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Determining the level of consciousness in patiemith disorders of consciousness (DOC)
remains challenging. To address this challengaingestate fMRI (rs-fMRI) has been widely
used for detecting the local, regional, and netwackvity differences between DOC patients
and healthy controls. Although substantial progtess been made towards this endeavor, the
identification of robust rs-fMRI-based biomarke flevel of consciousness is still lacking.
Recent developments in machine learning show peadsa tool to augment the discrimination
between different states of consciousness in dinicactice. Here, we investigated whether
machine learning models trained to make a binasyirdition between conscious wakefulness
and anesthetic-induced unconsciousness would thencdpable of reliably identifying
pathologically induced unconsciousness. We did goektracting rs-fMRI-based features
associated with local activity, regional homogepnedind interregional functional activity in 44
subjects during wakefulness, light sedation, ancesponsiveness (deep sedation and general
anesthesia), and subsequently using those featorésin three distinct candidate machine
learning classifiers: support vector machifstra Trees, artificial neural network. First, we
show that all three classifiers achieve reliablefggenance within-dataset (via nested cross-
validation), with a mean area under the receivaragng characteristic curve (AUC) of 0.95,
0.92, and 0.94, respectively. Additionally, we atvee comparable cross-dataset performance
(making predictions on the DOC data) as the ansstheined classifiers demonstrated a
consistent ability to discriminate between unrespan wakefulness syndrome (UWS/VS)
patients and healthy controls with mean AUC's &90.0.94, 0.98, respectively. Lastly, we
explored the potential of applying the aforemergobnclassifiers towards discriminating
intermediate states of consciousness, specificallpjects under light anesthetic sedation and

patients diagnosed as having a minimally conscatate (MCS). Our findings demonstrate that
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machine learning classifiers trained on rs-fMRI tieas derived from participants under
anesthesia have potential to aid the discriminatioetween degrees of pathological

unconsciousness in clinical patients.

Keywords: fMRI, resting-state, disorders of consciousneagsthesia, functional connectivity,

machine learning, deep learning, consciousness

| ntroduction

Determining the level of consciousness in patiemith disorders of consciousness (DOC)
remains a challenging clinical problem. The primdiggnostic tool, a behavioral assessment, is
prone to erroneous conclusions (over 40% misdiagnose) when relying solely on the
clinician’s judgment without standardized assessm@chnakers et al., 2009b). Though
standardized behavioral exams, like the Coma Regdeale-Revised (CRS-R) (Giacino et al.,
2004), are now widely used, misdiagnoses may aisardf patients are not assessed repeatedly
within a short time window (Wannez et al., 2017%).slome cases, covert consciousness (i.e.,
awareness without overt responsiveness) can oagirta central nervous system lesions that
prevent motor activity (Fernandez-Espejo et all22Wonti et al., 2010; Owen et al., 2006). An
analogous phenomenon, intraoperative awarenessgdgeneral anesthesia, has been reported
with explicit recall in 0.15% of all surgical cas@dashour et al., 2013, 2012), and without
explicit recall in 5% of all cases (Sanders et 3017). Further, covert consciousness was
recently demonstrated by a healthy participantrdupgropofol anesthesia using an active fMRI-
based paradigm. (Huang et al., 2018b). Thus, thetification of preserved consciousness is of
substantial importance in the clinical settinglas teliable detection of preserved consciousness

in DOC patients can lead to an increased focusbabhilitative efforts that may foster recovery
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(Fins et al., 2007; Giacino et al., 2014). Therefahe need to establish reproducible brain

markers linked to different levels of consciousnesependent of behavior is paramount.

Within the last decade, there has been a surgeeskst in identifying more objective techniques
for measuring levels of consciousness. A wealtlpraivious research has explored possible
neural correlates of consciousness derived fromrom@aging techniques, like functional
magnetic resonance imaging (Bekinschtein et aD52@004; Chen et al., 2018; Coleman et al.,
2009; Maki-Marttunen et al., 2013) and positron ssiun tomography (Boly et al., 2008, 2004;
Silva et al., 2010) as well as measures of neursiplogical responses to stimuli captured by
electroencephalography (Bekinschtein et al., 2@9nakers et al., 2009a, 2008). For a review
see (Laureys and Schiff, 2012; Mashour and Hu@&8; Owen, 2013). Each methodological
approach has unique advantages and disadvantagendiley on the specific goals and

application (Boly et al., 2012).

Of these techniques, resting-state fMRI (rs-fMRas&d measurements appear especially fruitful
as they are capable of providing key componentsiriderstanding the dynamic functional
organization of brain activity across multiple &sali.e., local, regional, network) that appears
necessary for consciousness (Huang et al., 20A8aprdingly, particular features of intrinsic
brain activity have been associated with physia@pgharmacologic, and pathologic states of
unconsciousness (Boveroux et al., 2010; Demertzi.eP011; Di Perri et al., 2016; Heine et al.,
2012; Roquet et al., 2016; Soddu et al., 2009)h&lgh substantial progress has been made
towards this endeavor, a robust rs-fMRI-based ifleaBon for states of consciousness is still
lacking. However, recent developments in machiaenieg show promise as a tool to augment
the discrimination between different states of comssness in clinical practice. In the last

decade, researchers have successfully built madglable of distinguishing between different
4
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degrees of awareness—Ilocked-in syndrome, minintalhscious state (MCS), and unresponsive
wakefulness syndrome/vegetative state (UWS/VS)—baseeach patient's neuroimaging data

(Demertzi et al., 2019, 2015; Engemann et al., 20hdlips et al., 2011, Sitt et al., 2014).

Despite this progress, one persistent challengheaaostudy of DOC patients is the etiological
heterogeneity—DOC may be induced through focalrinja neural tissues (e.g., traumatic brain
injury, stroke) or more diffuse damage (e.g., Almtex’s disease)—each of which affects the
structural integrity and functional dynamics of thrain in distinct ways (Amemiya et al., 2013;
Sours et al., 2015). Taken together, the differefeween DOC patients, the high misdiagnosis
rate associated with behavioral assessment, anth¢keof ground-truth data, pose a critical
problem in establishing a robust and reproducibleciime learning model. In contrast, a
proposed surrogate model of study, namely anesthmtuced unconsciousness in healthy
volunteers, offers the possibility of a within-setis design, and consequently, rigorously
controlled experimental settings (Alkire et al.,089 Mashour and Avidan, 2013). Using this
paradigm, the consciousness-altering effects addnge of anesthetics have been evaluated in
humans, including ketamine (Bonhomme et al., 208éyoflurane (Palanca et al., 2015), and

propofol (Schroter et al., 2012).

The present study sought to further improve theetstdnding and diagnosis of DOC by
systematically comparing popular machine learnimgpreaches to classification, and by
evaluating a novel source of model training datamely the use of participants during
anesthetic-induced unconsciousness. To this endamos were to (1) build, optimize and
evaluate three distinct classes of machine learmiogels (i.e. support vector machirextra

Trees, and artificial neural network) for use in distinghing conscious wakefulness from

anesthetic-induced unresponsiveness using rs-fM#ed measures, including local activity
5
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(amplitude of low-frequency fluctuations, ALFF),grenal homogeneity (ReHo), and inter-
regional functional activity. (2) Evaluate whetherachine learning models trained on data
collected during anesthesia make reliable genatadizs to UWS/VS patients, and (3) explore
the feasibility of using the above machine learnimgdels to distinguish intermediate states of
consciousness—subjects under light sedation andnpatwithin a minimally conscious state

(MCS)—from fully conscious or unconscious subjects.

