=10.01, p<0.001; t(99)=38.10, p<0.001). In contrast, 13 

feature pruning did not appear to meaningfully affect the SVM model. 14 

The two models which participated in hyperparameter optimization achieved a statistically 15 

significant increase in cross-dataset classification performance (Optimized): SVM (t(99)=33.51, 16 

p<0.001), ET (t(99)=5.48, p<0.001). Whereas hyperparameter optimization also improved 17 

within-dataset performance for the support vector machine (t(99)=8.55, p<0.001), no significant 18 

difference was observed with the ET model. 19 
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Overall, the SVM was most affected by the hyperparameter optimization, showing a marked 1 

increase in Post-Optimization vs Pre-Optimization performance (M:+0.12 within-dataset; 2 

M:+0.14 cross-dataset) and reduction in performance variability (SD:-0.05 within-dataset; SD:-3 

0.04 cross-dataset). 4 

Taken together, our results suggest that careful hyperparameter optimization is an essential step 5 

in constructing a robust machine learning classifier, particularly when using the SVM, and that 6 

automated methods for choosing appropriate hyperparameters (e.g., Hyperopt-Sklearn) may offer 7 

an effective, less-biased approach altogether more preferable than other manual tuning methods. 8 

Moreover, our results also suggest that pruning features based on observed group differences in 9 

the training dataset may worsen, rather than improve, classification performance within- and 10 

cross-dataset for some models. 11 

Stress Tests 12 

All models achieved near-optimal performance (AUC>0.95) both within- and cross-dataset 13 

following hyperparameter optimization. For this reason, we applied computational stress tests to 14 

explore which of the models continued to perform well when presented with sub-optimal data. 15 

As expected, classification performance (AUC) steadily declined as increasing numbers of 16 

features were randomly dropped from the test dataset (DOC). All three models preserved a 17 

relatively strong mean AUC (>0.80) until the number of features dropped (zeroed) exceeded 60-18 

80% (Fig. 8a).  19 
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 1 

Fig 8. Computational stress tests and analysis of feature importance. (a) Variable fractions of the functional 2 
connectivity features (0%-100%) were randomly dropped (zeroed) in the test dataset. The effect of random dropping 3 
was quantified using a mean area under the curve (AUC) analysis across 100 bootstrap samples of the DOC data 4 
before and after removal. (b) Performance across variable signal-to-noise ratios (1/1-1/100) was quantified using the 5 
previously described DOC sampling and testing procedure. Dotted line represents chance-level performance (AUC 6 
=0.50). Shaded areas represent ± 1 SD. 7 

The second computational stress test, namely a systematic reduction of the signal to noise ratio 8 

(SNR), allowed us to simulate how each model responded to poor data quality (high levels of 9 

noise) (Fig. 8b). This analysis showed that the ET model retained the highest mean AUC across 10 

decreasing SNR’s, whereas the SVM and ANN models declined more rapidly to around chance-11 

level performance: 1/25 (ET:~0.76; ANN:~0.63; SVM:~0.63), 1/50 (ET:~0.67; ANN:~0.58; 12 

SVM:~0.59), 1/100 (ET:~0.58; ANN:~0.55; SVM:~0.55).  13 

The results of the computational stress tests suggest that the ET model is somewhat better-14 

equipped to manage sub-optimal data; perhaps as a consequence of the model’s unique method 15 

of constructing numerous heterogeneous trees which introduce randomness into the model and 16 

subsequent averaging of predictions through the use of bootstrap aggregation.  17 

Feature Importance 18 

In order to better understand the particular features driving model performance, we performed an 19 

exploratory analysis of feature importance on both the SVM and ET models. Given that the 20 

optimized SVM was linear, we were able to quantify relative importance by examining the 21 
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coefficients of the linear hyperplane (Fig. 9a); in line with previous recommendations, the 1 

coefficients of the hyperplane were squared (Guyon et al., 2002). Feature importance within the 2 

