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A B S T R A C T   

The human brain is a highly dynamic organ that operates across a variety of timescales, the intrinsic neural 
timescales (INT). In addition to the INT, the neural waves featured by its phase-related processes including their 
cycles with peak/trough and rise/fall play a key role in shaping the brain’s neural activity. However, the rela-
tionship between the brain’s ongoing wave dynamics and INT remains yet unclear. In this study, we utilized 
functional magnetic resonance imaging (fMRI) rest and task data from the Human Connectome Project (HCP) to 
investigate the relationship of infraslow wave dynamics [as measured in terms of speed by changes in its peak 
frequency (PF)] with INT. Our findings reveal that: (i) the speed of phase dynamics (PF) is associated with 
distinct parts of the ongoing phase cycles, namely higher PF in peak/trough and lower PF in rise/fall; (ii) there 
exists a negative correlation between phase dynamics (PF) and INT such that slower PF relates to longer INT; (iii) 
exposure to a movie alters both PF and INT across the different phase cycles, yet their negative correlation re-
mains intact. Collectively, our results demonstrate that INT relates to infraslow phase dynamics during both rest 
and task states.   

1. Introduction 

Think about being a surfer. You are surfing on a rough ocean. An 
adept surfer needs to adjust her/his surfboard to the peak, trough, rise, 
and fall of the ocean’s ongoing waves to maintain her/ his balance. This 
is because the shape and speed of the waves vary across its different part 
of ongoing phase cycles. Most importantly, the surfer has to adapt her/ 
his movements to the ongoing dynamics of the ocean’s wave, that is, 
especially its speed operating across different timescales (long, medium, 
short, etc.), in order to align and take advantage of the wave’s power to 
propel the surfboard. Hence, the surfer is confronted with the rather 
challenging task of adapting her/his movements to the waves’ ongoing 
phase dynamics while, at the same time, integrating the different 
timescales of the various waves. 

Just like the ocean, the brain’s neural activity is highly dynamic 
showing different waves which vary in their phases and timescales 
(Buzsaki and Draguhn, 2004; Golesorkhi et al., 2021b; Palva and Palva, 
2018; Zuo et al., 2010). This is, for instance, manifest in the variation of 
its amplitude and its dynamic functional connectivity (FC), including 
so-called travelling waves, which speak to the spatial 

blood-oxygen-level-dependent (BOLD) propagation (Garrett et al., 2013; 
Gu et al., 2021; Raut et al., 2021; Shine et al., 2016). There is strong 
evidence that the dynamic FC is based on its underlying phases with 
their distinct positions or angles during the ongoing cycles of the 
infraslow neural waves, including the peaks, troughs, rises, and falls 
(Gutierrez-Barragan et al., 2019, 2022; Huang et al., 2017; Scheinost 
et al., 2016; Zhang et al., 2020). At the same time, the brain’s neural 
waves operate on various timescales including shorter and longer ones, 
the so-called intrinsic neural timescales (INT) (Golesorkhi et al., 2021a, 
2021b; Hasson et al., 2015; Himberger et al., 2018; Ito et al., 2020; Raut 
et al., 2020; Wolff et al., 2022; Yeshurun et al., 2021). How do the dy-
namics of the infraslow neural waves with their ongoing phase cycles 
relate to the INT? Like the surfer, the brain is confronted with the 
challenge of integrating and connecting the wave dynamics of its 
ongoing phase cycles with its various timescales, the INT. Hence, 
addressing this yet open question is the goal of our study. This will 
provide insights into how two key components of the brain’s neural 
activity, namely phase dynamics and INT, are related to each other and 
integrate their distinct timescales, e.g., shorter (phase dynamics) and 
longer (INT). That, in turn, is key for our understanding of higher-order 
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cognitive features like consciousness (Northoff and Huang, 2017) and 
self (Wolman et al., 2023) where the integration of different timescales 
is a core feature. 

