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a b s t r a c t 

Cortical oscillations and scale-free neural activity are thought to influence a variety of cognitive functions, but 

their differential relationships to neural stability and flexibility has never been investigated. Based on the exist- 

ing literature, we hypothesize that scale-free and oscillatory processes in the brain exhibit different trade-offs 

between stability and flexibility; specifically, cortical oscillations may reflect variable, task-responsive aspects of 

brain activity, while scale-free activity is proposed to reflect a more stable and task-unresponsive aspect. We test 

this hypothesis using data from two large-scale MEG studies (HCP: n = 89; CamCAN: n = 195), operationaliz- 

ing stability and flexibility by task-responsiveness and spontaneous intra-subject variability in resting state. We 

demonstrate that the power-law exponent of scale-free activity is a highly stable parameter, which responds little 

to external cognitive demands and shows minimal spontaneous fluctuations over time. In contrast, oscillatory 

power, particularly in the alpha range (8–13 Hz), responds strongly to tasks and exhibits comparatively large 

spontaneous fluctuations over time. In sum, our data support differential roles for oscillatory and scale-free activ- 

ity in the brain with respect to neural stability and flexibility. This result carries implications for criticality-based 

theories of scale-free activity, state-trait models of variability, and homeostatic views of the brain with regulated 

variables vs. effectors. 
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. Introduction 

Electrophysiological recordings of brain activity reveal two main

ypes of neural dynamics: rhythmic cortical oscillations, and arrhyth-

ic activity which follows a scale-free or power-law distribution

 Donoghue et al., 2020 ; He, 2014 ). Cortical oscillations concern band-

imited fluctuations in frequency ranges such as alpha (8–13 Hz), beta

13–30 Hz), or theta (4–8 Hz), which have been associated with various

ellular processes and cognitive/behavioural domains ( Buzsáki, 2006 ;

limesch, 2012 ; Pfurtscheller and Lopes da Silva, 1999 ), and are mod-

lated by a variety of different experimental tasks ( Klimesch, 2012 ;

nyazev, 2007 ; Makeig, 1993 ). Arrhythmic activity, in contrast, refers

o “scale-free ” or “fractal ” activity reflecting its characteristic 1/f 𝛽 distri-

ution of power over frequencies; power decreases linearly on a log-log
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cale with increasing frequency such that the power spectrum has the

ame structure in multiple frequency ranges, giving the distribution its

scale-free ” moniker. Scale-free brain activity has been less well studied

han cortical oscillations, though it is of growing importance in electro-

hysiological studies ( Donoghue et al., 2020 ; Eke et al., 2002 ; He, 2014 ;

inkenkaer-Hansen et al., 2001 ). 

Scale-free processes are distinct in their generating physiologi-

al mechanisms ( Lombardi et al., 2017 ; Pfurtscheller and Lopes da

ilva, 1999 ; Poil et al., 2012 ) and neurovascular coupling ( Wen and

iu, 2016a ); for example, scale-free processes are associated with

xcitation-inhibition balance ( Lombardi et al., 2017 ), and are more

trongly related to the global fMRI signal than cortical oscillations

 Wen and Liu, 2016a ). Importantly, they are also related to cognitive
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m  
nd clinical phenomena such as schizophrenia ( Northoff et al., 2020 ;

un et al., 2014 ), the self ( Huang et al., 2016 ; Kolvoort et al., 2020 ;

olff et al., 2018 ), consciousness ( Tagliazucchi et al., 2016 , 2013 ;

hang et al., 2018 ; Zilio et al., 2020 ), and age-related cognitive decline

 Dave et al., 2018 ; Voytek et al., 2015 ). However, cortical oscillations

re also frequently implicated in similar cognitive processes (e.g. alpha

nd the self ( Bai et al., 2016 ), or gamma band activity in schizophrenia

 Williams and Boksa, 2010 )), and few studies have compared scale-free

ctivity with cortical oscillations to determine their different properties

n rest and task states. Here, we present evidence that scale-free activity

nd cortical oscillations indeed take on different roles reflecting “sta-

le ” and “flexible ” aspects of neural activity, respectively, with cortical

scillations displaying greater changes in both intra-subject variability

nd task-responsiveness than scale-free activity. 

Behaviourally, flexibility refers to the ability to respond adaptively to

nvironmental circumstances (for example, putting aside one’s work and

ending to a baby when it starts crying). Stability refers to the opposite

nd of this continuum, reflecting the preservation of certain attributes

f behaviour despite competing stimuli (for example, focusing on one’s

riting despite the TV being on in the background). Behavioural flexi-

ility has obvious desirable characteristics, and is often discussed in the

ontext of set-shifting paradigms ( Dajani and Uddin, 2015 ), the ability to

odulate one’s cognitive state ( Garrett et al., 2013 , 2011 ), or the ability

o respond to unexpected stimuli that require attention ( Goschke, 2003 ).

owever, in many cases behavioural stability is also desirable, such as

hen one must inhibit distraction and focus on a goal ( Dreisbach et al.,

005 ; Goschke, 2003 ), or in order to maintain a generalizable internal

orking model of the environment in a Bayesian context ( Friston et al.,

018 ). 

It remains largely unknown how the brain mediates the balance be-

ween behavioural stability and flexibility. Previous work has inves-

igated the role of dopamine signalling in regulating the balance be-

ween stability and flexibility, where dopamine the stimulation of D1

nd D2 dopamine receptors in the prefrontal cortex is thought to pro-

ote behavioural stability and flexibility, respectively ( Cools, 2019 ;

urstewitz and Seamans, 2008 ); recent work in humans has confirmed a

ausal role of dopamine in behavioural flexibility ( Riedel et al., 2022 ).

nterestingly, a considerable and growing body of work has also im-

licated neural variability (i.e. the variability of different measures of

eural activity over time) in mediating corresponding behavioural vari-

bility ( Armbruster-Genç et al., 2016 ; Fujino et al., 2017 ; Garrett et al.,

013 , 2011 ; Nomi et al., 2017 ; Palva et al., 2013 ; Waschke et al., 2021 ,

017 ). Indeed, in a recent review, Waschke et al. (2021) propose that

eural variability is necessary for the brain to flexibly adopt different

ognitive strategies for different situations – that is, neural variability is

ecessary for behavioural flexibility. 

Given this relationship between neural variability and behavioural

exibility, it is reasonable to consider whether neural processes such as

ortical oscillations and scale-free activity differ in their level of variabil-

ty; this may predispose them to mediate flexible versus stable aspects of

ehaviour. In the present work, we take this approach to examine and

ompare scale-free and oscillatory activity with respect to their neural

stability ” and “flexibility ”. We defined the “flexibility ” of a neural pro-

ess operationally, in terms of both its spontaneous fluctuations (neural

ariability as discussed above) and its propensity to change in in re-

ponse to environmental demands. A “flexible ” brain process is one that

uctuates spontaneously, and changes considerably in response to a va-

iety of tasks. A “stable ” process refers simply refers to the opposite end

f this continuum, reflecting a process which changes little either spon-

aneously or in different cognitive conditions. 

To compare oscillatory and fractal dynamics on the basis of stabil-

ty and flexibility, we first quantified their responsiveness to external

erturbations by examining changes in oscillatory and fractal parame-

ers from resting-state to different cognitive task states, (referred to as

est-task change), and by measuring event-related changes in response

o brief sensory stimuli. We focused on the parameters of oscillatory
2 
ower, and the scaling exponent and broadband offset of scale-free ac-

ivity. We quantified the coefficient of variation (CV) of different oscilla-

ory and fractal parameters over time during resting-state; this provides

 common metric that allows us to compare the spontaneous within-

ubject variability of fractal and oscillatory parameters independent of

xplicit cognitive demands. Finally, to assess whether features which

xemplified neural stability were also consistent across subjects, or re-

ected individually-specific trait variables, we computed inter-subject

ariability as the between-subject CV of each parameter. 

We hypothesized that cortical oscillations should show larger re-

ponses to external perturbations, greater spontaneous intra-subject

ariability, and greater inter-subject variability than scale-free ac-

ivity. The multitude of findings examining changes in oscillatory

ower in tasks ( Güntekin and Ba ş ar, 2016 ; Klimesch et al., 2006 ;

akeig, 1993 ) suggests that oscillatory activity likely reflects a flexi-

le component of brain activity. In contrast, given its association with

he self ( Huang et al., 2016 ; Kolvoort et al., 2020 ; Wolff et al., 2018 ), the

ost stable and continuous aspect of our mental life ( Northoff, 2017 ),

nd following recent fMRI findings showing consistent scale-free tem-

oral hierarchies across and within subjects ( Golesorkhi et al., 2021 ; Ito

t al., 2020 ; Raut et al., 2020 ), we hypothesized that scale-free activity

ay reflect a stable component of neural activity. To investigate these

ypotheses, we used MEG data from the Human Connectome Project

 Larson-Prior et al., 2013 ) and the Cambridge Centre for Aging Neuro-

cience dataset ( Shafto et al., 2014 ; Taylor et al., 2017 ). 