ET model is a readily accessible attribute of the model < 3 

sklearn.ensemble.ExtraTreesClassifier.feature_importances_> that represents how much a single 4 

feature contributes to decreasing the Gini impurity at each split (Fig. 9b). 5 

This analysis indicated that the network-level analyses of functional connectivity, namely 6 

between network FC and within network FC, were the most informative features for the 7 

classification task across both models. Moreover, the ET model appeared to have used a wider 8 

set of features compared to the SVM. 9 

 10 

Fig 9. Exploratory post-hoc analysis of feature importance for the optimized support vector machine (SVM) and 11 
Extra Trees (ET) models. (a) Since the optimized SVM was linear, feature importance was quantified by squaring 12 
the weights of the coefficients used by the model. (b) Within the ET model, feature importance corresponded to how 13 
much each feature decreased the Gini impurity. Across both models, larger values (red) are associated with higher 14 
feature importance relative to features with lower values (blue).  15 

Intermediate States 16 

Across all three models, a similar pattern emerged with respect to the non-intermediate states 17 

(Fig. 10). Namely, the anesthesia recovery group (Rec) and healthy controls in the DOC dataset 18 

(HC) were reliably classified as awake; Rec (SVM: t(14)=20.18, p<0.001; ET: t(14)=12.86, 19 
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p<0.001; ANN: t(14)=15.62, p<0.001), HC (SVM: t(27)=9.97, p<0.001; ET: t(27)=5.77, 1 

p<0.001; ANN: t(27)=9.99, p<0.001). In addition, the UWS/VS were generally classified as 2 

unresponsive; UWS/VS (SVM: t(12)=12.29, p<0.001; ET: t(12)=5.06, p<0.01; ANN: not 3 

significant), whereas the MCS classifications were indeterminate (SVM: not significant; ET: not 4 

significant; ANN: not significant). See Table 2 for a confusion matrix. 5 

 6 

Fig 10. Class assignment probability across models for subjects not included in the training data, from left to right: 7 
light anesthetic sedation (Light), recovery from anesthetic sedation (Rec), UWS/VS, MCS, healthy controls (HC) 8 
from the DOC dataset. Models were trained on the anesthesia datasets, such that 0 mapped to an unresponsive state 9 
and 1 mapped to an awake state. The predicted classification probabilities for each group were compared to binary 10 
decision threshold set at 0.5 to identify groups reliably classified as awake or unresponsive. A secondary analysis 11 
was performed to identify differences between the MCS and UWS/VS groups, the MCS and Wake groups, and the 12 
Light and Rec groups. * indicates uncorrected p < 0.05 for one sample t-test vs binary decision threshold. ‡ indicates 13 
uncorrected p < 0.05 for two sample t-test. 14 

Table 2. Confusion matrix for machine learning models 15 
Model 

Predictions Actual Behavioral States 

SVM Light Rec UWS MCS HC 

Awake 16 15 0 2 27 

Unresponsive 16 0 13 6 1 

ET Light Rec UWS MCS HC 

Awake 22 15 2 4 24 

Unresponsive 10 0 11 4 4 

ANN Light Rec UWS MCS HC 

Awake 19 15 2 3 26 
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Unresponsive 13 0 11 5 2 

The value in each cell represents the number of subjects classified as Awake or Unresponsive across the groups not 1 
included in model training. 2 

Secondary analyses revealed significant differences between the MCS group and the healthy 3 

controls in the DOC dataset across all three models (SVM: t(34)=5.76, p<0.001; ET: t(34)=5.62, 4 

p<0.001; ANN: t(34)=2.76, p<0.05), though significant differences between the MCS group and 5 

the UWS/VS group were only identified by the ANN model (t(19)=2.54, p<0.05). Further, we 6 

identified significant group differences between the subjects present in both the light anesthetic 7 

sedation and recovery from sedation groups for the ET and ANN models only (ET: t(14)=2.70, 8 

p<0.05; ANN: t(14)=2.98, p<0.05). Given that our analysis of intermediate states had a much 9 

smaller sample size, the p values reported in this section were uncorrected. 10 

Upon examination of the predicted class probabilities, we identified two MCS subjects classified 11 

as awake by all three models (patient 9 and patient 12). After reviewing the Coma Recovery 12 