M ethods

Participantsand fMRI Data Acquisition

The fMRI data were collected from a cohort of 88jsats scanned at two independent research
sites (Shanghai and Wisconsin). Dataset 1 involyirgpofol and sevoflurane anesthesia was
collected in Shanghai and is hereafter referrecagdAnesthesia-SHH. Dataset 2 involving
propofol anesthesia was collected in Wisconsinedféer referred to a&nesthesia-W. Dataset
3, hereafter referred to &0C, had no anesthetic component, and instead inclpdgents with

disorders of consciousness, in addition to heaitimtrols, and was collected in Shanghai.
Dataset 1: Anesthesia-SHH

The dataset has been previously published usintysesadifferent from those applied here
(Huang et al., 2018c, 2018a, 2014). The study wasoxed by the Institutional Review Board
(IRB) of Huashan Hospital, Fudan University. Infamnconsent was obtained by all the subjects
to participate in the study. Thirty-two right-hanldgsubjects were recruited (male/female: 15/17;
age: 26-64 years), who were undergoing an elettares-sphenoidal approach for resection of a
pituitary microadenoma. The pituitary microadenomase diagnosed by their size (<10 mm in
diameter without growing out of the sella) based radiological examinations and plasma

endocrinal parameters. These subjects were ASA (itare Society of Anesthesiologists)
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physical status | or Il grade, with no history ohmiotomy, cerebral neuropathy, vital organ
dysfunction or administration of neuropsychiatriagk. The subjects had no contraindication for
an MRI examination, such as vascular clips or rhietahplants. Among them, three subjects
had to be excluded from the study and further datysis because of excessive movements,

resulting in 29 subjects for the following analysis

Twenty-three subjects received propofol anesthetith light sedation (17 out of 23) and
general anesthesia (n=23), during which intraveramesthetic propofol was infused through an
intravenous catheter placed into a vein of thetrigind or forearm. Propofol was administered
using a target-controlled infusion (TCI) pump totab constant effect-site concentration, as
estimated by the pharmacokinetic model (Marsh gt1#191). Remifentanil (1.Qug/kg) and
succinylcholine (1.5 mg/kg) were administered toili@te endotracheal intubation at general
anesthesia. TCl concentrations were increasedlim@ml steps beginning at 1,@/ml until
reaching the appropriate effect-site concentratho®-min equilibration period was allowed to
ensure equilibration of propofol repartition betweeompartments. The TCI propofol was
maintained at a stable effect-site concentratioh.8fig/ml for light sedation, and 4,03/ml for
general anesthesia of which the dose reliably iegwan unconscious state (Xu et al., 2009). In
addition, six subjects received sevoflurane geremakthesia. Induction was completed with 8%
sevoflurane in 100% oxygen, adjusting fresh gaw flo 6 L/min, combined with remifentanil
1.0 ng/kg, succinylcholine 1.0 mg/kg and maintained watb% (1.3 MAC) ETsevo in 100%

oxygen, fresh gas flow at 2.0 L/min.

Behavioral responsiveness was assessed by the Racaa (Ramsay et al., 1974) (Fig. 1a).
The subjects were asked to strongly squeeze thd bérthe investigator. The subject is

considered fully awake if the response to verbatmand (“strongly squeeze my hand!”) is clear
and strong (Ramsay=1-2), in mild sedation if thepomse to verbal command is clear but slow
(Ramsay=3-4), and in deep sedation or general lzamat if there is no response to verbal

command (Ramsay=5-6).
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Fig 1. Summary of the different behavioral responsiverassessments used across the three included dafakets
The Ramsay scale (here shown as 1/Ramsay scoeitibafe comparison) was applied in the Anesth&sidd
dataset,(b) the Observer's Assessment of Alertness/SedationA®Ascale was applied in the Anesthesia-WI
dataset, and the Coma Recover Scale-Revised (CR&Rapplied in the DOC dataset.

The subjects continued to breathe spontaneouslpglwakefulness and light sedation. During
general anesthesia, the subjects were ventilatdu imtermittent positive pressure ventilation,
setting tidal volume at 8-10 ml/kg, respiratoryerdi0-12 beats per minute, and maintaining
PetCO2 (partial pressure of end-tidal CO2) at 35nHg. Two certified anesthesiologists were
present throughout the study, and complete restiscit equipment was always available.

Subjects wore earplugs and headphones during tRé $iganning.

Rs-fMRI data acquisition consisted of three 8-ntars in wakefulness baseline (n=29), light
sedation (n=17) and general anesthesia (n=29)ectsply. The subject’s head was fixed in the
scan frame and padded with spongy cushions to rnzaimmead movement. The subjects were
asked to relax and assume a comfortable supinéigosiith their eyes closed during scanning
(an eye patch was applied). The subjects wereuictsl not to concentrate on anything in
particular during the resting-state scan. A Siem&is scanner (Siemens MAGNETOM,

Germany) with a standard 8-channel head coil wad ts acquire gradient-echo EPI images of
the whole brain (33 slices, repetition time/ecmoetif TR/TE]=2000/30ms, slice thickness=5mm,
field of view=210mm, flip angle=90°, image matrix46< 64). High-resolution anatomical

images were also acquired for rs-fMRI coregistratio

8
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Dataset 2: Anesthesia-W|

The dataset has been previously published usintysesadifferent from those applied here
(Huang et al.,, 2018a; Liu et al., 2017a, 2017b)e Tihstitutional Review Board of Medical
College of Wisconsin (MCW) approved the experimeptatocol. Fifteen healthy volunteers
(male/female 9/6; 19-35 years) received propofalaien. Four conditions of behavioral
responsiveness were determined by OAAS (Obser&sssssment of Alertness/Sedation) score
(Chernik et al., 1990), namely wakefulness base(@&AS=5+0), propofol light sedation
(OAAS=4+0), propofol deep sedation (OAAS=1.9+0.4hd recovery (OAAS=5x0). During
light sedation, volunteers showed lethargic respotts verbal commands, and during deep
sedation volunteers showed no response to verbainemds (Fig. 1b). The corresponding target
plasma concentrations vary across subjects (ligdatson: 0.98 + 0.18g/ml; deep sedation:
1.88 + 0.24ug/ml) because of the variability in individual senvity to anesthetics. At each level
of sedation, the plasma concentration of propofa$ waintained at equilibrium by continuously
adjusting the infusion rate to maintain the balabe®veen accumulation and elimination of the
drug. The infusion rate was manually controlled apdded by the output of a computer
simulation developed for target-controlled drug usibn (Shafer, 1996) based on the
pharmacokinetic model of propofol (Marsh et al.,91p Standard American Society of
Anesthesiologists (ASA) monitoring was conductedrirdy the experiment, including
electrocardiogram, noninvasive blood pressure quise oximetry, and end tidal carbon dioxide

gas monitoring. Supplemental oxygen was adminidtprephylactically via nasal cannula.

Rs-fMRI data acquisition consisted of four 15-maarss in wakefulness baseline, light and deep
sedation, and recovery, respectively. A 3T SignafGHE scanner (GE Healthcare, Waukesha,
Wisconsin, USA) with a standard 32-channel transedeive head coil was used to acquire
gradient-echo EPI images of the whole brain (41cesli TR/TE=2000/25ms, slice
thickness=3.5mm, field of view=224mm, flip angle27image matrix: 64x64). High-resolution

anatomical images were also acquired for rs-fMRégstration.

