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a b s t r a c t 

The self is characterized by an intrinsic temporal component consisting in continuity across time. On the neural 

level, this temporal continuity manifests in the brain’s intrinsic neural timescales (INT) that can be measured 

by the autocorrelation window (ACW). Recent EEG studies reveal a relationship between resting state ACW and 

self-consciousness. However, it remains unclear whether ACW exhibits different degrees of task-related changes 

during self-specific compared to non-self-specific activities. To this end, participants in our study initially recorded 

an eight-minute autobiographical narrative. Following a resting-state session, participants were presented with 

their own narrative and the narrative of a stranger while undergoing concurrent EEG recording. Behaviorally, 

subjects evaluated both of the narratives and indicated their perceptions of positivity or negativity on a moment- 

to-moment basis by positioning a cursor relative to the center of the computer screen. Our results indicate: (a) 

greater spatial extension and velocity in the behavioral cursor movement during the self narrative assessment 

compared to the non-self narrative assessment; and (b) longer neural ACWs in response to the self- compared to 

the non-self narrative and rest. These findings demonstrate the importance of longer temporal windows in neural 

activity measured by ACW for self-specificity. More broadly, the results highlight the relevance of temporal 

continuity for the self on the neural level. Such temporal continuity may, correspondingly, also manifest on the 

psychological level as a “common currency ” between brain and self. 
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The self is a core feature of our mental life characterized by

n intrinsic temporal component operating across different timescales

 Wolff et al. 2019 ; Kolvoort et al. 2020 ; Huang et al. 2016 ; Ersner-

ershfield et al., 2009a , 2009b ). In the brain, these timescales have

een operationalized as intrinsic neural timescales (INTs) which refers

o the temporal autocorrelation properties of neuronal populations

 Stephens et al., 2013 ; Watanabe et al., 2019 ; Gao et al., 2020 ; Ito et al.,

020 ; Raut et al., 2020 ; Golesorkhi et al., 2021a , 2021b ; Demirtas et al.,

019 ). For instance, primary sensory neurons exhibit rapid firing rates

nd thus shorter temporal windows in response to external stimuli

 Runyan et al., 2017 ) whereas activity in transmodal regions can per-

ist for extended periods over longer temporal windows ( Zylberberg and

trowbridge, 2017 ). INTs have been implicated in shaping perception,

ehavior, and cognition including consciousness ( Zilio et al., 2021 ;
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olesorkhi et al., 2021a , 2021b ; Murray et al., 2014 ; Ito et al., 2020 ;

olff et al., 2022 ). 

Recently, three studies have demonstrated a relationship between

NTs in the resting state and facets of the self. Wolff et al. (2019) found

hat longer INTs in resting-state EEG signals correlate with higher

rivate self-consciousness. Similarly, a positive association was ob-

erved between longer INTs and private self-consciousness in fMRI

 Huang et al., 2016 ). Another EEG study by Kolvoort et al. (2020) ob-

erved a positive correlation between resting-state INTs and the degree

f self-prioritization effect (SPE) during a perceptual matching task with

emporal delays. While these studies clearly associate resting-state INTs

nd the self, it remains unclear whether and by what mechanism INTs

ifferentiate between self- and non-self-specificity during task-evoked

ctivity. Addressing this knowledge gap was the goal of our current

nvestigation. 
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Intrinsic neural timescales can be measured with an autocorrelation

unction (ACF) that correlates a signal with copies of itself that are tem-

orally shifted with a series of lags ( Murray et al., 2014 ; Honey et al.,

012 ; SanCristobal et al., 2021 ). The ACF therefore indexes temporal

ontinuity in neural activity or the degree to which previous activity

redicts future dynamics over multiple timescales ( Golesorkhi et al.,

021a , 2021b ; Honey et al., 2012 ; Wolff et al., 2022 ). A common prac-

ice in EEG and MEG studies is to report the autocorrelation window

ACW) representing the length of time at the moment when the ACF

ecays to 50% of its maximum value (i.e., ACW-50; Raut et al., 2020 ;