Scale-Revised (CRS-R) scores for each subject we discovered that these two subjects were 13 

among the highest scoring (CRS-R = 12); high scores are associated with a greater level of 14 

consciousness. Notably, patient 9 reportedly recovered (CRS-R = 23) two months after the 15 

scanning session.  16 

Discussion 17 

We demonstrated that the pipeline we developed—rs-fMRI feature extraction, model selection, 18 

hyperparameter optimization, and cross-validation in a pharmacologic state of 19 

unconsciousness—is sufficient for constructing a robust classifier that can be applied to 20 

pathologic states of unconsciousness. Further, our finding that MCS patients were classified as 21 

significantly different from the healthy controls suggests that there exist detectable differences in 22 
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rs-fMRI activity during this intermediate state, and that, in principle, future models can be 1 

trained on these same rs-fMRI features to make graded distinctions between different levels of 2 

consciousness. 3 

The examination of group differences at the level of single features derived from rs-fMRI 4 

activity revealed three primary conclusions. First, in line with previous studies showing the 5 

functional importance of various networks — including default-mode (Amico et al., 2014; Boly 6 

et al., 2009; Boveroux et al., 2010; Demertzi et al., 2014; Fernández-Espejo et al., 2012; Greicius 7 

et al., 2008; Huang et al., 2014; Kasahara et al., 2010; Monti et al., 2010; Norton et al., 2012; 8 

Roquet et al., 2016), frontoparietal (Boveroux et al., 2010), and salience (Guldenmund et al., 9 

2013; Qin et al., 2015) — on the level of consciousness, we observed significantly reduced 10 

amplitude of low frequency fluctuations in those networks for both anesthesia and DOC data. 11 

We also identified consciousness-dependent breakdown of functional connectivity involving 12 

various cross-network functional connectivities. This is consistent with a role for cross-modal 13 

connectivity in consciousness via multisensory integration and top–down processes (Demertzi et 14 

al., 2015). Second, several features performed well as a model-free univariate classifier, 15 

discriminating between awake and unresponsive groups most of the time with a high degree of 16 

accuracy (e.g., connectivity between the cinguloopercular task control network and dorsal 17 

attention network, COTC-DA; within-dataset AUC: 0.74, cross-dataset AUC: 0.82), whereas 18 

others performed near chance-level (i.e., most ReHo-based features). Third, we discovered many 19 

features that performed inconsistently between the anesthesia and DOC datasets. This observed 20 

pattern of inconsistency suggests that some features may not be generalizable across datasets or 21 

linked to unconsciousness, per se, but rather might be an indicator of some other detectable 22 
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change in neural activity during anesthetic-induced unconsciousness (or pathologically-induced 1 

unconsciousness). 2 

In the past few years, an increasing cohort of studies has applied machine learning methods to 3 

examine the diagnostic value of imaging data in patients suffering from disorders of 4 

consciousness. A range of neuroimaging techniques have been utilized in this research area, 5 

including fMRI (Demertzi et al., 2015), fluorodeoxyglucose positron emission tomography 6 

(FDG-PET) (Phillips et al., 2011), and EEG (Chennu et al., 2017; Engemann et al., 2018; Sitt et 7 

al., 2014; van den Brink et al., 2018). It is noteworthy that, among the studies mentioned, resting 8 

state network-based fMRI could achieve a high discriminative accuracy (>80%) when 9 

distinguishing MCS from UWS patients (Demertzi et al., 2015). In our study, instead of training 10 

the classifier to make distinctions between MCS and UWS patients, we tested whether 11 

pharmacologic states of unconsciousness could have predictive value that generalized to 12 

pathologic states of unconsciousness (i.e., UWS patients). Accordingly, our classifiers were 13 

successful in separating conscious from unconscious subjects (>90%), a level of performance 14 

analogous to a prior FDG-PET study that reported a 100% classification accuracy when 15 

distinguishing locked-in patients from UWS patients (Phillips et al., 2011). Taken together, it 16 

seems feasible that machine learning approaches can be harnessed as tools to distinguish 17 

conscious from unconscious states. However, the classification of intermediate states (e.g., light 18 

sedation, MCS) remains challenging for several reasons. First, intermediate states of 19 

consciousness are ill defined if one conceives of consciousness as an all-or-none phenomenon. 20 