Previous research on neural waves and their phase cycles predomi-
nantly focused on the faster frequency range of 1–80 Hz including so- 
called Theta (4–8 Hz), Alpha (8–12 Hz), Beta (12–40 Hz), and Gamma 
(40–Hz) waves in Electroencephalography/Magnetoencephalography 
(EEG/MEG) studies (Adaikkan et al., 2019; Helfrich et al., 2018; Hua 
et al., 2022; Klimesch et al., 2007). The ongoing waves’ phase dynamics 
are here measured and operationalized by frequency sliding (Cohen, 
2014). As shown in Fig. 1, the frequency sliding method calculates the 
temporal derivative of the phase angle for a filtered signal, thus 
measuring the sliding of the instantaneous frequency during a given 
time series, the so-called peak frequency (PF) for each time point 
(Cohen, 2014). Hence, PF measuring the speed of phase-angle-based 
changes over time, can, more generally, be conceived as an index of 
the dynamics of neural waves. Subsequent research has demonstrated 
PF’s predictive ability for visual perception (Samaha and Postle, 2015), 
its reflection of temporal integration and segregation (Wutz et al., 2018), 
and its influence on task performance (Benwell et al., 2019) including 
thoughts (Hua et al., 2022). Moreover, abnormalities in PF have been 
observed in depression (Wolff et al., 2019). Together, these findings 
suggest a key role for phase dynamics of waves and specifically their 
speed in the brain’s information processing including its cognition. 

The infraslow neural waves, within the 0.01–0.1 Hz range in func-
tional Magnetic Resonance Imaging (fMRI), have increasingly been 
recognized for their importance in the complex neural stochastic pro-
cesses of integration and segregation (Golesorkhi et al., 2021b; Wolff 
et al., 2022). This recognition is evident in various studies (Ao et al., 
2022; Doucet et al., 2012; Gong and Zuo, 2023; Thompson and Frans-
son, 2015), encompassing research on consciousness (Huang et al., 
2014), cognitive processes (Palva and Palva, 2012), and mental disor-
ders (Scalabrini et al., 2020). Unlike in EEG/MEG, fMRI investigations 
into infraslow neural waves and their phase dynamics have only begun 
recently (Bolt et al., 2022). Current fMRI studies have underscored the 
significance of wave-like dynamics featured by its phase as a founda-
tional aspect of understanding the brain’s spatiotemporal structure 
(Pang et al., 2023, 2021; Raut et al., 2021). While other studies 
demonstrated the modulation of specific brain activation and coac-
tivation patterns during various phases, including peak, trough, rise, and 
fall in the infraslow frequency domain of fMRI (Gutierrez-Barragan 

et al., 2019; Huang et al., 2017; Scheinost et al., 2016; Wang et al., 
2019). Despite these advances, our comprehension of wave dynamics 
across different phases (peak, trough, rise, fall) in the domain of the 
brain’s infra-slow frequency fluctuations remains somewhat limited. 
Specifically, the wave dynamics of infraslow frequency fluctuations with 
potentially differential roles of peak/trough and rise/fall components 
during the ongoing phase cycles including their topographic distribution 
remain yet unclear. Hence, our first main aim is to address this gap in 
our knowledge of the dynamics of neural waves in the infraslow fre-
quency domain of fMRI. 

In addition to its phase dynamics, the brain’s neural activity can also 
be characterized by different timescales, the so-called intrinsic neural 
timescales (INT). Prior research has suggested a hierarchy of 
INT—ranging from short to long—as measured by the autocorrelation 
window (ACW) (Golesorkhi et al., 2021a, 2021b; Ito et al., 2020; Raut 
et al., 2020; Wolff et al., 2022). This measure estimates the decay rate of 
the autocorrelation function, a signal’s correlation with itself at different 
time lags, and is considered a key mechanism for matching input sto-
chasticity with ongoing temporal statistics (Hasson et al., 2015; Wolff 
et al., 2022). Given that the phase dynamics may operate at different 
timescales through its speed (PF), one may want to raise the following 
question: Are the brain’s INT and thus its ACW related to the ongoing 
wave dynamics, its speed, as measured by PF? Two recent EEG studies 
demonstrate a correlation of ACW with PF and inter-trial phase coher-
ence including their breakdown in pathological processes, e.g., schizo-
phrenia (Lechner and Northoff, 2023) and loss of consciousness in 
anesthesia (Buccellato et al., 2023). This underscores the relevance of 
the relationship of INT and ACW in the faster frequencies (1 to 80 Hz) of 
traditional cognitive information processing. Does the same hold for the 
infraslow frequency domain (0.01 to 0.1 Hz) and their topographies in 
fMRI? Probing the relationship of ACW and PF in the infraslow fre-
quency domain is the second main aim of our study. 