In brief, we show that fractal parameters are generally more “sta-

le ” than oscillatory ones: that is, they show less responsiveness to

asks, less spontaneous intra-subject variability, and less inter-subject

ariability. In scale-free activity, this effect was generally driven by the

igh stability of the power-law exponent, while the power or ampli-

ude of fractal fluctuations struck a balance between stability and flex-

bility. In the case of cortical oscillations, alpha power displayed the

reatest flexibility, while other parameters were trait-like or displayed

ask-specific changes. Overall, our findings provide insights into how

he brain balances the seemingly contradictory requirements of neural

exibility and stability using fractal and oscillatory electrophysiological

ynamics. This difference can be interpreted in homeostatic terms, with

cale-free activity serving the role of a homeostatically regulated vari-

ble, while cortical oscillations reflect “effectors ” which serve to main-

ain regulated variables near their physiological set-point. 

. Methods 

.1. . HCP preprocessing and source reconstruction 

Resting-state and task MEG data were obtained from the Human Con-

ectome Project ( Larson-Prior et al., 2013 ). The HCP MEG dataset con-

ains data from 95 subjects in total, 89 of whom completed the three

yes-open resting state recordings (41 females, age M = 28.6, SD = 3.85).

f these, 77 completed the working memory task, 78 completed the

tory-math task, and 56 completed the motor task; these tasks each had

wo associated MEG recordings. Data were recorded on a MAGNES 3600

EG system (4D Neuroimaging, San Diego, CA) with 248 magnetome-

er channels. For resting-state data, we took preprocessed data from the

megpreproc stage of the HCP MEG preprocessing pipeline; briefly, this

ipeline involves removing channels with low correlations with their

eighbours and high variance ratio, and then removing artefactual com-

onents using an iterative ICA procedure. ICA components are classified

utomatically based on 6 parameters (including correlation with noise

hannels, flat spectra, and kurtosis; see Larson-Prior et al. 2013 for de-

ails) and non-brain components, reflecting eyeblink, muscle, or sensor

rtefacts, are removed. Bad segments were identified and removed based

n their z-scored amplitude, flatness (no signal), and muscle artefacts,

sing built-in routines in Fieldtrip. 

To analyze the task recordings (working memory, story-math, and

otor) as a whole block, rather than analyzing stimulus- or event-
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f  
elated changes, we then applied the HCP resting-state preprocess-

ng pipeline to the task recordings using the megconnectome software

 Larson-Prior et al., 2013 ). This ensured that differences between the

ecordings were not due to signal quality issues, and allowed us to an-

lyze each task recording as a single continuous block. The working

emory task consisted of ∼30 s 0-back (match to sample) and 2-back

locks, interleaved with 15 s resting blocks ( ∼1 min of task for each 15 s

f rest; 2 10 min runs, 16 blocks per run). In the story-math task, partic-

pants are presented with sequences of sentences consisting of fables or

ath problems, and are then asked a comprehension-testing question at

he end; resting blocks are negligible (22 story/math blocks per run, 2

 min runs). During the motor task, participants are asked to tap their

ngers or move their toes; movements occur in blocks of 12 s (32 motor

locks per 14 min run, 2 runs), with 9 15 s rest blocks per 7 min run. 

To compute fractal and oscillatory power spectra at a source level,

e computed source-level dipole moment time series using eLORETA

 Pascual-Marqui et al., 2011 ), as implemented in the Fieldtrip toolbox

 Oostenveld et al., 2011 ). We chose eLORETA because multiple studies

ave found that it performs favourably with respect to localization er-

or relative to alternative strategies such as minimum-norm estimation

r beamforming ( Halder et al., 2019 ; Pascual-Marqui et al., 2018 ). For

ach subject, we used single-shell head models and 2-dimensional corti-

al sheet source models with 8004 vertices created in the HCP anatomy

ipeline ( Larson-Prior et al., 2013 ). In brief, single-shell head models

ere estimated from participants’ individual MRIs using SPM8. Source

odels were created from cortical surfaces generated using Freesurfer’s

econ-all pipeline ( Dale et al., 1999 ); these surfaces were nonlinearly

arped to the normalized MNI template, and downsampled to a reso-

ution of 4002 vertices per hemisphere (see Larson-Prior et al. 2013 for

etails). We then applied eLORETA to the full source-level time series;

he spatial filter from this computation was applied to the data to com-

ute source-level dipole moment time series at each vertex. 

To reduce the dimensionality of our data, we next applied a cor-

ical parcellation to reduce the vertex-level time series to region-level

ime series. We used the HCP multi-modal parcellation described in

lasser et al. (2016) for this purpose. The Glasser et al. parcellation is

ased on the convergence of multiple structural (myelin, cortical thick-

ess), functional (responses to HCP tasks), and connectomic (resting-

tate functional connectivity) features, combined in a semi-automated

ipeline and interpreted by trained neuroanatomists ( Glasser et al.,

016 ). Region level time series for 360 regions were calculated by aver-

ging the time series of all constituent vertices of the region. This pro-

edure introduces rank deficiency into the data: however, as we were

ot concerned with connectivity, linear dependency between signals in

ifferent regions is not a major issue for our analysis. Nevertheless, we

ontrolled for this by grouping the parcellation regions based on the

rouping proposed in the supplement of Glasser et al. – this left 22 re-

ions in each hemisphere, rendering the data full rank. The results of

hese analyses are reported in the supplementary materials. 

.2. Computation of fractal and oscillatory power spectra and power 

pectral features 

Fractal and oscillatory power spectra were separated using the

ecently-developed Irregular Resampling for Auto-Spectral Analysis

ethod (IRASA; Wen and Liu 2016b ). IRASA decomposition was per-

ormed separately on each resting state and each task recording in

he HCP dataset (3 resting states, 2 task recordings per task; see HCP

reprocessing and source reconstruction , above). To ensure proper sepa-

ation given non-stationary data, we applied the IRASA method in a

0 s sliding window with no overlap, following previous publications

 Kolvoort et al., 2020 ; Muthukumaraswamy and Liley, 2018 ). The spec-

ra from each 10 s window were averaged across windows to create

he power spectrum for each condition. Again following previous work

 Kolvoort et al., 2020 ; Muthukumaraswamy and Liley, 2018 ), we used

 wider range of resampling factors to improve the separation of the os-
3 
illatory and fractal power spectra; these ranged from 1.1 to 2.9 in steps

f 0.05, excluding 2. Because of the effect of filtering artefacts on the

ata, we analyzed a frequency range from 2 to 85 Hz. 

We then decomposed these power spectra into a smaller number of

eatures. We parametrized fractal power spectra as being composed of

 slope (power-law exponent, or PLE) and a y-intercept. In contrast, os-

illatory power spectra were divided into five conventional frequency

ands ( Buzsáki, 2006 ): delta (2–4 Hz), theta (4–8 Hz), alpha (8–13 Hz),

eta (13–30 Hz), and gamma (30–85 Hz) (we also considered a ver-

ion of the analysis where the alpha band was defined individually for

ach subject; these results are reported in Supplementary Figs. S17 and

18). To calculate the fractal parameters, we first linearly interpolated

requency values to be evenly spaced on a log-scale, to ensure that fit-

ing a straight line would not be overly biased by a large number of

igh-frequency estimates ( Wen and Liu, 2016b ). The power-law expo-

ent was then calculated as the slope of a linear fit of log-transformed

ower versus log-transformed (interpolated) frequency; the fractal am-

litude was calculated as the y-intercept of this same linear fit ( Wen and

iu, 2016b ). Oscillatory power for each band was calculated as the area

nder the curve of the oscillatory power spectrum within each frequency

ange. 