atanabe et al., 2019 ; Ito et al., 2020 , Honey et al. 2012 ). Worth noting,

olesorkhi et al. (2021a) introduced a novel variant, ACW-0, based on

he temporal delay when the autocorrelation reaches zero. Moreover,

hey demonstrated that ACW-0 shows stronger prediction than ACW-

0 in differentiating between brain regions with shorter and longer

imescales (i.e., core- and periphery). An objective of this study was

herefore to determine the discriminatory ability of ACW-50 compared

o ACW-0 when applied to self and non-self-specificity given that, like

he core brain regions, self-specificity exhibits high temporal continuity

 Kolvoort et al., 2020 ; Wolff et al., 2019 ). 

The overarching goal of our investigation was to determine how INTs

hape task-related activity during the neural processing of self- and non-

elf-specific information. To this end, and following a previous paradigm

 Vallacher et al., 2002 ), we constructed 8 min narratives with self- and

on-self-specific contents, respectively. After a resting state EEG ses-

ion, subjects listened to each narrative while EEG was recorded. Lis-

ening to these narratives allowed the presentation of self- and non-self-

pecific stimuli in a dynamic (rather than static) and naturalistic way

hat includes distinct timescales in the input itself ( Huk et al., 2018 ;

olesorkhi et al., 2021a , 2021b ). Consequently, it was possible to di-

ectly compare the impact of longer and shorter INTs on the neural pro-

essing of dynamic self- and non-self-specific narratives. 

Our first specific aim was to investigate how subjective behav-

oral evaluations differ in response to the autobiographical and non-

utobiographical stimuli. We hypothesized greater behavioral variabil-

ty in response to the former based on recent studies connecting in-

erindividual variation to the self in psychological ( Kolvoort et al., 2020 )

nd neuronal variables ( Huang et al., 2016 ; Wolff et al., 2019 ). Specifi-

ally, we hypothesized greater spatial extension and faster velocity dur-

ng the self-specific narrative compared to the non-self-specific one. The

arger background here is that self-specificity induces a stronger be-

avioral change as related to the well-known self-prioritization effect

 Sui and Humphreys, 2015a ). 

Our second objective was to investigate ACW-50 and ACW-0 during

elf- and non-self-relevant tasks in EEG. Given that a positive correla-

ion was recently observed between the resting-state ACW length and

elf-specificity ( Kolvoort et al., 2020 ; Wolff et al., 2019 ), we hypoth-

sized that the ACW would be significantly longer during self-specific

ompared to non-self-specific activities. 

. Materials and methods 

.1. Subjects 

Twenty-seven (10 females; mean age = 30.3 years) healthy subjects

ere recruited from the local community in Ottawa, Canada. Medical

istory was collected using an in-house health assessment questionnaire.

ll participants were right-handed per the Edinburgh Handedness Tool

 Oldfield, 1971 ). Each participant’s session lasted approximately three

ours. The experimental protocol was approved by the ethics commis-

ion (REB #2016004) of the University of Ottawa Institute of Mental

ealth Research. All participants provided written informed consent

rior to engaging in any study-related activities. 

.2. Paradigm 

Our experiment used a behavioral paradigm modified from

allacher et al. (2002) . Participants in their study first recorded an au-
2 
obiographical narrative (average 2 min 52 s) and were then presented

ith that recording during the experiment’s task phase. Subjects contin-

ously evaluated their narrative’s contents as positive or negative using

 mouse cursor. On a moment-to-moment basis, they indicated degrees

f negativity or positivity by moving the cursor away from the center or

owards the center of the screen, respectively. From this movement, the

esearchers extracted variables such as the cursor distance from center

long the x-axis, acceleration, and time spent with the cursor station-

ry, which were then correlated with a small number of psychological

cales. 

Expanding on this original template, participants in our study

ecorded an unstructured, eight-minute autobiographical narrative. Par-

icipants were encouraged to be as comprehensive as possible in sharing

ersonal details about themselves and their lives that they deemed sig-

ificant. Next, subjects completed an eight-minute, eyes-open rest ses-

ion for EEG acquisition while staring at a fixation cross centered on

he computer screen. The subjects were then presented with their prere-

orded auditory narrative and the narrative of a stranger through head-

hones in a counterbalanced order (see Fig. 1 a). 