Second, the considerable inter-subject variability observed during sedation and MCS may 21 

necessitate larger sample sizes used for training machine learning models. Here, we applied a 22 

different strategy to test intermediate state classification, namely training models to distinguish 23 
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consciousness from unconsciousness, and making predictions on unseen intermediate state data. 1 

Although our results of intermediate states classification were exploratory, they suggest that this 2 

pipeline could have clinical relevance if developed further.  3 

The three candidate machine learning models we evaluated in the study—support vector machine 4 

(SVM), Extra Trees (ET), and an artificial neural network (ANN)—were chosen because of their 5 

growing popularity within the neuroimaging community and markedly distinct approach to 6 

classification. After training, each of the models tested achieved a notably high level of 7 

performance (AUC>0.95, both within- and cross-dataset). Thus, we find it reasonable to 8 

conclude that any of these models would likely be a suitable classifier for similar tasks.  9 

Of interest, we observed near-identical performance on the validation dataset (DOC) compared 10 

to the training dataset (Anesthesia). The high performance observed across both datasets 11 

suggests that distinguishing conscious from unconscious states (using rs-fMRI features) was a 12 

relatively simple, straightforward classification. Our analysis of feature-level differences 13 

between these two states shows an often clear separation between these two groups (Fig. 4), an 14 

observation further supported by the high performance of the univariate classifiers—achieving 15 

an AUC as high as 0.87 on the DOC data (i.e., FPTC ALFF) and 0.81 on the Anesthesia data 16 

(i.e., SS-VIS between network connectivity).  17 

There are, however, important considerations that may influence the process of model selection. 18 

First, the deep-learning based ANN was by far the most computationally demanding when it 19 

came to model training (a consequence of the backpropagation algorithm, which involves many 20 

repeated train-test epochs; see Keras documentation for a thorough review, https://keras.io), and 21 

most likely to overfit given a limited sample size. In contrast, whereas the SVM was simplest 22 

and efficient to construct, our analysis of the models before and after hyperparameter 23 
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optimization revealed that the SVM was also most sensitive to hyperparameter choice. Though 1 

SVM is often used because of its relative simplicity, this illustrates that care should be taken to 2 

observe the ways in which SVM performance may change dramatically as a result of how it is 3 

constructed prior to training.  4 

For these reasons, we believe the ET model to be a good compromise between the two—offering 5 

a good balance of computational efficiency, ease of construction, and general reliability. Finally, 6 

there is an added advantage for decision-tree-based models in particular, namely the ability to 7 

perform a post-hoc analysis of feature importance, which may help to inform feature selection in 8 

future studies. Our recommendation of this particular model is in line with other related research 9 

evaluating the ET’s ability to classify DOC patients by analyzing a wide range of distinct EEG-10 

derived features (Engemann et al., 2018).  11 

As part of our machine learning pipeline, we explored the relatively novel approach to 12 

hyperparameter tuning, namely automated optimization via Hyperopt-sklearn (Bergstra et al., 13 