.3. Statistical analysis of rest-task change indices 

To assess changes in each oscillatory and fractal parameter from rest-

ng state to each of the three tasks, we compared resting-state and task

alues of each parameter (power in 5 oscillatory bands, slope and in-

ercept of fractal activity) with Wilcoxon signed rank tests at each of

he 360 regions of the Glasser et al. parcellation. Multiple comparisons

cross regions of the Glasser template were corrected for using false dis-

overy rate (FDR) correction ( Benjamini and Yekutieli, 2001 ). To assess

he degree to which each fractal and oscillatory parameter was engaged

n the task on a common basis, we then computed the percent change of

ach parameter from resting-state to task. We then took the median of

hese values across subjects, and summed the absolute values of these

ercent change values over all regions whose changes were significant

fter the FDR correction across regions described above; we will refer

o this value as AbsPrcChange. This AbsPrcChange value was taken to

eflect the degree to which a fractal or oscillatory parameter was modu-

ated by the task, taking into account both the magnitude of the change

s well as its spatial extent. To compare these values between parame-

ers, we used a bootstrapping procedure. We first computed confidence

ntervals for each AbsPrcChange value using 10,000 bootstrap samples

resampling subjects), using the bias-corrected and accelerated boot-

trap. We then created 10,000 bootstrap samples for the difference in the

bsPrcChange values between each pair of parameters, and computed

 p-value for this difference using the bootstrap distribution, applying

ias-correction and acceleration using the iboot package ( Penn, 2020 ).

he matrix of comparisons between parameters was then corrected for

ultiple comparisons using Bonferroni-Holm correction ( Holm, 1979 ). 

As discussed in the results section, we also considered a more strict

riterion for rest-task change by considering the impact of differences

etween measures in spontaneous intra-subject variability. In a supple-

entary analysis, we took the deliberately unrealistic assumption that

ll intra-subject fluctuations are “noise ” (or at least not variability of

nterest), and normalized the rest-task changes by the intra-subject SD

ather than the resting-state mean value. We refer to these values as

Pseudo effect size ” values, as they are similar to classical measures of

ffect size, which divide the mean effect by the inter-subject SD. The

nalysis then followed the same steps as above, using bootstrapping

o create confidence intervals and compare the statistics between mea-

ures. We repeated this analysis a third time, this time using Cohen’s

 instead of the pseudo effect size measure. All of these results are re-

orted in the supplementary materials. 

We investigated in further detail the differences between the two

ractal parameters. We defined “unique activations ” for each parameter
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A  
s regions which showed a significant rest-task change for one parame-

er, but not the other. Further, we compared the rest-task percent change

f fractal amplitude and PLE at each region using a Wilcoxon signed

ank test, correcting for multiple comparisons with FDR correction. Fi-

ally, as a complement to the bootstrap analyses described above, we

ompared the median region’s absolute percent change from rest to task

etween the fractal intercept and PLE using a Wilcoxon signed-rank test.

.4. Time-resolved event-related fractal and oscillatory spectral changes 

Using the CamCAN dataset ( Shafto et al., 2014 ; Taylor et al., 2017 ),

e next investigated stimulus-evoked changes in oscillatory and fractal

arameters in a time resolved way. Preliminary results of this have been

eported in a previous publication ( Wainio-Theberge et al., 2020 ), and

he methods are described in full there. A randomly selected subset of

95 subjects (105 females, age M = 56.3, SD = 15.3). from the origi-

al CamCAN dataset was analyzed here, since the time-resolved IRASA

rocedure is extremely computationally intensive. The preprocessing of

he CamCAN data for rest-task analysis followed roughly the same pro-

edure as described in a previous publication ( Wainio-Theberge et al.,

020 ). CamCAN data were recorded on a 306-channel VectorView MEG

canner (Elekta Neuromag, Helsinki). In the initial CamCAN data re-

ease, temporal Signal Space Separation (MaxFilter 2.2, Elekta Neuro-

ag, Helsinki) was applied to clean the data and correct for head mo-

ion in 200-ms time windows. Starting from this MaxFiltered dataset,

e first removed gradiometer channels, focusing only on magnetome-

ers. Data were then downsampled to 500 Hz, including anti-aliasing

ltering, and notch filtered at 50 Hz, 100 Hz, 150 Hz, and 200 Hz. Au-

oreject ( Jas et al., 2017 ) was then applied to remove high-amplitude

rtefacts prior to ICA decomposition. We then used an in-house adap-

ation of the HCP’s megconnectome software to perform 20 iterations

f ICA decomposition and reject components automatically; the same

riteria as described above for the HCP data were used to reject com-

onents. Following ICA decomposition, data were epoched from − 2 to

.5 s around stimulus onset, and a second round of Autoreject was run

o identify artefacts, repair them via interpolation, and reject bad trials.

Data were projected into source space using generally the same pro-

edure as for the HCP data. To create the head model and source model,

e used the outputs of FreeSurfer’s recon-all pipeline ( Dale et al., 1999 ).

he head model was estimated as a single shell model from the inten-

ity normalized T1 image from recon-all. To create the source model,

he Freesurfer cortical surface was downsampled to 8004 voxels and

onlinearly warped to HCP fs_LR space ( Van Essen et al., 2012 ), fol-

owing the methods of the Human Connectome Project as implemented

n the Fieldtrip routine ft_postfreesurferscript.sh . We then aligned these

ead models and source models with the MEG sensors using the fidu-

ial locations provided with the CamCAN data release. Data were then

rojected to the source level using the same eLORETA procedure de-

cribed for the HCP data. We then used the parcellated the data using a

educed version of the Glasser et al. (2016) multi-modal parcellation, in

rder to save computational time; this reduced version follows Glasser

t al.’s grouping of their 360 parcels into 44 regions, described in the

upplementary materials of Glasser et al. (2016) . 

We next computed the IRASA spectral decomposition in a 1.5 s slid-

ng window. Our baseline period took windows centered from − 1.25 s

re-stimulus to − 0.75 s post-stimulus in steps of 25 ms; our post-stimulus

eriod considered windows centered from 0 to 0.75 s poststimulus,

gain in steps of 25 ms. In order to exclude any effects of the previous

timulus on the baseline, we considered only trials where the preceeding

TI was longer than 4 s; this left on average 42 trials per subject. Compu-

ation of fractal and oscillatory parameters followed the same procedure

s described above. A 1.5 s window was used as this was the minimum

indow size in order to be able to include 3 cycles of our lowest fre-

uency (2 Hz), as recommended in the EEGLAB package ( Delorme and

akeig, 2004 ). 
4 
We conducted two statistical procedures to assess stimulus-evoked

hanges of the oscillatory and fractal power spectra. First, we

omputed a standard analysis of event-related spectral perturbation

 Makeig, 1993 ), by averaging the IRASA power spectra over all chan-

els, and assessing changes at each frequency for the oscillatory and

ractal power spectra, as well as the original “mixed ” power spectra

oscillatory plus fractal). We conducted a Wilcoxon signed-rank test at

ach brain region, frequency, and post-stimulus time point, comparing

ach frequency with the mean value in the baseline period ( − 1.25 to

 0.75 s pre-stimulus). We then corrected for multiple comparisons us-

ng a cluster based permutation test; a two-sided test was used with

 cluster alpha of 0.025 and a channel-level alpha of 0.05 ( Maris and

ostenveld, 2007 ). Next, we assessed changes in our original oscillatory

nd fractal features (oscillatory power in 5 bands, fractal intercept and

LE): we tested these changes at each channel and each post-stimulus

ime point with a Wilcoxon signed-rank test against the mean value of

he parameter in the baseline period. Multiple comparisons were again

orrected for with a cluster-based permutation test, this time over chan-

els and time rather than frequencies and time. Finally, to compare the

egree of post-stimulus change in each parameter, we again computed

bsPrcChange values for each band and fractal parameter, summing the

bsolute values of the percent change of each parameter over all regions

nd time points found significant with the cluster-based permutation

est described above. We then computed bootstrap confidence intervals

nd differences between these AbsPrcChange values as described above,

ith one modification. As significance in the time-locked analyses was

omputed with a cluster based permutation test, it would be too compu-

ationally intensive to recompute significance in each bootstrap sample:

herefore, we used the original significance mask in every bootstrap sam-

le. We found in the HCP data that this approach gives similar results to

he approach in which the significance mask is recomputed within each

ootstrap sample. 

.5. Estimation of intra- and inter-subject variability 

To calculate inter- and intra-subject variability of each parame-

er (fractal and oscillatory), we employed the coefficient of variation

CV). The coefficient of variation is a standardized measure of vari-

bility which is unitless and does not depend on the scale of the data

 Koopmans et al., 1964 ). It is traditionally defined as the standard devi-

tion of the data divided by the mean: 

𝑣 = 

𝜎

𝜇

For log-normal data, the following modified formula is a more accu-

ate estimator ( Koopmans et al., 1964 ): 

�̂� = 

√ 

𝑒 𝑠 
2 
𝑙𝑛 − 1 

Where s ln is the standard deviation of the natural logarithm of the

riginal data. Since the distributions of all of our measures (oscillatory

ower in all bands, fractal scaling exponent and intercept) exhibited

onsiderable skewness, we applied this formula to estimate the coeffi-

ient of variation. 