In this study, we first analyze the HCP 3T resting-state data to 
investigate the PF across different phases and to explore how the distinct 
components during the ongoing phase cycles modulate PF. Previous 
findings have noted varied brain activations in different phases of peak, 
trough, rise, and fall, indicating that infraslow wave dynamics vary with 
phase cycle changes (Huang et al., 2017; Wang et al., 2019). We sub-
sequently hypothesize that the magnitude of PF is phase-specific and is 
modulated by the phase cycle, e.g., peak, trough, rise and fall. Next, we 
aim to examine the relationship between PF and INT. Based on previous 

Fig. 1. Schematic representation of the frequency sliding method (Cohen, 2014). Step 1: Initiate with the raw BOLD signal. Step 2: Filter the raw data into four 
narrow bands: 0.01–0.03 Hz, 0.03–0.05 Hz, 0.05–0.07 Hz, and 0.07–0.09 Hz. Step 3: Determine the phase of the filtered data. Step 4: Calculate the temporal de-
rivative of the phase angle time series, representing PF. Step 5: Extract the PF time series for distinct phases and compute the average of PF within each phase cycle 
(the Figure exemplifies a "peak" scenario, as the shade shows). Step 6: Conduct statistical comparisons of PF across various phases, including peak, trough, rise, 
and fall. 
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findings (Buccellato et al., 2023; Lechner and Northoff, 2023) of their 
negative relationship in EEG, we expect the same direction in their 
correlation in the infraslow frequency domain of fMRI, that is, longer 
ACW corresponds to slower PF. Lastly, we investigate how PF including 
its modulation by the ongoing phase cycles and INT change during a 
movie-watching task. Even though no prior fMRI studies focused on the 
task-related changes of spontaneous phase dynamics as measured by PF, 
changes in the dynamics of phase synchrony patterns (Alderson et al., 
2020; Stark et al., 2020) and phase-specific performance in peak, trough, 
rise and fall (Wang et al., 2019) have been reported during task states. 
Thus, we hypothesize that the PF shows phase-specific changes during 
task states; we especially expect that the task-related changes in PF 
occur across the whole brain, e.g., from unimodal to transmodal cortical 
regions, as the movie stimuli involve both sensory and cognitive func-
tions (Kringelbach et al., 2023; Rajimehr et al., 2022). 

2. Results 

2.1. Infraslow phase dynamics (peak frequency/PF) varies in different 
phase components and frequency bands 

Our initial evaluation involved probing the similarity between the 
EEG-based frequency sliding methods of Cohen (2014) and Lechner and 
Northoff (2023) in the infraslow frequency range of fMRI. All of the R 
values obtained for the four frequency bands exceeded 0.9, thereby 
suggesting that our method can be corroborated by different method-
ologies (Supplementary Fig. 2). 

The specific analysis is illustrated in Fig. 1, step 5 and 6. To maximize 
the difference of PF across different phases, we calculated the average PF 
values across four narrow phase windows with 30◦ for each, resulting in 
topographies at the group level for peak (-15◦~15◦), trough (165◦~180◦

& -180◦~-165◦), rise (-105◦~-75◦), and fall (75◦~105◦) phases, in line 
with previous studies (Huang et al., 2017; Wang et al., 2019). To 
quantify the spatial similarity of PF topographies across the four bands, 
we correlated each region between each pair of bands, as depicted in 

Fig. 2. PF across four bands and phases. (A) Left: The brain maps of PF within different filtered bands and phases. Right: Correlation matrix of each pair of to-
pographies (B) The ANOVA outcomes for brain regions in Glasser’s atlas. (C) The comprehensive post-hoc analysis was conducted at the whole-brain level. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 2(A). A notable observation was the low similarity between the 
0.01–0.03 Hz band and higher bands during the phase cycles (r =
-0.48~0.16). However, strong within-band and between-phase corre-
lations were evident (r = 0.62~0.98). This indicates that the very slow 
frequency band possesses a unique spatial topography. 

We next conducted a 2-way within-subject ANOVA for frequency 
sliding across different phases and bands, as shown in Fig. 2. Fig. 2(B) 
illustrates FDR-corrected brain maps with significant F-values (P <
0.05). The results suggest higher PF during peak and trough phases 
while lower PF during rise and fall phases were observed across most 
brain regions (Fig. 2(C), F = 820.6, P < 0.0001). PF appears to increase 
with the increase of the frequency band when applying different band 
passes (F = 1.40e + 06, P < 0.0001). This is further supported statisti-
cally as we detected a robust interaction (F = 250.1, P < 0.0001) be-
tween phase/PF and bands, characterized by lower phase differences at 
higher frequencies, as reflected in the decreasing effect size. 