9
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Dataset 3: DOC

The dataset has been previously published usintysesadifferent from those applied here
(Huang et al., 2018a, 2016, 2014). The study wasoaed by the Institutional Review Board
(IRB) of Huashan Hospital, Fudan University. Infauinconsent was obtained from the patients’
legal representatives, and from the healthy paditis. The dataset included 21 patients
(male/female: 18/3) with disorders of consciousnessl 28 healthy control (HC) subjects
(male/female: 14/14). The patients were assessid) asstandardized behavioral exam—the
Coma Recovery Scale-Revised (CRS-R) (Giacino e@D4)—on the day of fMRI scanning,
both before and after scanning (Fig. 1c). Of thaseessed, 13 patients were diagnosed as

UWS/VS, and 8 were diagnosed as MCS (Table 1).

Table 1. Clinical information for DOC

Patient number Gender/Age Cause (dzgea?t];fr'\?r?slult) CRS-R Diagnosis
1 M/37 TBI 301 6 UWS
2 M/78 TBI 211 7 MCS
3 M/51 TBI 100 4 UWwWs
4 M/23 HIE 244 4 uws
5 M/47 SIH 79 9 MCS
6 M/48 SIH 78 6 Uws
7 M/58 TBI 83 7 uws
8 M/66 HIH 280 10 MCS
9 M/30 TBI 26 12 MCS
10 M/8 P-CPR 65 7 uws
11 M/18 TBI 30 6 MCS
12 F/32 TBI 73 12 MCS
13 M/55 TBI 106 10 MCS
14 M/16 TBI 803 12 MCS
15 F/35 TBI 21 5 uws
16 M/46 SIH 18 2 uws
17 M/60 SIH 109 6 uws
18 M/46 TBI 25 2 UWS
19 M/59 SIH 44 4 uws

20 F/52 SIH 51 4 UWwWs
21 M/46 TBI 162 5 uws

UWS: unresponsive wakefulness syndrome; MCS: millynesanscious state; CRS-R: Coma Recovery Scale-
Revised; TBI: traumatic brain injury; SIH: spontans intracerebral hemorrhage; HIH: hypertensiveagrebral

10
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hemorrhage; HIE, hypoxic ischaemic encephalop@®h@PR: post cardiopulmonary resuscitation.

None of the healthy controls had a history of nlagical or psychiatric disorders, nor were they
taking any kind of medication. Of note, the labaked for classification were the patient
diagnoses assigned according to their respectiv@-RRcores. As mentioned earlier, diagnoses
based on behavioral markers may be inaccurateciefipdetween MCS and USW/VS. Further,
since our goal was to differentiate UWS/VS patidndsn healthy controls, rather than separate
UWS/VS patients from MCS patients, we deemed that@RS-R was the appropriate tool to

coarsely define the groups for our classificat@skt

Rs-fMRI data were acquired on a Siemens 3T scafBiemens MAGNETOM, Germany). A
standard 8-channel head coil was used to acquadient-echo EPI images of the whole brain
(33 slices, TR/TE=2000/35ms, slice thickness=4migld fof view=256 mm, flip angle=90°,
image matrix=64 x 64). Two hundred EPI volumes (futes and 40 seconds), as well as high-

resolution anatomical images, were acquired.
fMRI Data Preprocessing and Feature Extraction

The following preprocessing steps were implememtedFNI (http://afni.nimh.nih.gov/): (1)
The first two frames of each fMRI run were discakd2) Slice timing correction; 3) Rigid head
motion correction/realignment within and acrossstuitame-wise displacement (FD) of head
motion was calculated using frame-wise EuclideamNgsquare root of the sum squares) of the
six-dimensional motion derivatives. Each frame, tredframe prior, were tagged as zeros (ones,
otherwise) if the given frame’s derivative valuestaaEuclidean Norm above FD=0.5mm (Huang
et al., 2018c) 4) Coregistration with high-resauatianatomical images; 5) Spatial normalization
into Talaraich stereotactic space; 6) Using AFNlisction 3dTproject, the time-censored data
were band-pass filtered to 0.01-0.1Hz. At the séme, various undesired components (e.g.,
physiological estimates, motion parameters) weneokeed via linear regression. The undesired
components included linear and nonlinear drift,etiseries of head motion and its temporal

derivative, binarized FD time series, and mean tigagies from the white matter and
11
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cerebrospinal fluid; 7) Spatial smoothing with 6nfoil-width at half-maximum isotropic
Gaussian kernel; 8) The time-course per voxel ohean was normalized to zero mean and unit
variance, accounting for differences in variancenoh-neural origin (e.g., distance from head
coil). Lastly, global signal regression (GSR) was included in the following analysis as it may
introduce artificial anti-correlations between g, and therefore bias the results or
interpretations (Anderson et al., 2011; Fox et2009; Murphy et al., 2009, 2016; Saad et al.,
2012).

Definition of Functional Networks

We adopted a well-established node template (Petvat, 2011) that had been slightly modified
for a previous study (Huang et al., 2018a) contggjri226 nodes (10mm diameter spheres, 32
voxels per sphere) within 10 functional networkabeortical (Sub), dorsal attention (DA),
ventral attention (VA), default mode (DMN), frontaetal task control (FPTC), cingulo-
opercular task control (COTC), salience (Sal), sgrisomatomotor (SS), auditory (Audi), and

visual networks (Visual) (Fig. 2a).
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Fig 2. Extraction of model features using fMRI-based measwf resting state activitfa) Node template
representing anatomical location of 226 seed regadrinterest (ROIs) consolidated into 10 netwdikswer et al.,
2011): subcortical (Sub), ventral attention (VAprtoparietal task control (FPTC), salience (Sal)ditory (Audi),
dorsal attention (DA), default mode (DMN), cingup@scular task control (COTC), sensory/somatomo&)(
visual (Visual).(b) Raw functional connectivity map (left) generateohfrseed-based pairwise Pearson correlations
between 226 ROIls. Activity was averaged accordmgdtwork template yielding measures of betweemworwt
(off-diagonal) and within network (on-diagonal) fiional connectivity (middle). Two additional meass of
functional segregation, the amplitude of low-fregexefluctuations (ALFF) and regional homogeneitgk®), were
calculated independently using the network template

ALFF Calculation
12
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ALFF was calculated at the voxel level by the AfMbgram 3dRSFC for each subject. ALFF
guantifies local resting-state signal fluctuatitmysmeasuring the integral of the signal amplitude
in the frequency domain (over a low-frequency ranfy®.01-0.1Hz) (Zang et al., 2007). The
original approach to quantifying the ALFF was imyped by calculating the ratio of the power of
the low-frequency range to that of the entire fesgty range resulting fractional ALFF (fALFF)

(Zou et al., 2008), which was adopted in our anslyBhe averaged fALFF values for each of

the pre-defined 10 networks were extracted at wbgest-level and separately for each condition.

ReHo Calculation

Regional homogeneity (ReHo) was calculated at theellevel using Kendall's coefficient of
concordance (KCC) between the BOLD time seriesttierspecified voxel and those of its 26
nearest neighbors (~2 mm radius sphere) (Zang,e2G04). ReHo quantifies the intra-regional
signal correlation. ReHo analysis was performed ABNI program 3dReHo. As spatial
smoothing could artificially enhance ReHo and redits reliability (Zuo et al., 2013), we
calculated ReHo from non-smoothed BOLD time serfgsatial smoothing was subsequently
applied, with a 6mm fullwidth at half-maximum (FWHNGaussian kernel, to the ReHo maps
(Fisher's Z transformed). The averaged ReHo vafoesach of the pre-defined 10 networks

were extracted at the subject-level and separ&delyach condition.