To calculate inter-subject variability in resting-state, we averaged

he fractal and oscillatory parameters across regions and across resting-

tates and computed the coefficient of variation of each parameter across

ubjects. To calculate intra-subject variability, we computed the IRASA

eatures as described above on each 10 s non-overlapping segment over

hich the IRASA was originally computed; segments from the three dif-

erent resting-states were concatenated. For each subject, we then com-

uted the coefficient of variation of each parameter across resting-state

egments, and averaged the result across subjects to produce the mean

ntra-subject CV for each parameter. 

To statistically compare intra- and inter-subject CV values between

arameters, we followed a similar bootstrapping procedure as for the

bsPrcChange values. We computed bootstrap confidence intervals with
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0,000 bootstrap samples for both the inter-subject CV and mean intra-

ubject CV values. We then computed p-values for the differences of

nter-subject CV and mean intra-subject CV between parameters by com-

uting 10,000 bootstrap samples of the difference values. These p-values

ere then corrected for multiple comparisons using Bonferonni-Holm

orrection, as above. 

All code for the above analyses (including preprocessing of

he CamCAN data) is available online at http://www.github.com/

orenWT/oscifrac2021 . 

. Results 

While multiple processes in the brain display scale-free dynamics,

ncluding cortical avalanches ( Palva et al., 2013 ), oscillatory amplitude

 Linkenkaer-Hansen et al., 2001 ), and network dynamics ( Racz et al.,

019 ), perhaps the most obvious example of scale-free activity is

he broadband distribution of the electrophysiological power spectrum

 He, 2014 ; He et al., 2010 ). The power spectrum of electrophysiological

ecordings generally follows a 1/f 𝛽 distribution, with power decreasing

ith linearly on a log-log scale with increasing frequency ( Eke et al.,

002 ). While these scale-free dynamics are perhaps the most compara-

le with oscillatory activity, comparing cortical oscillations and scale-

ree activity of this sort is methodologically challenging, as standard

ourier or wavelet methods of estimating the power spectrum do not

istinguish between scale-free and scale-dependent processes. Recently,

obust methods based on resampling ( Wen and Liu, 2016b ) and curve

tting ( Donoghue et al., 2020 ) have been developed to separate oscil-

ations and fractal/scale-free activity; these have been used to consider-

ble effect in establishing differential functional and physiological roles

or the two processes ( Ouyang et al., 2020 ; Wen and Liu, 2016a ). 

While curve-fitting methods have showed considerable promise in

ecent years ( Donoghue et al., 2020 ), we found that they were un-

uited for our purpose due mainly to the arbitrary parameter setting

nvolved in their use (see Limitations and future directions for more de-

ails); we therefore decomposed the mixed power spectrum into oscil-

atory and fractal components using the Irregular-Resampling for Auto-

pectral Analysis (IRASA) method ( Wen and Liu, 2016b ; see Fig. 1 a for

 schematic). The IRASA method was applied in a 10 s sliding window

ith no overlap, following previous publications ( Kolvoort et al., 2020 ;

uthukumaraswamy and Liley, 2018 ). 

We then divided the oscillatory component with 5 frequency bands

2–4 Hz delta, 4–8 Hz theta, 8–13 Hz alpha, 13–30 Hz beta, and 30–

5 Hz gamma) and computed the average power over all 10 s segments,

nd assessed the fractal component with the fractal power law expo-

ent, or PLE (slope of a straight-line fit of log power vs. log frequency)

nd fractal amplitude (this latter parameter can be assessed either as

he y-intercept of the aforementioned straight-line fit ( Donoghue et al.,

020 ), or simply as the average power of the fractal component in the

requency range of interest; we took the former approach in this pa-

er, while the latter is reported in the supplementary materials). In this

ay, we were able to investigate not only differences between fractal

nd oscillatory dynamics, but also differences between different fractal

arameters (like amplitude and power law exponent) within the fractal

uctuations themselves, something which has rarely been explored in

he literature. 

We directly compared the two fractal parameters with the different

scillatory measures in their degrees of flexibility and stability using

ur three metrics, that is, rest-task change, intra-subject variability, and

nter-subject variability (see Fig. 1 b for a schematic). For that purpose,

e first probed flexibility and stability in the three Human Connectome

roject MEG tasks, which consisted of a working memory N-back task, a

erbal comprehension task ( “story-math ” task), and a simple motor tap-

ing task (see Methods and Larson-Prior et al. 2013 for details). In this

ay, we directly compared oscillatory and fractal parameters as well

s comparing the two fractal parameters to each other. Next, we exam-

ned sub-second scale changes in each of these parameters in response to
5 
rief, multisensory stimuli in the CamCAN MEG dataset ( Shafto et al.,

014 ; Taylor et al., 2017 ). The CamCAN task required participants to

espond as fast as possible when they heard or saw a simultaneously

resented 300 ms tone or 34 ms visual checkerboard. Finally, we com-

lemented these analyses by examining inter- and intra-subject vari-

bility in resting-state using the HCP dataset, quantifying this with the

oefficient of variation, which was subsequently compared between os-

illatory and scale-free parameters. 

.1. Fractal PLE changes less during task states than oscillatory components

We first investigated whether fractal and oscillatory components dif-

er with respect to their activation in different cognitive tasks in the Hu-

an Connectome Project MEG dataset. Fractal and oscillatory parame-

ers differed in both the topography and magnitude of their task-evoked

hanges. The three different tasks (working memory, story-math, mo-

or) showed different topographic patterns of rest-task change between

scillatory and fractal components, with oscillatory components gener-

lly showing more global changes (see Fig. 2 ). Most importantly, the

agnitude of rest-task change differed between oscillatory and fractal

ynamics: rest-task change was usually highest for oscillatory alpha, in-

ermediate in fractal amplitude and the other oscillations, and lowest in

LE (see Fig. 2 ). Together, these results show that oscillatory and frac-

al components differ in their responsiveness to task, and that oscillatory

omponents show greater rest-task change than fractal components of

he power spectrum: this effect is particularly pronounced for the alpha

and and the PLE. 

We next focused specifically on the two fractal parameters, PLE and

ractal amplitude, with respect to the topography and magnitude of their

ask-evoked modulations. These results demonstrate that the PLE and

mplitude show differing topographies in their task-related activations

 Fig. 3 ). Most notably, in every task, despite the task-specific directions

f changes (i.e. increases vs. decreases in different tasks) and regions

nvolved, the fractal amplitude consistently showed larger magnitudes

f change than the PLE across a wide number of regions, including in

egions which coactivated the two measures. 

For both of the previous analyses, we conducted several control anal-

ses for robustness. We repeated these analyses in (a) the CamCAN

ataset, which employed a less cognitively-demanding task (Supplemen-

ary Fig. S11), (b) in the 44-region reduction of the MMP atlas (Supple-

entary Figs. S12 and S13), (c) using total fractal power instead of the

ractal intercept (Supplementary Figs. S7 and S8), and (d) using mea-

ures of effect size instead of percent change (Supplementary Figs. S1–

3); these results broadly support the findings observed here. 