The stranger, or “non-self ” narrative was also eight minutes long

nd was recorded by a member of the research team. All subjects were

xposed to the same non-self recording. Briefly, the non-self narrative

erved as a control for the self-condition which, as previously indicated,

as expected to exhibit high interindividual variability. To elicit this

nterindividual variability, a control condition was included that would

xhibit low-variability across participants. 

In response to both narratives, subjects indicated positivity or nega-

ivity on a moment-to-moment basis by positioning the cursor relative to

he center of the screen (see Fig. 1 b). For ease of distinction, we assigned

ifferent colors corresponding to different cursor positions. The circular

ursor appeared green in proximity to the center for a positive appraisal,

ed towards the periphery for a negative appraisal, and yellow for inter-

ediate distances reflecting a neutral evaluation. These colors served

o remind participants of their cursor position reflecting an emotional

alence. Additionally, all participants verbally confirmed their under-

tanding of the cursor task instructions before beginning the experiment.

ursor distance from the center in pixels was sampled at 200 Hz to cre-

te a behavioral timeseries concurrent with the EEG recording. 

.3. Behavioral analysis 

The average cursor distance from the center was calculated for each

ubject during the self and non-self-conditions; two separate “distance ”

alues were therefore generated for each subject. Notably, in contrast

o Vallacher et al. (2002) , we calculated the cursor distance from cen-

er along the x- and y-axes rather than restricting our measurement to

he former. Furthermore, while Vallacher et al. (2002) did not provide

pecific details regarding how they measured cursor distance from the

creen’s center, we computed the Euclidean distance between these two

oints. All behavioral timeseries were truncated to 470 s to match the

EG recording length. One participant was excluded from the behavioral

nalysis due to a corrupt non-self data file ( n = 26). 

.4. Electrophysiological recording 

EEG data was obtained using a 64-channel Brain Vision Easycap (In-

ernational Ten-Twenty System) with Ag/AgCl electrodes referenced to

he right mastoid. Impedance for each electrode was under 5 k Ω and the

ampling rate was 1000 Hz with DC recording. Preprocessing was per-

ormed using an in-house MATLAB script relying upon functions from

he EEGLAB toolbox (version 2021.1; Delorme and Makeig, 2004 ). The

ata were first down sampled to 500 Hz, followed by high- and low-

ass filters at 0.5 and 50 Hz, respectively. Channels were spherically

nterpolated if they were flat for at least five seconds or if the am-

litude exceeded three interquartile ranges (median flat channels re-

oved = 0, median noisy channel removed = 1). All channels were then
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Fig. 1. A. Schema of paradigm – study condi- 

tions B. Schema of paradigm – cursor task. 

Fig. 1. Continued 
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e-referenced to the average prior to an independent component analysis

ICA) yielding 62 ICs. Finally, components were rejected by implement-

ng the Multiple Artifact Rejection Algorithm (MARA; Winkler et al.,

011 ). 

Four participants were excluded from the EEG analysis due to the

resence of noisy channels after preprocessing; another participant was

emoved for lacking an alpha peak in the power spectrum; finally, an

dditional subject was excluded due to technical issues associated with

ata acquisition ( n = 21). Although subjects were instructed to record

n eight-minute narrative, there were discrepancies in recording length.

he self and non-self timeseries were, accordingly, both truncated to

70 s which was the length of the shortest recording. 

.5. Autocorrelation window 

An autocorrelation function was calculated in Python (version

.9) with the Statsmodels library (version 0.13.0; Seabold and Perk-

old, 2010 ) using a fast Fourier transform algorithm. At each elec-

rode, this function was applied to the entire eight-minute EEG sig-

al; the ACW-50 and ACW-0 variants were computed as the first lags

here the ACF decays to 50% of its maximum value, and zero percent

 Golesorkhi et al., 2021a ), respectively. Lags were then converted to sec-

nds by dividing them by the sampling frequency of 500 Hz. Finally, the

verage ACW-50 and ACW-0 values across all electrodes were obtained

or each participant (Fig. 2) . 