FC Calculation

Inter-regional functional connectivity (FC) was aalhted based on the aforementioned node
template, wherein the minimal Euclidian distanceMeen two centers of any pair of nodes is
2cm. This is notably distinct from ReHo, which esgfls connectivity within an ~2mm radius
sphere. We computed the Pearson correlation ceffiof the time courses between each pair
of nodes, yielding a pairwise 226x226 correlaticatnm (Fisher’s Z transformed). Based on this

correlation matrix, the within and between netwadnnectivity values were calculated by

13
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averaging the node-level FC values within the agdnal and off-diagonal components of the

correlation matrix, respectively.

Model Training, Validation, & Testing

Following the above procedure, 75 features wereaetdd from the rs-fMRI activity: ALFF
(10), ReHo (10), within network FC (10), betweenwwk FC (55) (Fig. 2b). All machine
learning models were trained on the composite besit dataset (n=44; n=29 from Anesthesia-
SHH, n=15 from Anesthesia-WI), and subsequentlyluatad for within-dataset prediction
stability (i.e., reliability on the Anesthesia ds¢8 as well as the capacity to generalize

classifications cross-dataset to pathologicallyamscious patients with a DOC.

For the former, we employed a nested cross-vatidagirategy. First, 100 sub-samples (outer-
fold) of the anesthesia dataset were generateddghrcandom sampling with replacement. Next,
each outer-fold was separated into two independatdsets, an optimization dataset (80% of
outer-fold) and validation dataset (20% of outddfoThe optimization dataset was then further
split using k-fold cross-validation, yielding fiveub-samples (inner-folds). Each inner-fold

consisted of a training dataset (80% of inner-fald)l a testing dataset (20% of inner-fold). The
inner-folds were used to evaluate and optimize hbgperparameters, whereas the outer-folds
were used to estimate model performance on a matatet. When hyperparameter optimization
is used in the absence of nested cross-validatiodels are more likely to overfit to the training

data and overestimate performance on unseen datddZand Talbot, 2010).

To quantify the external validity of the models, w&ed a Bootstrap sampling procedure (Efron

and Tibshirani, 2007) to estimate the cross-dai@setsthesia to DOC) model performance; 100
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sub-samples of the DOC data were generated by magdampling from the original data with

replacement.

Across both methods, the class distributions wesdfsuch that there were equal numbers of
both classes in the sub-samples used in modelatimid and testing. To provide an accurate
estimate of reliability and generalizability, mog&rformance was calculated as the mean across
the 100 sub-samples. All model training and hypenmeter tuning was performed without
exposing the models to the DOC data to ensureth®twe did not inadvertently introduce

information that would subsequently influence onalgses of generalization performance.

M odd Selection

Three distinct candidate model types were evaluai#itin the study: support vector machine
(SVM), decision tree, and artificial neural netwd@ANN). For a review of these commonly used
supervised machine learning methods, and othees(Garuana and Niculescu-Mizil, 2006).
Both the SVM and decision tree-based models wemnstoacted usingcikit-learn (Pedregosa et
al., 2011), a Python-based machine learning libpagular within the neuroimaging community
(Abraham et al., 2014). The ANN was built using tpen source deep learning librdfgras

(https://keras.io) running on top of thiensorFlow platform (Dignam et al., 2016).

a b Input Cc
Support Vectors O Input.Layer Hidden Layer(s) Output Layer
e o0 ) p Q o O O
Optimal - N = ~
%O 8 . é\Hypzt'plane )}j }) (% @ @) ‘\,J @)
o 00/ 00% eo o0 000 o O 00O~ ®
® / —_— O OO0
OO @ ® OO ® o o Tree Vote: @ ~ o
®g o/0 © ® / . ¥ 9 : O y
Ooo Q9 08 e o Tree Vote: @ : H
S — -
® () OO OO Tree Vote: @ l @ O O
e 00 O —~—

Majority Vote: @

Fig 3. Schematic representation of the three types ofrsigael machine learning models used in the stdy.The
Support vector machine (SVM) is a discriminative delothat generates a hyperplane (i.e., decisiomdbany)
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which maximizes the separation between two clagsed-dimensional space (N = number of features)e Th
hyperplane is defined by support vectors, the sasnwwhich lay at the boundary between clagégDecision tree-
based models apply a flowchart-like approach tesifecation wherein the input data is repeatedlit §go smaller
sub-groups according to some decision process aitétminal node (i.e., label) is reached. Showa $sibtype of
the decision-trees class, the Random Forest, wgeaerates many different trees from a random saofplee data,
and uses bootstrap aggregation (i.e., bagging)vévage the predictions across all tre@3. Artificial Neural
Networks (ANNSs) represent a broad category of maeHearning models which loosely imitate the phagkic
structure of the brain. The networks are composkddividual nodes (neurons), arranged in a hidrima
structure; shown is one possible network structwith a single input layer, two densely-connect@tan layers,
an output layer with one node for each class, amylfeed-forward connections throughout.

Support Vector Machine

The Support vector machine (SVM) is a type of disgrative model which generates a
hyperplane (i.e., decision boundary) to maximize physical separation between two classes in
N-dimensional space, where N represents the nuwmbgFatures (Fig. 3a). The hyperplane is
defined by support vectors, the samples which layha boundary between classes. This
technigue has been widely implemented in previ@seimaging analyses (Chennu et al., 2017,

Sitt et al., 2014).

Decision Trees

Decision trees constitute a broad class of nonrpetidc models that visually resembles a nested
tree structure. The splits (branches) of a decisiea represent points where simple decision
rules are applied to parse the data until a ciaasibn is made. Decision trees seek to make high

quality splits by applying metrics like Gini imptyior entropy to maximize information gain.

One patrticular subtype of the decision trees cldss,Random Forest (Fig. 3b), is especially
popular and has shown notable success in multtean@uroimaging applications (Sarica et al.,
2017). The Random Forest differs from a regulaiisiee tree in that a multitude of trees are
constructed from randomly drawn bootstrap samplésthe original data. Aggregating

predictions across the ensemble of structurallyerogeneous trees (i.e., bagging) helps to

minimize model variance and mitigate risks of owenig—a problem of external validity
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encountered often in machine learning, wherein dehis fit too tightly to the training data, and
consequently, generalizes poorly when exposed wg naseen data. The current study applied
the Extra Trees (ET) variant of the Random Forest (Engemann e808; Geurts et al., 2006)

which introduces additional randomness into thenoefor deciding split-points.

Artificial Neural Network

Artificial Neural Networks (ANN) are a class of aligthms which loosely model the neuronal
structure of the brain (Fig. 3c). They are composkédn interconnected network of individual
nodes (neurons) capable of adjusting the strengtther connections via a set of tunable
weights and biases. The output of the neurons finatk by the application of an activation
function (e.g., step function, sigmoid function)NN'’s are capable of “learning” by a process of
repetition, wherein a backpropagation algorithmejseatedly applied to automatically adjust the
connection weights relative to the difference bemvéhe current prediction and expected output

(Hecht-Nielsen, 1989).

We opted to construct a simple ANN with a denselgrected feedforward network structure
(a.k.a multilayer perceptron), composed of: an irpyer, two hidden layers, and single node
(sigmoid) output layer. To address the risk of &Gtterg, we applied dropout to both hidden
layers (20% and 50%, respectively) during trainifg.speed up the training process, we used
the widely-popular rectified linear units (ReLU)ti@ation function for nodes within the hidden
layers (Lecun et al., 2015). Adaptive moment edimna(Adam) was chosen as the model

optimizer (Kingma, Diederik and Ba, 2015) with bipaross-entropy serving as the loss metric.

Hyper parameter Optimization
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Prior to training a machine learning model, a dethgperparameters” must be chosen. These
hyperparameters represent settings that constraimbdel’s behavior during training (e.g., the
number of decision trees in a Random Forest moddig combination of hyperparameters
chosen can cause wide variations in model perfocenand must be tailored to the task demands
as there are no universally optimal set of hypenpaters across all applications (Thornton et al.,

2012).