2015; Komer et al., 2018). Given that such methods are designed to reduce user bias in 14 

hyperparameter selection, avoid the time-intensive nature of manual hyperparameter search 15 

methods, and also provide strong gains in performance relative to default hyperparameter 16 

settings, we believe it to be a very valuable tool that will appreciate a growing application as 17 

others adopt these emerging techniques.  18 

Contrary to our expectation, the feature pruning on the basis of observed group differences in the 19 

anesthesia dataset generally lowered performance. Here, we suspect that many of the features 20 

excluded from the pruned sub-set of features contained meaningful information used by the 21 

models. Given that careful feature selection remains a key step in constructing a machine 22 

learning model, our results suggest that elimination of redundant or non-informative features is 23 
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better-achieved through methods like recursive feature elimination, in which model performance 1 

is iteratively tested with and without specific features. 2 

Taken together, our analysis of single features, and the post-hoc exploration of SVM and ET 3 

feature importance, provides converging evidence that network-level measures of rs-fMRI 4 

activity (i.e., within network FC, between network FC) are especially relevant biomarkers for 5 

studying unconsciousness; the network-level measures tended to have high univariate model-free 6 

classification performance within- and cross-dataset, and were also identified as among the most 7 

highly important features within the ET model. Much of the recent research on neural correlates 8 

of consciousness similarly emphasizes the importance of long-range connectivity (Mashour and 9 

Hudetz, 2018) and network-level features (Amico et al., 2017; Crone et al., 2014; Fernández-10 

Espejo et al., 2012; Fischer et al., 2016; Kotchoubey et al., 2013; Qin et al., 2015; Rosazza et al., 11 

2016). Interestingly, though the network-level measures were generally what most separated 12 

conscious and unconscious states, we did not identify any particular networks that were 13 

universally different between the two. We propose two possible explanations for this 14 

observation: 1) the network features were derived from pre-defined network template (226 15 

nodes), reduced the original spatial resolution from tens of thousands of voxels to hundreds. This 16 

relatively coarse estimation of brain activity may inevitably introduce inaccurate network 17 

assignment for different individuals due to inter-subject variability. 2) unconsciousness (whether 18 

induced pathologically or by anesthetics) may entail spatially diffuse, rather than focal, changes 19 

to network activity. Both explanations highlight the importance of using multivariate analyses; 20 

multivariate approaches help to address inter-subject variability (potentially, heterogeneity in 21 

DOC population) while also capturing the information from large-scale brain activity.  22 
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There are a few methodological limitations worth noting. First, during our analyses of within- 1 

and cross-dataset performance, we observed near-optimal performance both within- and cross-2 

dataset across all three models. Though this was a positive result, it made subsequent 3 

comparisons between the three models difficult, as we did not observe a clear winner, or loser, 4 

among the three. Given that single features were, in some cases, also high performing univariate 5 

classifiers, we suspect that the discrimination task performed by the models was relatively 6 

straightforward—that is, there was usually clear separation between the two groups. This may 7 

also explain why we observed near-identical cross-dataset performance; in most machine 8 

learning applications, model performance is generally expected to decline when generalizing to 9 

novel data (relative to performance during training). 10 

It is possible that, due to the simplicity of the classification, we achieved a sort of ceiling effect 11 

that obscured meaningful differences in how the three models would have performed on a more 12 

challenging task. Though we attempted to further delineate the models by application of 13 

computational stress tests, it is important to note the difficulty of assessing whether the 14 

differences observed are due to actual variation in model robustness, or rather, a consequence of 15 

how the different models make classifications.  16 

Additionally, although our exploration of intermediate states indicated that the models treated the 17 

MCS group differently than the UWS/VS group and the healthy controls, only limited 18 

conclusions can be drawn. For one, since the models were not trained to execute a true multi-19 

label classification, we cannot say that such a model would incontrovertibly achieve a similarly 20 

high level of performance when discriminating between MCS and UWS/VS or between MCS 21 

and healthy controls. Our analysis of the data collected during light anesthetic-sedation offered a 22 

preliminary indication that this group may serve as a future analog to MCS, however, as multi-23 
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label classification was not the primary goal of the study, that hypothesis was not explicitly 1 

tested and needs to be explored further. 2 

In sum, our study both validates the use of anesthetic-induced unconsciousness as a surrogate 3 

model of study for pathologically induced unresponsiveness and establishes a pipeline for the use 4 

of rs-fMRI-based multivariate machine learning approaches to classification. In doing so, we 5 

hope to help pave the way towards a large sample verification study and the routine application 6 

of machine-learning in the clinical context. 7 
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