.2. Fractal PLE exhibits smaller sub-second stimulus-related changes than 

scillatory dynamics, fractal amplitude 

We next examined whether the changes we observed on long-time

cales (block-level rest-task analysis) also held at the sub-second time

cales relevant for processing short sensory stimuli. This is important,

s the different frequency ranges involved in the different oscillatory and

ractal parameters may predispose different time scales over which they

ay act. To this end, we used the multisensory stimulation task from

he CamCAN dataset and examined fractal and oscillatory components

n a sliding-window analysis, analyzing changes in these components in

he 0 to 0.75 s post-stimulus period relative to a remote baseline from

.25 to 0.75 s pre-stimulus (see Methods for details). We considered

oth a standard time-frequency analysis of changes in power, as well

s our parametric analysis as above. With respect to power, the mixed

ower spectrum showed a stimulus related increase in slow-frequency

ower (2 Hz to 8.1 Hz at peak, frequencies vary by time and region;

 = 0.001) and decrease in fast frequency power (6.8 Hz to 44.9 Hz

t peak; p = 0.001), as commonly observed ( Makeig, 1993 ); the slow-

requency power increase was generally centred over the left somatomo-

or cortex, while the fast-frequency power decrease was centered over

http://www.github.com/SorenWT/oscifrac2021
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Fig. 1. Schematic of the study rationale and methodology. (A) Schematic of the power spectrum decomposition and calculation of parameters. Mixed power spectra 

were separated into oscillatory and fractal components using a resampling based procedure (see Methods). The oscillatory PSD was then parametrized in terms of the 

five conventional frequency bands (delta, theta, alpha, beta, gamma), while the fractal PSD was operationalized in terms of its slope (PLE) and fractal amplitude. (B) 

Schematic of the methods of the study. We systematically examined task-responsiveness (a facet of intra-subject variability), inter-subject variability, and intra-subject 

variability, and conducted a preliminary genetic analysis to examine sources of inter-subject variability, in fractal and oscillatory dynamics. 
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he bilateral posterior cingulate gyrus and visual cortex ( Fig. 4 a). Find-

ngs for oscillatory power were virtually identical, with a slow-frequency

ncrease in power over somatomotor regions ( p = 0.001; 2 Hz to 8.1 Hz

t peak) and a fast-frequency decrease in power over posterior cingu-

ate and visual regions (6.8 Hz to 44.7 Hz at peak; p = 0.001). Fractal

ower showed a similar pattern, but with differing frequency ranges

nd topographies. While the slow-frequency increase showed a simi-

ar topography as the oscillatory component, it extended over a larger

requency range (2 Hz to 16.6 Hz; p = 0.001); meanwhile, the fractal
6 
ower fast-frequency decrease was centered over the motor cortex, and

ikewise showed an extended frequency range (15.9 Hz to 85 Hz at peak;

 = 0.001). 

We next took the parametric view described above and computed

hanges with respect to the time courses of fractal parameters (ampli-

ude, PLE) and oscillatory parameters (delta, theta, alpha, beta, gamma

ower) ( Fig. 4 b). We observed that fractal amplitude and PLE both in-

reased post-stimulus ( p = 0.001, cluster-based permutation test); fractal

mplitude increased markedly by 75%, while PLE increased only by 9%.



S. Wainio-Theberge, A. Wolff, J. Gomez-Pilar et al. NeuroImage 256 (2022) 119245 

Fig. 2. Fractal and oscillatory changes from rest to task in the 

HCP (A) working memory, (B) story-math, and C) motor tasks. 

Absolute percent change values from rest to task were calcu- 

lated as described in the text: surface plots show the topograph- 

ical distribution of these values, averaged over fractal (left) and 

oscillatory (right) parameters, masked for significance within 

each parameter. Insets on the right show the median percent 

change of the most relevant oscillatory parameters (those for 

fractal parameters are shown in greater detail in Fig. 3 ). Accom- 

panying bar plots show the summed absolute percent change 

values over all regions for each parameter: error bars indi- 

cate bootstrap 95% confidence intervals. The difference ma- 

trix below presents the differences of these summed absolute 

percent change values between parameters: each cell reflects 

the parameter in the row minus the parameter in the column. 

Significance of each difference is indicated with an asterisk: 
∗ = p < 0.05, ∗ ∗ = p < 0.01. All p-values are Bonferroni-Holm 

corrected. 

7 
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Fig. 3. Rest-task changes and differences between the two fractal parameters, fractal amplitude and fractal power-law exponent (PLE), for (A) working memory, 

(B) story-math, and (C) motor tasks (HCP dataset). Top set of surface plots show the actual rest-task percent change values, masked for significance (FDR corrected 

at q < 0.05), for fractal amplitude (left) and fractal PLE (right). Below, differences in the above percent change values (amplitude minus PLE) are plotted in the 

middle: pink indicates larger (more positive) values for amplitude, while green indicates larger (more positive) values for PLE. Plots are masked for significance of 

the difference in percent change values, FDR corrected at q < 0.05. On either side, unique activations for the amplitude (left) and PLE (right) are plotted, defined 

as regions where one variable is shows significant rest-task modulation while the other does not. Below, the median absolute percent change across parcels of the 

intercept (pink, left) and PLE (green, right) is indicated: each diamond represents a subject, and lines connect the same subject. Red lines indicate that the value is 

higher for the intercept than for the PLE, while blue lines indicate that the value is higher for the PLE than the intercept. Asterisks indicate significance according to 

a Wilcoxon signed-rank test: ∗ = p < 0.05, ∗ ∗ = p < 0.01, ∗ ∗ ∗ = p < 0.001. 

8 
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Fig. 4. Time resolved changes of oscillatory and 

fractal components. (A) Time-frequency plots 

and source topographies of mixed, fractal, and 

oscillatory changes following stimulus onset. 

Colours indicate change from baseline ( − 1250 

to − 750 ms), expressed in decibels; y-axis is 

log-scaled in order to better visualize the low- 

frequency response. Topographies are plotted at 

the peak time-frequency point of the cluster (i.e. 

the maximum absolute change); time-frequency 

plots are likewise plotted at the region where 

this peak is found. Outlined areas in the time- 

frequency plots form part of a significant cluster 

identified using a cluster-based permutation test. 

All clusters were significant at p = 0.001. (B) Pa- 

rameter time courses for fractal (left) and oscilla- 

tory (right) components. Lines show time course 

of percent change of that parameter, averaged 

over subjects: shaded area indicates standard er- 

ror. Topographies show the topography of the ef- 

fect at four latencies throughout the poststimu- 

lus period (75, 275, 450, and 650 ms). Signifi- 

cance is indicated using graded overbars (red for 

positive clusters, blue for negative clusters); the 

colour of the bar reflects the percentage of re- 

gions which form part of a significant cluster at 

each time point (solid = all regions significant, 

white = no regions significant). (C) Summed ab- 

solute percent change statistics for each param- 

eter, obtained by summing the percent change 

values over all time points and sensors in a signif- 

icant cluster. Error bars indicate bootstrap 95% 

confidence intervals. Difference matrix (right) 

indicates the difference between the summed 

absolute percent change statistics, expressed as 

the parameter in the row minus the parameter 

in the column. Asterisks indicate significance of 

the difference: ∗ = p < 0.05, ∗ ∗ = p < 0.01, 
∗ ∗ ∗ = p < 0.001. 

9 
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he oscillatory parameters showed relatively larger changes than the

LE, with delta increasing post-stimulus by a maximum of 72%, theta

ncreasing by a maximum of 45%, and alpha and beta decreasing by

8% and 13%, respectively. Beta also showed both an late post-stimulus

ncrease of 6% ( p = 0.0490), while gamma showed an initial decrease

f 1% and a subsequent increase of 1% ( p = 0.001 for all changes ex-

ept where otherwise marked, cluster-based permutation test with 2000

ermutations). 

Finally, we computed measures of the magnitude of stimulus-evoked

hange for each parameter in the same way as previously ( Fig. 4 c). PLE

howed the second lowest absolute percent change value, lower than

ny measure but gamma, while delta power showed the largest change

 p < 0.01 in each case); the fractal amplitude showed an average de-

ree of change. Similar to the rest-task change results, this suggests that

elative to most cortical oscillations (with the exception of the gamma

and, which appears relatively stable), the fractal PLE is a stable param-

ter which responds minimally to tasks. As with the other analyses, we

epeated these analyses using Cohen’s d - these results are presented in

he supplementary materials (Supplementary Fig. S4). 

.3. Fractal PLE shows lower intra- and inter- subject variability than 

scillations and fractal amplitude 

We next compared fractal and oscillatory dynamics based on inter-

nd intra-subject variability in resting state. We found that, in general,

ractal parameters, particularly the PLE, displayed lower intra-subject

ariability than oscillatory ones, with the exception of the fractal am-

litude having higher intra-subject variability than beta or gamma band

ower ( Fig. 5 a). The power-law exponent displayed by far the low-

st intra-subject variability, significantly lower than all other measures

 p < 0.01 in each case, Bonferroni-Holm corrected). In contrast, the high-

st intra-subject variability was found in alpha band power, significantly

igher than all other bands ( p < 0.05 for theta, p < 0.01 for all other

ands). 

Broadly similar results were obtained for inter-subject variability

 Fig. 5 b). Alpha power again displayed the highest inter-subject vari-

bility (higher than all others except theta, p < 0.05 vs. delta, p < 0.01

s. all others), and PLE again displayed the lowest ( p < 0.01 vs. all oth-

rs). The fractal amplitude again displayed low-to-average inter-subject

ariability, higher than PLE and gamma power, but lower than delta,

heta, and alpha power ( p < 0.01 for each). 