In practice, appropriate model hyperparametergrarst often chosen by either the grid search
method (systematically evaluating a range of pdéssdmmbinations) or the random search
method (repeatedly evaluating random combinationB)e computational demands of
performing a grid search rise exponentially asrtmber of model hyperparameters increases,
therefore, the random search method has been q@@fésr most applications (Bergstra and

Bengio, 2012).

However, given the methodology underlying grid skaand random search, neither approach
guarantees that the optimal combination of hypempaters will be identified. Consequently,
there has been increased interest in the develdpohe@utomated hyperparameter optimization

algorithms to aid in the tuning process; see (1204,6) for a review.

We chose to use the Python librédyperopt-Skiearn (Bergstra et al., 2015; Komer et al., 2018)
for automated hyperparameter optimization givenedse of integration with theeikit-learn
library. The Hyperopt-Sdearn library applies an optimization algorithm (i.e.re€-Structured
Parzen Estimator) to navigate a pre-defined spadymerparameters by iteratively evaluating
different combinations and subsequently modelireglikelihood probability of achieving high

performance with other combinations. To improve tenputational efficiency, we defined a
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constrained search space composed of the followimaple hyperparameters: SVM (gamma, C),
ET (max tree depth, max number of features consitlat each split, number of trees, decision
criterion). Given the large number of tunable hyaeameters for the ANN, and high

computational demands of repeated training, hyparpater optimization was not performed on

the ANN.

The default hyperparameters for thekit-learn SVM and ET were used to compare model
performance before and after hyperparameter omiioiz. As there is no default network
structure for th&keras ANN, we chose an appropriate number of nodes dohdayer through

the application of the algorithmic approach recomdesl for two-hidden-layer feedforward
networks defined in (Huang, 2003). Accordingly, tthefault ANN was constructed with 25

neurons in layer one, and 5 neurons in layer two.

Feature Pruning

Using the pipeline described above, we extracteds#idRI-based features. Though we expect
some of these features will be far more informathen others, much remains to be discovered
about the specific biomarkers of consciousnessttisireason, we evaluated models trained on
both the full set of 75 features, and models tioe a smaller subset of features isolated
through feature pruning. To test the latter, weluded only the features with significant
differences between the awake and unresponsivesgid¢ep sedation and general anesthesia) in
the Anesthesia-SHH and Anesthesia-WI dataset. fi@ghod yielded a smaller subset of 32

features: ALFF (3), within network FC (8), betwestwork FC (21).

Model Stress Tests
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To further distinguish the models used in our asialywe performed additional computational
stress tests to evaluate whether the model cleadns were robust to perturbation. To this end,
we applied (1) a random drop-out of increasing tioams of the model features, and (2) a
gradually reduced the signal to noise (SNR) ratiatding increasing amounts of noise to the
features. Both stress tests were conducted by makiodifications solely to th®OC dataset

used for testing.

To investigate how the models responded to a diffuenspecific reduction in test dataset
information, we randomly dropped increasing fraasioof model features from the test dataset
(from 0% to 100%). Features were “dropped” fromEi®C dataset by setting the value for that
feature, across all subjects, to zero; zeroing mexessary, rather than pure removal, to ensure
that the number of features in the training datasettesting dataset were equivalent, as required

by the models.

To decrease the signal to noise ratio (SNR), weesyatically introduced noise into the test
dataset. For each feature, a Gaussian distribudfomalues was generated according to the
calculated mean and variance across all subjetis.nbise was added at the subject-level by
randomly sampling a value on a Gaussian distribuaoound each feature, multiplying that
sampled value by some scaling factor (ranging fiori00x), and finally adding the noise back
to the original subject-level feature. The noisedtdire was then rescaled to match the original

pre-noised mean and variance of the feature.

To provide a stable estimate of the effects, we leyaol the same, previously described
bootstrap sampling procedure (B=100) in evaluatimg model performance before and after

each stress test.
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Intermediate States

To evaluate the feasibility of discriminating intezdiate states of consciousness, we applied the
same preprocessing and feature-extraction procemtudata collected from three novel groups
not included in the primary analyses: subjects rdudight propofol sedation (Light, n=15),
subjects during recovery from propofol sedationgRe=15), and clinical patients in a minimally

conscious state (MCS, n=8).

For subjects in each of the groups not includechadel training, a predicted class probability
was generated, serving as a measure of the mantglfgdence in the classification relative to a
binary decision threshold, set at 0.5. A prediatieds probability at either extremum represents
a strong resemblance to one of the two groups nvitthe anesthesia dataset used for training;
predicted class probabilities greater than 0.5 émliely awake than unresponsive) were
classified as awake, whereas values less thannib®e(likely unresponsive than awake) were

classified as unresponsive.

Statistical Analyses

A two-sample t-test was applied to analyze diffeemnbetween the distribution of values across
each feature for subjects during wakefulness amdsponsiveness, whereas paired t-tests were
used to analyze differences in model performandéeréand after hyperparameter optimization
as well as model performance before and after geation. Our analysis of each model’s
predicted classification probabilities was condddfiest via a one sample t-test comparing the
group distributions to the binary decision threghalet at 0.5, followed by a two sample t-test

comparing the intermediate states to the two stated in training (i.e., awake, unresponsive).
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Before performing the multivariate analysis, we guuto determine whether reliable
classifications could be made at the single-featieneel within-dataset (Anesthesia cross-
validation) and cross-dataset (Anesthesia to DA®@)s univariate analysis was conducted in
order to explore whether using a more complex watiate model-based approach was
necessary and to further our knowledge of particbhlamarkers highly related to the level of

consciousness.

To quantify classification performance, receiverei@ging characteristic (ROC) curves were
generated by first analyzing the accuracy of thedigtions obtained from the different

classifiers, and subsequently plotting their asgedi true positive rate against the false positive
rate. Using the ROC curves, the area under theeddtWC) was calculated, which served as the
metric used throughout in measuring classificapp@nformance (AUC scores range from 0-1,

where 0 is totally inaccurate, 1 is fully accurated 0.5 represented chance-level performance).

For the analyses of univariate performance andppst- hyperparameter optimization, a
Bonferroni-correction at alpha <0.05 was appliedctmtrol for the increased risk of false
positives when making multiple statistical compamis. Given that our analysis of intermediate

states had a much smaller sample size, no comeats applied.

Data and code availability statement

The resting-state fMRI feature data and code fa #fbove machine-learning pipeline are

accessible at https://github.com/Justin-CampbeliMies-DOC.

Results

Univariate Performance
22
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As expected, we observed several features withfgignt differences between the awake (n=44)
and unresponsive (deep sedation/anesthesia; n¥é4pg (paired sample t-test, Bonferroni-

corrected p<0.05) (Fig. 4).
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Fig 4. Single feature comparisons between awake and deédgtisn groups across anesthesia dataga)s.
Distribution of values for ALFF (upper-left), ReHapper-middle), within network FC (upper-right),dahetween
network FC (bottom). * indicates Bonferroni-corretttp < 0.05. The ability of single features to dimtnate
between the two groups was evaluated using a uateamodel-free analysis. The within-dataset (Anesia—
Anesthesia; blue) and cross-dataset (AnesthesiBOC; pink) AUC is listed above the features withn#ficant
group differences.