.6. Statistical analysis 

Statistical procedures were performed using SPSS software (version

7.0) or with the Statsmodels package ( Seabold and Perktold, 2010 )
3 
n Python. Shapiro-Wilk tests were performed on the behavioral and

euronal data to ensure that normality assumptions were met. In the

ehavioral data, normally distributed variables were analyzed using

aired-samples t-tests (2-tailed). Wilcoxon signed-rank tests were used

s a non-parametric alternative when normality assumptions were vio-

ated. In the EEG data, we performed repeated-measures ANOVAs for

CW-50 and ACW-0 to compare the values obtained in rest and task

tates. Pairwise t-tests were calculated as a post-hoc analysis follow-

ng significant ANOVA results. The false discovery rate ( Benjamini and

ochberg, 1995 ) was applied to the p-values of all hypothesis tests to

ontrol for multiple comparisons. This was applied in two stages: first,

o the behavioral data and EEG ANOVAs; second, to the post-hoc t-tests

f the significant ANOVA. 

. Results 

.1. Behavioral data 

As illustrated in Fig. 3 , the results show significantly larger cursor

istances in the self ( M = 293.55, SD = 156.80) compared to the non-

elf condition ( M = 215.253, SD = 124.060), t (25) = 3.453, p = 0.003,

5% CI [31.593, 125.006]. This indicates that subjects moved the cur-

or farther from the center towards the maximum value of 990 pix-

ls during the self-specific assessment when compared to the non-self-

pecific measurement. Additionally, intrasubject standard deviations of

he cursor distance were significantly larger in response to the self

arrative ( M = 188.27, SD = 83.57) as compared to the non-self nar-

ative ( M = 140.59, SD = 49.73), t (25) = 4.200, p = < 0.001, 95% CI

24.299, 71.064]. This is indicative of greater variability in cursor move-

ents. Furthermore, a Wilcoxon signed-rank test revealed greater ve-
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Fig. 2. The autocorrelation function 

Note . Figure adapted from Golesorkhi et al. (2021a) with permission. 

Fig. 3. A. Cursor distance from center 

Note. The maximum cursor distance from 

center is 990 pixels. B Intrasubject standard 

deviation of cursor distance 

Note . A single standard deviation was com- 

puted for each subject as an index of variabil- 

ity in their cursor distance from center over 

the whole timeseries. This figure therefore 

displays the average intrasubject variability 

across participants. C Average cursor veloc- 

ity 

Note . The cursor velocity was determined by 

isolating areas of movement during the be- 

havioral timeseries and then extracting an av- 

erage for each subject. Velocity is measured 

in pixels moved per frame with 200 frames 

sampled per second (i.e., 200 Hz). 

Fig. 3. Continued 
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ocity of cursor movements in the self condition ( M = 2.13, SD = 1.36)

han in the non-self condition ( M = 1.73, SD = 0.58), Z = − 3.621,

 = < 0.001. Finally, a Wilcoxon test demonstrated no difference be-

ween self ( M = 88,587.02, SD = 5965.17) and non-self ( M = 90,176.90,

D = 2881.33) with respect to cursor stationary time, Z = − 1.568,

 = .140. 

.2. Autocorrelation window in EEG 

Do average ACW values in EEG differ between study conditions?

or that evaluation, we first calculated a repeated-measures ANOVA
4 
o probe for an effect of condition on ACW-50 values. Mauchly’s

est indicated non-sphericity, X 

2 (2) = 22.052, p = < 0.001, so a

reenhouse-Geisser correction was applied to the subsequent repeated-

easures ANOVA. No significant differences were observed between

est ( M = 0.022, SD = 0.007), self ( M = 0.022, SD = 0.006), and non-self

onditions ( M = 0.023, SD = 0.007), F (1.186, 23.715) = 0.179, p = .718.

While this did not yield any significance for ACW-50, there was an

ffect of condition observed on ACW-0, F (2,40) = 11.272, p = < 0.001.