We conducted similar control analyses for robustness as in the task-

elated findings; these results are found in the supplementary materi-

ls. We computed a “normalized ” inter-subject variability by dividing

nter-subject variability by intra-subject variability, treating the latter

s an estimate of noise rather than physiologically meaningful informa-

ion (Supplementary Fig. S5); we also performed the same analyses in

he CamCAN resting state recordings as well (Supplementary Fig. S11).

espite the overcompensatory normalization procedure, and the Cam-

AN resting state being eyes closed vs. the HCP’s eyes open, the findings

bove remained broadly the same. 

.4. . Relative values of intra- and inter-subject variability: PLE as 

ackground, alpha as foreground 

To summarize these results, we plotted inter-subject variability,

ntra-subject variability, and task-responsiveness of each measure (av-

raged across HCP tasks; Fig. 6 a). The results clearly show that PLE

hows the lowest inter- and intra-subject variability and the lowest task-

esponsiveness, while alpha power shows the highest values of all three

arameters. We projected these results into two dimensions by aggre-

ating our two intra-subject measures: the “aggregate intra-subject vari-

bility ” metric in Fig. 6 b represents an average of the z-scored values

f task-responsiveness and intra-subject variability from Fig. 6 a. Again,

e see that PLE displays the lowest inter- and intra-subject variability,

hile alpha displays the highest. Interestingly, we also noted that the
10 
atterns of variability exhibited by most of the measures did not accord

ith traditional state-trait models of variability ( Steyer et al., 2015 ),

here measures are conceived to vary primarily in one or the other

f intra- and inter-subject variability, but not both. Instead, measures

ended to cluster along the diagonal of the intra- inter-subject variabil-

ty matrix. In the discussion below, we term measures “background ” and

foreground ” measures: “background ” measures have low intra- and low

nter-subject variability, while “foreground ” measures have high intra-

nd high inter-subject variability. We also repeated this visualization

n our control analyses which treated spontaneous intra-subject fluctua-

ions as noise: these results are reported in the supplementary materials

Supplementary Fig. S6), and generally agree with the present findings.

.5. Genetic analysis of PLE and fractal amplitude 

To further investigate the distinction between the fractal PLE

nd amplitude, we compared their genetic heritability. Recruiting the

onozygotic vs. dizygous twin information from the HCP dataset ( n = 19

nd n = 13, respectively), we therefore calculated heritability indices

or PLE and fractal amplitude, which quantify the extent of additive ge-

etic contributions to each variable – these results are reported in the

upplementary materials (Supplementary Fig. S15). In brief, PLE dis-

layed moderate heritability (0.497; CI 0.160–1), while the fractal am-

litude displayed low heritability which was not significantly different

rom 0 (0.296; CI − 0.0298–1). This reinforces our finding of differences

etween the two fractal parameters (PLE and amplitude) with respect

o their flexibility – however, we urge caution in the interpretation of

hese results, as our sample size for these analyses was very small ( n = 19

onozygous twins and n = 13 dizygous twins). 

. Discussion 

Scale-free and oscillatory activity are two central phenomena which

an be observed in electrophysiological recordings, but their roles are

arely directly compared. Based on previous literature, we hypothesize

hat scale-free activity and cortical oscillations exhibit different trade-

ffs between stability and flexibility. We defined stability and flexibility

perationally, in terms of a parameter’s variability over time and over

articipants, and in terms of its responsiveness to external perturbations

uch as experimental stimuli. We tested our hypothesis by comparing

cale-free activity and oscillatory power on the basis of their variabil-

ty and task-responsiveness in two large-scale MEG datasets (the HCP

ataset and the CamCAN study). Our study suggests that parameters

f scale free activity and oscillatory power display different profiles of

ariability, which suggests distinct roles with respect to stability and

exibility in the brain. 

We show that oscillatory power in general, and the alpha band in par-

icular, is adaptive and flexible, exhibiting large task-related changes as

ell as high degrees of both intra- and inter-subject variability. In con-

rast, scale-free activity, especially the power-law exponent, is more sta-

le, showing small task-related changes and low degrees of both intra-

nd inter-subject variability. Together, these data suggest that scale-free

ctivity provides a more stable, facilitating neural background for the

ore flexible and adaptive oscillatory activity at the surface. Accord-

ngly, these two components of electrophysiological activity may thus

e related to stable or flexible aspects of behaviour. 

.1. Fractal scaling exponent is stable, alpha oscillations are flexible 

Our results indicate that changes in the power of cortical oscillations,

articularly in the alpha band, are well-suited to facilitate the brain’s

exible responses to environmental stimuli. In our results, alpha band

ower consistently showed greater task-related changes than the major-

ty of other oscillations or scale free parameters; it also showed greater

nter- and intra-subject variability. This is in line with a large body of

vidence relating alpha band modulations to performance in numerous
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Fig. 5. Resting-state inter- and intra-subject variability of fractal and 

oscillatory parameters in the HCP dataset. Panel (A) shows intra-subject 

variability, panel (B) shows inter-subject variability. In each panel, bar 

plots show the whole-brain average coefficient of variation for each pa- 

rameter (fractal parameters in red, oscillatory in blue). Above, the to- 

pographical distribution of the CV is plotted, averaged over parameters 

for fractal (left, red) and oscillatory (right, blue). Below the fractal pa- 

rameters, the CV topography is plotted for the fractal amplitude (top, 

pink) and fractal PLE (bottom, green) separately. Right, the difference 

in coefficients of variation is plotted: as in Fig. 2 , each cell reflects the 

CV of the parameter in the row minus the CV of the parameter in the 

column. Asterisks indicate significance of the difference: ∗ = p < 0.05, 
∗ ∗ = p < 0.01, ∗ ∗ ∗ = p < 0.001. All p-values are Bonferroni-Holm cor- 

rected. 
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asks ( Fodor et al., 2020 ; Knyazev, 2007 ; Maguire et al., 2010 ; Palva and

alva, 2007 ), as well as to broad factors involved in responsiveness

o stimuli such as attention ( Klimesch, 2012 , 1999 ). Further, individ-

al differences in alpha power are also well-investigated, having been

elated to variation in attention ( MacLean et al., 2012 ; Pitchford and
11 
rnell, 2019 ), internally-guided decision making ( Wolff et al., 2019 ),

nsight-oriented problem solving ( Kounios et al., 2008 ), as well as trait

ariables such as anxiety ( Knyazev et al., 2004 ). The present account of

lpha as a mediator of neural flexibility also accords well with previous

mpirical and modelling work considering alpha as an important vari-
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Fig. 6. Variability space for the fractal and oscillatory parameters assessed in the study. (A) 3D variability plot with inter-subject variability (CV, Fig. 5 ), intra-subject 

variability (CV, Fig. 5 ), and task-responsiveness (summed absolute percent change, Figs. 2 and 3 ) plotted as axes. Each parameter is plotted as a sphere, with fractal 

parameters in red and oscillatory in blue; size of the sphere is proportional to the distance to the origin, and thus reflects the total variability and task-responsiveness 

of the parameter. (B) 2D variability plot of intra- and inter-subject variability. Aggregated intra-subject variability reflects the average of the z-scored values of 

task-responsiveness and intra-subject CV in panel A. Each parameter is plotted as a point based on the values obtained in the text. Qualitative distinctions between 

different types of variables are overlaid. “Background ” and “foreground ” measures are a novel terminology introduced in the main text for measures which do not 

conform to standard “state ” and “trait ” variability; “background ” measures have low intra- and low inter-subject variability and may play facilitatory roles in neural 

activity, while “foreground ” measures have high intra- and inter-subject variability and may play a more active functional role. 

12 
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ble in processing sensory inputs ( Cohen, 2014 ; Foxe and Snyder, 2011 ;

im and Lee, 2019 ). Our findings extend this work by quantitatively

omparing alpha power’s stability and flexibility to other electrophys-

ological parameters, demonstrating the alpha band’s potential role in

ediating behavioural flexibility. 