A subsequent analysis of the area under the RO@&£Y(AUC) generated from the features
with group differences revealed a wide-range of vanate model-free classification

performances within-dataset (AUC: 0.65-0.81) arabsrdataset (AUC: 0.52-0.87). In rare cases
where a feature had an AUC of <0.50, indicatingati-correlation with state of consciousness,
the associated AUC was rectified (JAUC-0.50|+0.86ng a previously described procedure to

improve interpretability (Engemann et al., 2018).

Although the above chance-level performance of amée classifiers indicates that some
features may be strongly related to different stateconsciousness, the performance was not
always consistent within- and cross-dataset (ehg, dorsal attention and somatosensory

networks’, DA-SS, connectivity feature had an AUEC 79 and 0.56, respectively). This
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suggests that inconsistent features may insteanbbely associated with some unique aspect of
anesthetic-induced unconsciousness, but does metsserily entail information generalizable

between the two.
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Fig 5. Single feature comparisons between healthy contaold UWS/VS groups within DOC datasés)
Distribution of values for ALFF (upper-left), ReHapper-middle), within network FC (upper-right),dahetween
network FC (bottom). * indicates Bonferroni-cormedtp < 0.05.

To approximate the overall performance within tberftypes of features (i.e., ALFF, ReHo,
within network FC, between network FC), we quaatifa representative ROC curve within each
feature type as the mean across all its assoaimtiedriate ROC curves (Fig. 6). An analysis of
the AUC from the representative ROC curves withatadet revealed that the strongest overall
performance came from between network FC featueD(67, SD=0.08), followed by within
network FC (M=0.66, SD 0.03), ALFF (M=0.63, SD=0,08nd ReHo (M= 0.59, SD=0.04). In
contrast, ALFF-based features showed the strorayestll performance cross-dataset (M=0.73,
SD=0.08), followed by within network FC (M=0.68, S0.06), between network FC (M=0.64,
SD=0.09), and ReHo (M=0.58, SD=0.03). Across bo#itaskts, the ReHo-derived features
performed the weakest, suggesting an overlap betgemips as can be seen by examination of

the ReHo value distributions (Fig. 4a middle).
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Fig 6. A receiver operating characteristic (ROC) curvejchiplots a classifier’s true positive rate agaiist false

positive rate, was calculated for each feature peddently, both for within dataset classificatigknésthesia~

Anesthesia; blue) and cross-dataset classificgtforesthesia— DOC; pink). The univariate ROC curves were
subsequently averaged to yield a representativeatiate ROC curve within each of the four analysk&inctional
connectivity. The representative ROC curve was tsetbtermine the area under the curve (AUC), whimived as
the quantitative measure of univariate classifemfgrmance. The dashed line represents chanceevidrmance.
Shaded areas represent £ 1SD.

To ensure that the observed performance was nog lskiven by non-neural activity that may
confound the BOLD signal we performed an analogoogel-free univariate analysis using 13
features derived from head motion (standard denaif head motion in 12 directions,
Euclidean norm of all head motion parameters). @&ltyfh the motion-based features performed
slightly above chance-level within-dataset (M=0.686D=0.15), they had notably low

performance cross-dataset (M=0.20, SD=0.08).

Model Performance

The three models all showed strong classificatienfgpmance prior to feature pruning and

hyperparameter optimization (Default) (within-d&iasross-dataset): SVM (M=0.83, SD=0.11;
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M=0.85, SD=0.04; Fig. 7a,d), ET (M=0.92, SD=0.07=02, SD=0.02; Fig. 7b,e), ANN

(M=0.94, SD=0.06; M=0.98, SD=0.01; Fig. 7c¢,).

a Support Vector Machine (SVM) b Extra Trees (ET) c Artificial Neural Network (ANN)
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Fig 7. Support vector machine (SVMgxtra Trees (ET), and artificial neural network (ANN) performanwithout
hyperparameter optimization or feature selectioreféIt), with feature pruning only (Pruned), andthwi
hyperparameter optimization only (Optimized,b,c) Within-dataset reliability (Anesthesia» Anesthesia) for
each model was evaluated using 100x5 nested cadisktion.(d,ef) Cross-dataset generalizability (Anesthesia
DOC) was evaluated by testing the fully-trained elecbn 100 bootstrap samples of the DOC data. e lines
represent the mean ROC's across 100 evaluatiorgle8hareas represent + 1SD. The dashed line espses
chance-level performance (AUC = 0.50). * indicaBemferroni-corrected p < 0.05.

Two of the models showed significantly reduced sifasation performance within- and cross-
dataset following feature pruning (Pruned) (witdimtaset; cross-dataset): ET (t(99)=5.83,
p<0.001; t(99)=16.55, p<0.001), ANN (t(99)=10.0%£0@01; t(99)=38.10, p<0.001). In contrast,

feature pruning did not appear to meaningfully etftee SVM model.

The two models which participated in hyperparametptimization achieved a statistically
significant increase in cross-dataset classificafierformance (Optimized): SVM (t(99)=33.51,
p<0.001), ET (t(99)=5.48, p<0.001). Whereas hypenpeter optimization also improved
within-dataset performance for the support vectachme (t(99)=8.55, p<0.001), no significant

difference was observed with the ET model.
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Overall, the SVM was most affected by the hypenpestar optimization, showing a marked
increase in Post-Optimization vs Pre-Optimizatioarfgrmance (M:+0.12 within-dataset;
M:+0.14 cross-dataset) and reduction in performara@bility (SD:-0.05 within-dataset; SD:-

0.04 cross-dataset).

Taken together, our results suggest that carefpétparameter optimization is an essential step
in constructing a robust machine learning classifiarticularly when using the SVM, and that
automated methods for choosing appropriate hypanmpaters (e.ghlyperopt-Sklearn) may offer

an effective, less-biased approach altogether meferable than other manual tuning methods.
Moreover, our results also suggest that pruningufea based on observed group differences in
the training dataset may worsen, rather than imgralassification performance within- and

cross-dataset for some models.

Stress Tests

All models achieved near-optimal performance (AU®@2) both within- and cross-dataset
following hyperparameter optimization. For thissea, we applied computational stress tests to
explore which of the models continued to perfornil wdaen presented with sub-optimal data.
As expected, classification performance (AUC) sigadeclined as increasing numbers of
features were randomly dropped from the test dat@®C). All three models preserved a
relatively strong mean AUC (>0.80) until the numbérfeatures dropped (zeroed) exceeded 60-

80% (Fig. 8a).
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Fig 8. Computational stress tests and analysis of feataportance.(a) Variable fractions of the functional
connectivity features (0%-100%) were randomly dexpfreroed) in the test dataset. The effect ofaandropping
was quantified using a mean area under the curidCjlanalysis across 100 bootstrap samples of th€ D&ta
before and after removdb) Performance across variable signal-to-noise réfitds1/100) was quantified using the
previously described DOC sampling and testing pface Dotted line represents chance-level perfooagdAUC
=0.50). Shaded areas represent + 1 SD.

The second computational stress test, namely amgsic reduction of the signal to noise ratio
(SNR), allowed us to simulate how each model redpdrto poor data quality (high levels of
noise) (Fig. 8b). This analysis showed that thenitidel retained the highest mean AUC across
decreasing SNR’s, whereas the SVM and ANN modeatrasl more rapidly to around chance-
level performance: 1/25 (ET:~0.76; ANN:~0.63; SVN:63), 1/50 (ET:~0.67; ANN:~0.58;

SVM:~0.59), 1/100 (ET:~0.58; ANN:~0.55; SVM:~0.55).

The results of the computational stress tests stighat the ET model is somewhat better-
equipped to manage sub-optimal data; perhaps asseguence of the model’s unique method
of constructing numerous heterogeneous trees whiobduce randomness into the model and

subsequent averaging of predictions through theotibeotstrap aggregation.