Mauchly’s test did not indicate any violation of sphericity assumptions,

 

2 (2) = 4.868, p = .088.) Three paired-samples t-tests were then com-

uted for post-hoc comparisons. 
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Fig. 3. Continued 

Fig. 4. Average values for ACW-50 (left) and 

ACW-0 (right). 
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Our first focus in the post-hoc analysis was to determine whether

ask-related activity during both self and non-self conditions deviates

rom the resting state. Significantly longer ACW-0 values were observed

n self ( M = 0.330, SD = 0.113) compared to rest ( M = 0.250, SD = 0.103),

 (20) = − 4.054, p = .002, 95% CI [ − 0.121, − 0.039]. Similar results

ere obtained for the non-self condition which showed longer ACW-

 values ( M = 0.298, SD = 0.114) than at rest ( M = 0.250, SD = 0.103),

 (20) = − 2.728, p = .019, 95% CI [ − 0.086, − 0.011]. Together, these

esults demonstrate that the task induced significant changes in ACW-0

uring both self- and non-self-referential processing compared to rest,

ith both task conditions exhibiting a prolonged ACW-0. 

In a second step, we compared the self and non-self conditions. A sig-

ificant difference in average ACW-0 values between self ( M = 0.330,

D = 0.113) and non-self ( M = 0.298, SD = 0.114), t (20) = 2.497, p = .021,

5% CI [0.005, 0.058] was observed. This indicates that the self narra-

ive elicited significantly longer ACW-0 values than the non-self narra-

ive (see Figs. 4 , 5 a–c). This finding further supports the assumption that

elf-referential processing is mediated by longer time windows and thus

onger INTs than processing non-self-relevant contents. 

. Discussion 

The current investigation explored the role of INTs in shaping task-

elated activity while processing self- and non-self-related information.

e expand upon previous studies that found an association between

esting state INTs and the self by extending our analysis into task states.

he main finding was that longer neural timescales are implicated in

elf-specific information processing while shorter timescales are associ-

ted with processing non-self specificity. This points to the intrinsically
5 
emporal nature of self which, more precisely, is featured by long auto-

orrelation windows as an index of strong temporal continuity. 

.1. Behavioral analysis 

A key finding from the behavioral task was greater cursor exten-

ion in response to the self-narrative. This extension indicates a more

egative evaluation of self than non-self. However, the negative self-

valuations are surprising given the well-known self positivity bias

 Mezulis et al., 2004 ). One possible interpretation is that, rather than

eing driven entirely by perceptions of emotional valence, participants

xperienced an extended peri ‑personal space (PPS) while listening to

heir autobiographical contents, or alternatively, a diminished PPS in re-

ponse to the non-self narrative. Briefly, PPS refers to the physical space

mmediately surrounding the body that serves as an interface for interac-

ions between the self and its external environment ( Serino, 2019 ). This

nterpretation of our results is supported by Tennegi et al. (2013) who

bserved decreased PPS when participants were faced with another in-

ividual rather than an inanimate mannequin. Analogously, the cursor

ovements in our study were less extended (i.e., smaller PPS) when par-

icipants were exposed to the voice of a stranger. Our results are also in

ccordance with previous findings by Sui and Humphreys (2015a) who

bserved behavioral changes related to the self-prioritization effect in

 shape-label matching task. However, future studies are warranted to

isentangle the behavioral effect of self-specificity from the valence-

pecific effects obtained in our paradigm. 

.2. INTs and self-specificity 

Previous studies observed that resting state INTs are related to self-

onsciousness ( Wolff et al., 2019 ; Huang et al., 2016 ). Specifically,
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Fig. 5. A. Autocorrelation plots of experimental conditions 

Note. Each curve represents the autocorrelation function for one participant. B. ACW-0 topoplots by experimental condition. 

Note. Topography of longer (red) and shorter (blue) ACW-0 values in rest, self, and non-self conditions. Topoplots were generated using MNE-Python (version 0.22; 

Gramfort et al., 2013 ). 