Alpha’s dominant role in mediating flexible responses to tasks stands

n contrast with the task-specific findings in other bands. While beta

nd delta oscillations were engaged mainly in the motor task (as well

s delta in the CamCAN task), alpha was modulated consistently by all

asks (though to a lesser degree in the motor task). The task-unspecific

ature of alpha power modulations is likely a large part of why alpha

ower appears highly flexible. In Klimesch (2012) ’s model, alpha band

ctivity reflects selective access to the “knowledge system ”, a general

erm encompassing both long-term memory and other forms of proce-

ural and implicit knowledge; alpha band activity thus underlies many

ther cognitive processes, and reflects a general aspect of stimulus re-

ponse. In contrast, other frequencies such as theta and beta oscillations

ave typically seen more circumscribed roles, such as beta’s involvement

n motor coordination ( Jenkinson and Brown, 2011 ) or theta’s involve-

ent in memory tasks ( Herweg et al., 2020 ). Our findings thus provide

urther support to the notion that modulations of alpha band power are a

entral way in which the brain responds flexibly to a variety of external

timuli. 

In contrast to the flexibility of oscillatory power, our results demon-

trate that scale-free activity is uniquely stable among electrophysiolog-

cal parameters. The power-law exponent in particular, while exhibiting

ome limited task-related changes, generally shows the smallest magni-

udes of response to a variety of tasks and experimental conditions; it

lso demonstrates low intra- and inter-subject variability. This result is

n line with theories of scale-free activity which follow the framework

f self-organized criticality ( Beggs, 2008 ; Chialvo, 2010 ; Cocchi et al.,

017 ; Hesse and Gross, 2014 ). Criticality-based theories of scale-free ac-

ivity posit that the brain is poised on the brink of a supercritical phase

ransition, a point at which the system’s dynamics switch from damped

uctuations to sustained oscillatory behaviour ( Cocchi et al., 2017 ). The

otion that scale-free activity can only exist within a limited range (i.e.

lose to the critical point at which the phase transition occurs) is thus

onsistent with our finding of high stability in the power-law exponent,

nd suggests that maintenance of the brain near this critical point is

elevant for neural functioning. 

Given that scale-free activity is observed in numerous other systems,

s discussed above, it may be that the stability of scale-free activity is not

elevant for the brain; that is, while scale-free activity may be stable due

o the same influences that produce scale-free activity in other systems,

his may not mean that it has anything to do with promoting or effecting

table aspects of behaviour. However, our present results joins with con-

iderable previous work to suggest that scale-free activity may indeed

e relevant for behavioural stability. Scale-free activity has been shown

o be predictive of self-consciousness ( Huang et al., 2016 ; Wolff et al.,

018 ), as well in the processing of self-related stimuli ( Kolvoort et al.,

020 ); this suggests that scale-free activity is involved in a highly stable

spect of mental life. Moreover, scale-free activity is known to be al-

ered in schizophrenia ( Ferri et al., 2017 ; Northoff et al., 2020 ), where

opamine signalling, a previously-discussed influence on behavioural

exibility ( Riedel et al., 2022 ), is also abnormal ( McCutcheon et al.,

020 ). Combined, these findings suggest that scale-free activity may be

elevant for behavioural stability; however, future work is needed to

ake this relationship explicit and rule out the influence of external

actors. 

.2. . Fractal dynamics – power vs structure 

Our results also indicate a dissociation in function between different

spects of scale-free activity. Owing to the methodological difficulty of

ssessing broadband fractal power in distinction from oscillations, most

ork on scale-free activity in recent years has focused on the power-law
13 
xponent, or scaling exponent, of scale-free activity. The present paper is

ne of the first to additionally examine the fractal amplitude, a measure

f the amplitude of broadband scale-free fluctuations. We show that

he power of these broadband fluctuations exhibits considerably greater

exibility than the power-law exponent, a measure of their regularity.

his indicates that it is the structure of the power spectrum, i.e., the

cale-free relationship of power across different frequencies, rather than

ower itself that exhibits neural stability. 

In this work, we also show a high-resolution, time-resolved decom-

osition of oscillatory and fractal activity in response to stimuli; these

esults were previously reported in part in ( Wainio-Theberge et al.,

020 ). Using this analysis, we demonstrate that the power-law ex-

onent and fractal amplitude both increase following stimulus onset.

iven the power-law exponent’s relation to excitation-inhibition bal-

nce ( Lombardi et al., 2017 , 2012 ; Poil et al., 2012 ), we suggest that this

ay reflect slight alterations in global excitation or inhibition induced

y stimulus processing. However, in keeping with our main hypothesis,

his effect was small, with PLE being modulated only by about 9%; this

uggests, like our analyses in rest and task in the HCP dataset, that the

LE is buffered from external perturbations to a stronger degree than

ractal power (75%) and oscillatory power (ex. alpha, 18%). 

.3. . Stability and flexibility in the brain: state vs. trait or background vs. 

oreground? 

The present discussion of distinct neural components subserving

eural stability and flexibility raises the common distinction with re-

pect to psychological and behavioural outputs of states and traits

 Steyer et al., 2015 ): state measures are intra-subjectively variable,

ut inter-subjectively consistent with respect to the driving external

timulus, while trait measures are intra-subjectively stable and inter-

ubjectively variable ( Chaplin et al., 1988 ). Intuitively, it may seem

hat “stable ” measures reflect trait variables, while “flexible ” measures

eflect state variables. However, this does not appear to be entirely con-

istent with our data. 

If we consider inter-subject variability and intra-subject variability

o be the x and y axes of a grid, then state variables lie in the upper

eft quadrant, and trait variables lie in the bottom right (see Fig. 6 b).

his leaves open the other two quadrants of the grid, the ones along the

iagonal: we suggest that these quadrants may be termed “background ”

bottom left) and “foreground ” (top right). “Background ” measures are

hus those that display low within-subject variability and low between

ubject-variability, while “foreground ” measures are those that display

igh within-subject variability and high between-subject variability; this

s in contrast to state and trait variables, for which within-subject and

etween-subject variability are anticorrelated or mutually exclusive. In-

erestingly, in our data, most measures tended to fall along the diagonal

f this plot, with few exhibiting the conventional patterns of “state ” or

trait ” variability. This suggests that the partitioning of stability and

exibility in neural dynamics does not necessarily follow intuitive no-

ions of state and trait variability as defined in the psychological litera-

ure. 

How can we distinguish neural background vs foreground measures,

f they do not accord with state or trait models of variability? Back-

round measures tend to show comparatively little variability both be-

ween and within subjects, i.e., low intra- and inter-subject variabil-

ty. Functionally, background parameters change little in response to

xternal perturbations: they thus may play facilitating or predispos-

ng roles in cognitive and behavioural processes, but perhaps not di-

ect and causal (i.e., sufficient) ones. This is similar to recent concepts

f “neural predisposition ” defined for consciousness ( Northoff, 2013 ;

orthoff and Heiss, 2015 ; Northoff and Lamme, 2020 ), and is consistent

ith previous investigations of scale-free activity, which have demon-

trated that it can predict subsequent task-related activity ( Huang et al.,

017 ; Kasagi et al., 2017 ; Scalabrini et al., 2019 ). 
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Foreground parameters, in contrast, are both inter-subjectively vari-

ble and more adaptive, i.e., responsive to environmental conditions:

eing more flexible, they may be directly involved in perception and

ognition, providing their neural correlates as well as simultaneously

ediating their inter-individual differences. This account is consistent

ith the litany of functions and associations ascribed to the alpha band,

he canonical example of a foreground parameter in our data. 

It is also possible, however, that the background and foreground cat-

gorizations mentioned here reflect mainly the influence of unsystem-

tic noise. Indeed, when considering our control analyses where spon-

aneous intra-subject fluctuations were treated as noise, a number of

scillations fell into the “trait ” category, rather than background or fore-

round (Supplementary Fig. S6). However, both scale-free measures re-

ained as “background ” parameters, and alpha power remained as a

foreground ” parameter. As further advances in signal processing allow

or the removal of more unsystematic noise from neural recordings, fu-

ure analyses may show that more background and foreground param-

ters emerge as mainly state or trait; indeed, this would be consistent

ith studies such as Ouyang et al. (2020) which show meaningful be-

avioural consequences of individual differences in scale-free activity.

owever, for the moment, the possibility of a different models of vari-

bility from the psychological state-trait dichotomy cannot be ruled out.

.4. . Power-law exponent vs. alpha oscillations: regulated variable vs. 

ffector? 

It must be mentioned that the properties of “background ” and

foreground ” processes we describe here overlap considerably with

hysiological distinctions between regulated variables and effectors

 Modell et al., 2015 ). Regulated variables are those which are main-

ained within a narrow, optimal range by homeostatic mechanisms; in

ontrast, effectors are more readily modulated, changing to serve the

oal of maintaining the regulated variables within their optimal range.

onsider, for example, core body temperature (a regulated variable) and

kin temperature (an effector). Core body temperature must be main-

ained within an extremely narrow range in order for metabolic pro-

esses to proceed optimally; in contrast, skin temperature readily adapts

o environmental conditions such as the temperature outside, and dis-

lays high variability. 