Feature Importance

In order to better understand the particular festwariving model performance, we performed an
exploratory analysis of feature importance on bibth SVM and ETmodels. Given that the

optimized SVM was linear, we were able to quant@&ative importance by examining the
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coefficients of the linear hyperplane (Fig. 9a); line with previous recommendations, the
coefficients of the hyperplane were squared (Guwtoal., 2002). Feature importance within the
ET model is a readily accessible attribute of the odeh <
sklearn.ensemble.ExtraTreesClassifier.feature_itapoes_> that represents how much a single

feature contributes to decreasing the Gini impuattgach split (Fig. 9b).

This analysis indicated that the network-level gse$ of functional connectivity, namely
between network FC and within network FC, were thest informative features for the
classification task across both models. Moreoves, ET model appeared to have used a wider

set of features compared to the SVM.

i
o
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Fig 9. Exploratory post-hoc analysis of feature importafaethe optimized support vector machine (SVM) and
Extra Trees (ET) models.(a) Since the optimized SVM was linear, feature impoctawas quantified by squaring
the weights of the coefficients used by the mogglWithin the ET model, feature importance correspainehow
much each feature decreased the Gini impurity. #&twoth models, larger values (red) are assocwatbdhigher
feature importance relative to features with loweues (blue).

Inter mediate States

Across all three models, a similar pattern emengéh respect to the non-intermediate states
(Fig. 10). Namely, the anesthesia recovery growgcRnd healthy controls in ti¥OC dataset

(HC) were reliably classified as awake; Rec (SVIL4)=20.18, p<0.001; ET: t(14)=12.86,
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p<0.001; ANN: t(14)=15.62, p<0.001), HC (SVM: t(29)97, p<0.001; ET: t(27)=5.77,
p<0.001; ANN: t(27)=9.99, p<0.001). In additionetWS/VS were generally classified as
unresponsive; UWS/VS (SVM: t(12)=12.29, p<0.001;: BE12)=5.06, p<0.01; ANN: not
significant), whereas the MCS classifications wiageterminate (SVM: not significant; ET: not

significant; ANN: not significant). See Table 2 #iconfusion matrix.
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Fig 10. Class assignment probability across models fojestdbnot included in the training data, from #eftright:
light anesthetic sedation (Light), recovery fronesthetic sedation (Rec), UWS/VS, MCS, healthy adst(HC)
from the DOC dataset. Models were trained on trestiesia datasets, such that 0 mapped to an unsegpctate
and 1 mapped to an awake state. The predictedfidaten probabilities for each group were comphte binary
decision threshold set at 0.5 to identify grougdsmbdy classified as awake or unresponsive. A sdaoy analysis
was performed to identify differences between theSvand UWS/VS groups, the MCS and Wake groupsifend
Light and Rec groups. * indicates uncorrected p0&@or one sample t-test vs binary decision thoekht indicates
uncorrected p < 0.05 for two sample t-test.

Table 2. Confusion matrix for machine learning msde

Prgﬂd?gielons Actual Behavioral States
SVM Light Rec Uws MCS HC
Awake 16 15 0 2 27
Unresponsive 16 0 13 6 1
ET Light Rec uws MCS HC
Awake 22 15 2 4 24
Unresponsive 10 0 11 4 4
ANN Light Rec Uuws MCS HC
Awake 19 15 2 3 26
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Unresponsive 13 0 11 5 2

The value in each cell represents the number géstsclassified as Awake or Unresponsive acrosgtbups not
included in model training.

Secondary analyses revealed significant differerimda/een the MCS group and the healthy
controls in theDOC dataset across all three models (SVM: 1(34)=5.%6,@01; ET: t(34)=5.62,
p<0.001; ANN: t(34)=2.76, p<0.05), though signifitalifferences between the MCS group and
the UWS/VS group were only identified by the ANN deb (t(19)=2.54, p<0.05). Further, we
identified significant group differences betweer Hubjects present in both the light anesthetic
sedation and recovery from sedation groups forEfheand ANN models only (ET: t(14)=2.70,
p<0.05; ANN: t(14)=2.98, p<0.05). Given that ourabsis of intermediate states had a much

smaller sample size, the p values reported inséision were uncorrected.

Upon examination of the predicted class probaeditive identified two MCS subjects classified
as awake by all three models (patient 9 and pafiht After reviewing the Coma Recovery
Scale-Revised (CRS-R) scores for each subject weodered that these two subjects were
among the highest scoring (CRS-R = 12); high scaresassociated with a greater level of
consciousness. Notably, patient 9 reportedly reeaV€CRS-R = 23) two months after the

scanning session.

Discussion

We demonstrated that the pipeline we developed-MRlffeature extraction, model selection,
hyperparameter optimization, and cross-validation ia pharmacologic state of
unconsciousness—is sufficient for constructing @usbd classifier that can be applied to
pathologic states of unconsciousness. Furtherfioding that MCS patients were classified as
significantly different from the healthy controlgggests that there exist detectable differences in
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rs-fMRI activity during this intermediate state,dathat, in principle, future models can be
trained on these same rs-fMRI features to makeegratistinctions between different levels of

consciousness.

The examination of group differences at the levelsingle features derived from rs-fMRI
activity revealed three primary conclusions. Fiist,line with previous studies showing the
functional importance of various networks — inchuglidefault-mode (Amico et al., 2014; Boly
et al., 2009; Boveroux et al., 2010; Demertzi et2014; Fernandez-Espejo et al., 2012; Greicius
et al., 2008; Huang et al., 2014; Kasahara e8l0; Monti et al., 2010; Norton et al., 2012;
Roquet et al., 2016), frontoparietal (Boveroux ket 2010), and salience (Guldenmund et al.,
2013; Qin et al., 2015) — on the level of conscimss, we observed significantly reduced
amplitude of low frequency fluctuations in thosdwarks for both anesthesia and DOC data.
We also identified consciousness-dependent breakdoiwfunctional connectivity involving
various cross-network functional connectivities.isTts consistent with a role for cross-modal
connectivity in consciousness via multisensorygragon and top—down processes (Demertzi et
al., 2015). Second, several features performed waella model-free univariate classifier,
discriminating between awake and unresponsive gronpst of the time with a high degree of
accuracy (e.g., connectivity between the cinguloogar task control network and dorsal
attention network, COTC-DA; within-dataset AUC: 8, 7cross-dataset AUC: 0.82), whereas
others performed near chance-level (i.e., most Re&$ed features). Third, we discovered many
features that performed inconsistently betweenatiesthesia and DOC datasets. This observed
pattern of inconsistency suggests that some featusgy not be generalizable across datasets or

linked to unconsciousness, per se, but rather ntighain indicator of some other detectable
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change in neural activity during anesthetic-induaadonsciousness (or pathologically-induced

uUNCONSCIoOUSNESS).