Fig. 5. Continued 
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onger INTs in the resting state are associated higher degrees of self-

onsciousness. Moreover, a recent study observed that longer resting

tate ACWs allowed subjects to integrate temporal delays more effec-

ively during exposure to self-specific stimuli ( Kolvoort et al., 2020 ).

hese findings were all obtained in the resting state. It therefore remains
6 
nclear whether task-related activity during exposure to self-specific

timuli also exhibits longer INTs than those evinced during exposure

o non-self-specific information. 

The current study addressed this lingering issue. Specifically, we

emonstrated significant differences between the self and non-self con-
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itions measured by ACW-0. This highlights the importance of longer

imescales for processing self-specific inputs. 

The occurrence of longer time windows during self-specific activ-

ty is well in accordance with previous resting state findings. Despite

mploying different measures of self like the self-consciousness scale

 Wolff et al., 2019 ), self-matching task ( Kolvoort et al., 2020 ), and the

elf-narrative in our current investigation, all three studies demonstrate

he involvement of longer timescales in mediating self-specificity. More-

ver, this occurs across the division of rest and task states, strongly

uggesting an intrinsic relationship between self-specificity and longer

NTs. 

.3. ACW-50 versus ACW-0 

It is unclear why we observed a discrepancy between ACW-50 and

CW-0 in the neural data. Interestingly, Golesorkhi et al. (2021a) noted

 similar divergence with the latter better distinguishing between core

nd periphery brain regions in magnetoencephalography. They suggest

hat ACW-0 can probe activity over longer timescales than ACW-50, and

t is therefore more sensitive to the effects of slower frequencies. Another

nterpretation, however, is that ACW-0 has a higher signal-to-noise ratio

SNR). In this view, since ACW measures how long the brain remains in

 similar state, the principal difference between ACW-50 and ACW-0 is

hat they index different thresholds for what constitutes this similarity.

ecause ACW-50 represents the time needed for the signal correlation

o reach half of its maximum ACF value, it is plausible that noise fluc-

uations could precipitate a decay to this threshold. ACW-0, measured

t a later timepoint and therefore being more resistant to the effects

f noise, would naturally have greater discriminatory power. However,

his explanation is speculative and future research is needed to test its

alidity. 

Indirect support is found by considering neural topographical data.

he ACW-0 is strongly associated with core regions in the brain

 Golesorkhi et al., 2021a ) which also includes the cortical midline struc-

ures (CMS) as key regions of the self ( Northoff and Bermpohl, 2004 ;

in and Northoff, 2011 ; Qin et al., 2020 ). Therefore, future studies may

ant to combine a topographic-regional investigation with ACW-0 cal-

ulations using a self paradigm to further elucidate the specific neural

echanisms underpinning the relationship we observed between ACW-

 and self-specificity. 

.4. From the INTs of self to temporal integration and temporal continuity 

How can we interpret the longer INTs associated with self-

pecificity? Recent evidence strongly suggests that INTs are impli-

ated in input processing ( Golesorkhi et al., 2021b ; Zilio et al., 2021 ;

olff et al., 2022 ). Specifically, they allow for processing the tempo-

al stochastics of inputs whereby the input is temporally segmented and

arsed into distinct components. Longer INTs allow different inputs at

istinct points in time to be integrated and thus summed into one whole

 Golesorkhi et al., 2021b ; Wolff et al., 2022 ). In contrast, shorter INTs

avor the segregation of different inputs at distinct points in time. 

Given that our paradigm provided continuous inputs (i.e., the self

nd non-self narratives), we assume a strong role of the ACW in medi-

ting the input stochastics of the words, sentences, and other structures

f speech. Longer ACWs therefore imply that self-specific stimuli, like in

he self narrative, are more temporally integrated over longer stretches

f time than non-self-specific stimuli. Hence, a longer time-window in

eural activity may permit greater integration of temporally distinct in-

uts. This is well in accordance with the assumed integrative function of

elf on the cognitive level as suggested by Sui and Humphreys (2015b) .