In keeping with our study, recent work has argued on computational

nd empirical grounds for distinguishing regulated variables and effec-

ors on the basis of their patterns of variability ( Fossion et al., 2018a ,

018b ): effectors should display high variability and large responses to

xternal perturbations, while regulated variables should display rela-

ively low variability and little response to external inputs. Our results

hus support the view that fractal dynamics, in particular the power-law

xponent, function like regulated variables which are maintained near

 specific set-point; in contrast, cortical oscillations like alpha function

ore like effectors, given their large variability. Future work should in-

estigate the physiological underpinnings of this distinction: for exam-

le, if the power-law exponent reflects a regulated variable, one could

nvestigate what mechanisms or sensors exist for keeping it within its

ptimal range. 

.5. . Limitations and future directions 

In contrasting scale-free and oscillatory dynamics, we focused on one

articular signal which displays scale-free behaviour, namely the “raw ”

eld strength signal in MEG. This signal is known to reflect synchronous

ost-synaptic potentials, particularly from tangentially oriented sources

 Ahlfors et al., 2010 ; Luck, 2014 ). However, many other processes are

nown to display scale-free fluctuations, including cortical avalanches

 Palva et al., 2013 ), haemodynamic signals ( He, 2014 ), dynamic func-

ional connectivity ( Racz et al., 2019 ), and, most notably, even the

mplitude envelopes of cortical oscillations themselves ( Linkenkaer-

ansen et al., 2001 ). As such, it may not be possible to generalize from
14 
ur findings to the stability of other forms of scale-free activity in the

rain. Future work should investigate the relationships between differ-

nt forms of scale-free activity, to determine if there are common or

ifferent mechanisms underlying each type of scaling behaviour. 

One of the central challenges to the present work was to find a way to

ompare fundamentally different phenomena (cortical oscillations and

cale-free activity) on the same scale with respect to their variability and

ask-responsiveness (our operational measures of stability/flexibility).

his presents a number of challenges due to the differing characteris-

ics of oscillatory and scale-free activity. Firstly, from the perspective

f some researchers, cortical oscillations are a phenomenon which are

ichotomous; they are either present or absent within an electrophysio-

ogical signal at a given time, while scale-free activity is always present

 Kosciessa et al., 2020 ). This view presents a major challenge to compar-

ng these metrics in terms of stability and flexibility: for example, does

ne consider variability of oscillatory power only when oscillations are

resent, or does one consider also their dwell-time? How does one ac-

ount for task-evoked changes in power when an oscillation is present

n one state but absent in another? Moreover, when taking this view it

ay not make sense to examine certain oscillations at all if there is not

 corresponding peak in the power spectrum to indicate their significant

resence. 

In the present work, we take the view that cortical oscillations are al-

ays present, to greater or lesser degrees; the presence of an oscillatory

eak merely indicates that a particular frequency has sufficient power at

hat point to be visible above the noise floor. In the supplementary ma-

erials, we present evidence that the dichotomous present/absent view

f oscillations is inappropriate for our data (Supplementary Fig. S16).

f the dichotomous view is to be applied to our analyses, there must be

 clear boundary that can be established between the presence and ab-

ence of the oscillation; in other words, the distribution of power over

ime in a given frequency band should be bimodal. We observed no evi-

ence of such bimodality in our data (Supplementary Fig. S16a). If such

 boundary between oscillatory presence and absence is not easily de-

ned, it renders the present analysis impossible, as raising or lowering

he threshold for the presence of an oscillation will arbitrarily affect its

ariability (Supplementary Fig. S16b). Thus, while a complete discus-

ion of whether cortical oscillations are binary or continuous phenom-

na is beyond the scope of this paper, we believe the view of oscillations

s continuous phenomena is the most applicable for our present work. 

Our choice of methods was likewise motivated by the above con-

erns. We chose to use the IRASA method, a resampling-based approach,

o separate scale-free and oscillatory components of the power spec-

rum; however, newer methods have recently become available based

n curve fitting which show promising results ( Donoghue et al., 2020 ).

hile the advantages of the parametrization approach proposed by

onoghue et al. (2020) are well-argued, the FOOOF method proposed by

onoghue et al. (2020) requires the user to set the threshold for finding

n oscillation: as discussed above, this is problematic for our analyses,

s different parameter settings may predispose different variabilities for

scillatory processes. We further found that single-trial power spectra

in our time-locked analysis) were often too noisy to parametrize accu-

ately with the method. As such, we chose to use the IRASA method with

n extended range of resampling factors. While this approach is slightly

ess accurate than the FOOOF when a knee frequency is present, we

elieve this is necessary to ensure that our results do not depend on

rbitrary parameter choices. 

The second major consideration when comparing the variability of

ortical oscillations and scale-free activity is the presence of unsystem-

tic noise and its different expression within different frequency bands

nd metrics. For example, it is known that muscle artefacts have a

requency range of 20–300 Hz ( Muthukumaraswamy, 2013 ), and en-

ironmental noise in an MEG scannel can take on a 1/f distribution

 Mantini et al., 2011 ). The different influences of these noise compo-

ents may have an influence on our comparative analysis of stability

nd flexibility: metrics which are affected by highly variable noise in-
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uences may appear more flexible, while metrics influenced by stable

oise sources may appear more stable. While we cannot entirely rule

ut this concern, several aspects of our design limit its influence consid-

rably. First, by operationalizing stability/flexibility in part by respon-

iveness to specific experimental stimuli (such as the HCP tasks and the

amCAN stimuli), we reduce the influence of noise components which

o not vary systematically with experimental conditions. Secondly, we

onducted a number of control analyses in the supplementary materi-

ls which attempt to take into account variations in unsystematic noise.

n particular, we controlled for unsystematic noise by dividing the rest-

ask changes and inter-subject variability results by the level of sponta-

eous variation in resting-state (Supplementary Figs. S1–S6). Influences

f noise on parameters’ flexibility should be mostly captured by this

ithin-subject variability; indeed, this is a conservative normalization,

s spontaneous neural fluctuations in resting state are known to be be-

aviourally relevant for mind-wandering ( Christoff et al., 2009 ), and

hus likely vary between stable and flexible parameters as well. Despite

his strict normalization procedure, the results of the main text generally

eld: the power-law exponent of scale-free activity remained one of the

ost stable parameters, while alpha power remained the most flexible.

his suggests that while differences in the influence of noise components

ay be a source of error in our analysis, the main conclusions presented

ere are robust. Future work should consider other ways of controlling

or unsystematic noise so as to be able to better compare the dynamics

f scale-free and oscillatory processes. 

Finally, due to the extreme computational intensiveness of the IRASA

ethod, we were only able to assess time-resolved scale-free fluctua-

ions in a subset of the original CamCAN data. Future work with greater

omputational resources should make an effort to investigate time-

esolved fractal dynamics in larger samples and with multiple tasks, to

egin to map out the task specificity (or un-specificity) of fractal re-

ponses to stimuli. 

. Conclusion 

The brain must manage seemingly contradictory requirements in

dapting to its environment: it must be flexible enough to adapt to in-

oming information, but at the same time maintain stability in response

o noise. In the present work, we used MEG to investigate the stabil-

ty and flexibility of different neural processes, namely fractal dynamics

nd cortical oscillations. Using novel analyses separating fractal and os-

illatory components in resting state and various cognitive tasks and

vent-related designs, we demonstrate that fractal dynamics, in partic-

lar the power-law exponent, are stable in comparison with cortical os-

illations; in particular, the PLE of scale-free activity showed the low-

st variability and least responsiveness to external perturbations, while

lpha-band oscillatory activity showed the greatest variability and task-

esponsiveness. Further, we demonstrate differences between the fractal

LE and broadband fractal power, with the latter being more flexible

nd task-responsive than the former. These results accord with theo-

ies of self-organized criticality in the brain, and suggest that the fractal

LE is a “background ” parameter which may play a more facilitatory,

redisposing, or enabling role in neural activity, rather than an active

nd causal one. Finally, the results raise intriguing questions regarding

he importance of scale-free activity to the brain by suggesting that the

ower-law exponent may function as a regulated variable maintained in

 stable manner near a physiological set point. 

ata and code availability 
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or Aging Neuroscience project can be accessed at https://camcan-

rchive.mrc-cbu.cam.ac.uk/dataaccess/ . Code for this project is freely

vailable at https://github.com/SorenWT/oscifrac2021 . 
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