In the past few years, an increasing cohort ofistutlas applied machine learning methods to
examine the diagnostic value of imaging data iniepéd suffering from disorders of
consciousness. A range of neuroimaging technigaee been utilized in this research area,
including fMRI (Demertzi et al.,, 2015), fluorodeaxycose positron emission tomography
(FDG-PET) (Phillips et al., 2011), and EEG (Cheenl., 2017; Engemann et al., 2018; Sitt et
al., 2014; van den Brink et al., 2018). It is nobethly that, among the studies mentioned, resting
state network-based fMRI could achieve a high disoative accuracy (>80%) when
distinguishing MCS from UWS patients (Demertzi et 2015). In our study, instead of training
the classifier to make distinctions between MCS a/S patients, we tested whether
pharmacologic states of unconsciousness could Ipagdictive value that generalized to
pathologic states of unconsciousness (i.e., UW$ma). Accordingly, our classifiers were
successful in separating conscious from unconscsolrgects (>90%), a level of performance
analogous to a prior FDG-PET study that reported08% classification accuracy when
distinguishing locked-in patients from UWS patie(@hillips et al., 2011). Taken together, it
seems feasible that machine learning approachesbeaharnessed as tools to distinguish
conscious from unconscious states. However, trssifieation of intermediate states (e.g., light
sedation, MCS) remains challenging for several aeas First, intermediate states of
consciousness are ill defined if one conceivesooisciousness as an all-or-none phenomenon.
Second, the considerable inter-subject variabitiyserved during sedation and MCS may
necessitate larger sample sizes used for trainiaghme learning models. Here, we applied a

different strategy to test intermediate state diassion, namely training models to distinguish
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consciousness from unconsciousness, and makingcfioed on unseen intermediate state data.
Although our results of intermediate states clasaiibn were exploratory, they suggest that this

pipeline could have clinical relevance if developadher.

The three candidate machine learning models weiated in the study—support vector machine
(SVM), Extra Trees (ET), and an artificial neural network (ANN)—werkasen because of their
growing popularity within the neuroimaging commuyniénd markedly distinct approach to
classification. After training, each of the modeésted achieved a notably high level of
performance (AUC>0.95, both within- and cross-detlasThus, we find it reasonable to

conclude that any of these models would likely Iseligable classifier for similar tasks.

Of interest, we observed near-identical performamtéhe validation dataset (DOC) compared
to the training dataset (Anesthesia). The high quertdnce observed across both datasets
suggests that distinguishing conscious from undonscstates (using rs-fMRI features) was a
relatively simple, straightforward classificatio®ur analysis of feature-level differences
between these two states shows an often clearatgpabetween these two groups (Fig. 4), an
observation further supported by the high perforceaof the univariate classifiers—achieving
an AUC as high as 0.87 on the DOC data (i.e., FRLEF) and 0.81 on the Anesthesia data

(i.e., SS-VIS between network connectivity).

There are, however, important considerations theyt mfluence the process of model selection.
First, the deep-learning based ANN was by far tlestntomputationally demanding when it
came to model training (a consequence of the baplgation algorithm, which involves many
repeated train-test epochs; $@as documentation for a thorough review, https://kecdsand
most likely to overfit given a limited sample sida. contrast, whereas the SVM was simplest

and efficient to construct, our analysis of the wmledbefore and after hyperparameter
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optimization revealed that the SVM was also mosstie to hyperparameter choice. Though
SVM is often used because of its relative simpfidiis illustrates that care should be taken to
observe the ways in which SVM performance may chatrgmatically as a result of how it is

constructed prior to training.

For these reasons, we believe the ET model todm®md compromise between the two—offering
a good balance of computational efficiency, easeoaktruction, and general reliability. Finally,
there is an added advantage for decision-tree-bawelkls in particular, namely the ability to
perform a post-hoc analysis of feature importamd¢ech may help to inform feature selection in
future studies. Our recommendation of this paréicahodel is in line with other related research
evaluating the ET’s ability to classify DOC patigitty analyzing a wide range of distinct EEG-

derived features (Engemann et al., 2018).

As part of our machine learning pipeline, we exgtbrthe relatively novel approach to
hyperparameter tuning, namely automated optiminati@ Hyperopt-sklearn (Bergstra et al.,

2015; Komer et al., 2018). Given that such methads designed to reduce user bias in
hyperparameter selection, avoid the time-intensiaéure of manual hyperparameter search
methods, and also provide strong gains in perfoomarelative to default hyperparameter
settings, we believe it to be a very valuable tibait will appreciate a growing application as

others adopt these emerging techniques.

Contrary to our expectation, the feature pruninghenbasis of observed group differences in the
anesthesia dataset generally lowered performaneee, kve suspect that many of the features
excluded from the pruned sub-set of features coeethimeaningful information used by the

models. Given that careful feature selection remankey step in constructing a machine

learning model, our results suggest that elimimatbredundant or non-informative features is
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better-achieved through methods like recursiveufeaglimination, in which model performance

is iteratively tested with and without specific tigas.

Taken together, our analysis of single features, e post-hoc exploration of SVM and ET
feature importance, provides converging evidenca tietwork-level measures of rs-fMRI
activity (i.e., within network FC, between netwdfC) are especially relevant biomarkers for
studying unconsciousness; the network-level meadereled to have high univariate model-free
classification performance within- and cross-ddtased were also identified as among the most
highly important features within the Efiodel. Much of the recent research on neural cesl

of consciousness similarly emphasizes the impoetaridong-range connectivity (Mashour and
Hudetz, 2018) and network-level features (Amicalet 2017; Crone et al., 2014; Fernandez-
Espejo et al., 2012; Fischer et al., 2016; Kotcleyudt al., 2013; Qin et al., 2015; Rosazza et al.,
2016). Interestingly, though the network-level mgas were generally what most separated
conscious and unconscious states, we did not fgeatiy particular networks that were
universally different between the two. We proposeo tpossible explanations for this
observation: 1) the network features were deriveanf pre-defined network template (226
nodes), reduced the original spatial resolutiomftens of thousands of voxels to hundreds. This
relatively coarse estimation of brain activity maevitably introduce inaccurate network
assignment for different individuals due to intabfct variability. 2) unconsciousness (whether
induced pathologically or by anesthetics) may ¢msaatially diffuse, rather than focal, changes
to network activity. Both explanations highlightetimportance of using multivariate analyses;
multivariate approaches help to address inter-stibjariability (potentially, heterogeneity in

DOC population) while also capturing the informatioom large-scale brain activity.
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There are a few methodological limitations worthimg. First, during our analyses of within-
and cross-dataset performance, we observed ndarabgierformance both within- and cross-
dataset across all three models. Though this wagsositive result, it made subsequent
comparisons between the three models difficultyvasdid not observe a clear winner, or loser,
among the three. Given that single features warepme cases, also high performing univariate
classifiers, we suspect that the discriminatiork tperformed by the models was relatively
straightforward—that is, there was usually clegyasation between the two groups. This may
also explain why we observed near-identical cragsskt performance; in most machine
learning applications, model performance is geherdpected to decline when generalizing to

novel data (relative to performance during traifing

It is possible that, due to the simplicity of tHagsification, we achieved a sort of ceiling effect
that obscured meaningful differences in how thedghmodels would have performed on a more
challenging task. Though we attempted to furthelindate the models by application of
computational stress tests, it is important to ntte difficulty of assessing whether the
differences observed are due to actual variatiamadel robustness, or rather, a consequence of

how the different models make classifications.

Additionally, although our exploration of intermatk states indicated that the models treated the
MCS group differently than the UWS/VS group and thealthy controls, only limited
conclusions can be drawn. For one, since the madets not trained to execute a true multi-
label classification, we cannot say that such aehaauld incontrovertibly achieve a similarly
high level of performance when discriminating besweéMCS and UWS/VS or between MCS
and healthy controls. Our analysis of the dataect#id during light anesthetic-sedation offered a

preliminary indication that this group may serveaafiture analog to MCS, however, as multi-
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label classification was not the primary goal oé ttudy, that hypothesis was not explicitly

tested and needs to be explored further.

In sum, our study both validates the use of anésthreluced unconsciousness as a surrogate
model of study for pathologically induced unrespoeesess and establishes a pipeline for the use
of rs-fMRI-based multivariate machine learning agmhes to classification. In doing so, we
hope to help pave the way towards a large samplécation study and the routine application

of machine-learning in the clinical context.
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