How does temporal integration manifest in our sense of self? Tempo-

al integration may lead to higher temporal continuity across different

ontents as they show higher degrees of autocorrelation over time in

heir underlying neural activity. Such temporal continuity on the neural
7 
evel may then, in turn, manifest in a higher degree of temporal conti-

uity of the self on the psychological level. This is indeed the case as

ne key psychological feature of self is its persistence or sameness over

ime (i.e., temporal continuity; Ersner-Hershfield et al., 2009a , 2009b ;

orthoff, 2017 ). We consequently suggest that, following our earlier pa-

er ( Kolvoort et al., 2020 ), temporal continuity may constitute a shared

eature of the neural and psychological levels as their “common cur-

ency ” ( Northoff et al., 2020 ). 

.5. Limitations 

There are several limitations that need to be addressed. First, our

ample size was small ( n = 21), thus limiting statistical power and pre-

ision. Second, we only conducted a sensor-space analysis and are there-

ore unable to link specific brain regions with temporal windows dur-

ng self- and non-self-referential processing. It would be worthwhile to

xtend the current study into source-space with eLORETA or a modal-

ty with better spatial resolution such as fMRI. Third, we did not con-

ider the temporal features of the audio recordings themselves. Future

esearch should explore this in order to quantify the interaction between

NTs and the temporal characteristics of the stimulus as they pertain to

he self. Fourth, the ACW was our only index of INTs; incorporating

dditional measures would serve to validate our results. Fifth, since it

as been suggested that the resting state indexes the propensity to re-

ct to self-specific stimuli ( Davey et al. 2016 ; Northoff, 2016 ), rest-task

omparisons may be problematic when the task involves self-referential

rocessing. This issue could be circumvented with the addition of a task

ondition that is not relevant to the distinction between self and non-

elf. Sixth, our study applied the same non-self recording to all partici-

ants. An alternative approach would involve forming pairs of subjects

uch that the self narrative of one subject serves as the non-self condition

or the other member in the pair. This would eliminate the possibility

f our results being influenced by characteristics of the single non-self

arrative. 

Finally, our choice of frequency cut-off in high-pass filtering the EEG

ata should be kept in mind when considering our results. As explained

n Tanner et al. (2015) , all filtering distorts timeseries data in the tem-

oral domain, though a certain amount of this is acceptable in favor

f excluding non-cortical frequency components. We therefore selected

ur high-pass filter cut-off based on what we determined to be an ap-

ropriate balance between the benefits of excluding non-neural cortical

ctivity, specifically skin potentials, and the cost of distortion in the

ime-domain. We considered that our participants were completing sev-

ral 8-min blocks while remaining relatively still, and that this could

ause sweating and increase the probability of skin potential artifacts.

o account for this, we wanted to remove some of the lower frequency

ctivity but still retain some of the neural activity below 1 Hz; 0.5 Hz was

hought to be a suitable compromise between these two considerations.

owever, even if the high-pass filter did introduce a small distortion

nto the timeseries, its impact on the calculation of the autocorrelation

unction would be minimal as the cross-correlation is calculated against

tself. Though this issue is thought to be minimal, and similar parame-

ers have been used in previously published articles ( Wolff et al., 2019 ),

 small distortion of the timeseries data is possible and should be con-

idered when interpreting our findings. 

. Conclusion 

We show that processing self-specific information is characterized

ehaviorally by greater spatial and temporal extension while neuronally

eing mediated by longer timescales during task-related activity. In con-

rast, shorter behavioral extensions and neural timescales are recruited

n response to non-self-specific stimuli. Self- and non-self-specific in-

ormation thus recruit opposite ends of a temporal continuum of longer

nd shorter INTs. Measured by the autocorrelation function, INTs reflect
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emporal continuity on the neural level. Taken together with our behav-

oral data and presupposing the model of shared temporal dynamics as

 “common currency ” of neural and mental features ( Northoff et al.,

020 ), the association between longer ACWs and self-specificity sug-

ests an unexplored yet key role of temporal continuity on the psycho-

ogical level of the self (see Kolvoort et al. 2020 , for a first step). Future

tudies are thus warranted that measure temporal continuity in analo-

ous ways on both the neural and mental levels of self. 
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