In sum, these findings suggest that PF is higher during peak and 
trough but lower during rise and fall. This effect is most prominent in the 
0.01–0.03 Hz band, which displays a unique spatial topography while 
this effect diminishes in faster frequency bands. These results were 
consistently replicated using 7 T resting-state data, as illustrated in 
Supplementary Fig. 3. In contrast, while the ANOVA result is significant 
in 0.01–0.03 Hz, low effect size/no significant differences between peak- 
trough and rise-fall phases were observed in the surrogate data, as 
shown in Supplementary Fig. 4. This further supports the validity of the 
peak-trough and rise-fall phase differences in terms of their peak fre-
quency as an intrinsic feature of the spontaneous activity’s temporal 
structure. 

2.2. PF is modulated by the distinct components of the ongoing phase 
cycles 

We have so far demonstrated that PF varies across four phases. To 
examine the effects of the distinct components of the ongoing phase 
cycles on PF, we segmented the phase into narrow bins using a window 
length of 30 degrees and a step length of 1 degree. This process resulted 

in 360 narrow phase bins (-180~-150, -179~-149, and so on), and we 
calculated the mean PF in each bin. We computed the normalized 
Kullback–Leibler (KL) divergence against a uniform distribution, a 
classical index to measure the modulation effect (Helfrich et al., 2018; 
Tort et al., 2010), to quantify how strongly the PF distribution was 
modulated by the different phase components. 

In agreement with the results above, the magnitude of PF is higher 
during the peak and trough phases and lower during the rise and fall 
phases (Fig. 3(A)). We further applied within-subject ANOVA for each 
region and the average of them. Interestingly, the ANOVA and post-hoc 
results show that KL divergence significantly decreases as the frequency 
of the band increases (F = 657.5, P < 0.0001, Fig. 3, left), suggesting that 
the very slow frequency, 0.01–0.03 Hz, exhibits the strongest modula-
tion effect. Topographical analysis reveals that this slow-fast frequency 
difference is significant in the whole brain (FDR corrected, Fig. 3(C)). 
This observation is replicated using 7 T resting-state data, as shown in 
Supplementary Fig. 5. In contrast, the surrogate data display a much 
lower modulation index while no similar pattern was observed (Sup-
plementary Fig. 4). This supports the assumption that the peak fre-
quency differences between the different phase components are an 
intrinsic feature of the temporal structure of the brain’s spontaneous 
activity. 

2.3. Relationship between phase dynamics (PF) and timescales (ACW) 

As delineated in Fig. 4(A), the ACW is longer in the Default Mode 
Network (DMN) but shorter in visual and sensorimotor regions. This 
pattern reflects segregation between unimodal and transmodal regions, 
an observation that aligns with previous studies (Golesorkhi et al., 
2021a, 2021b; Huntenburg et al., 2018; Margulies et al., 2016). 

To investigate the relationship of ACW with PF, we computed the 
spatial similarity between PF in the four bands (0.01–0.03 Hz, 
0.03–0.05 Hz, 0.05–0.07 Hz, and 0.07–0.09 Hz) and ACW for 0.01–0.1 
Hz. The correlation analysis between the mean of PF and ACW 
demonstrated a consistently significant negative trend across all bands 
(R = -0.22, -0.84, -0.79, -0.76, with all P-values <0.0001): The longer 

Fig. 3. Phase modulation effects on PF. (A) The schematic figure illustrates the method to calculate PF in each phase bin (B) Line charts: The blue line represents PF 
within the phase cycle, ranging from -π to π, with the shaded area denoting the standard deviation of individual variances. Bar chart: The ANOVA results for KL 
divergence across the four frequency bands. (C) Topographies of KL-divergence and ANOVA result. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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the INT/ACW, the lower the PF in the same region. These results were 
replicated using the 7 T data, as indicated in Supplementary Fig. 6. 

We further checked the correlation between frequency power and 
ACW (Supplementary Fig. 7). The correlations between frequency 
power and ACW are significantly lower than that between PF and ACW 
in four bands (Z = 2.11, 11.49, 8.80, 9.37, all of P values <0.05). This 
suggests that the ACW is, in part, related to specifically the nonlinear 
component of the signal as reflected in the phase angle of the PF as that 
is eliminated in frequency power. 

In phase-shuffled surrogate data, PF-ACW correlations maintain 
almost the same with actual data in 0.03–0.05 Hz, 0.05–0.07 Hz, 
0.07–0.09 Hz (see Supplementary Fig. 8, Z = -0.24, -0.25, -0.00, all of P 
values >0.05). This is not surprising given that the phase cycles with 
their distinct components themselves, although temporally randomized 
in their timing, are essentially preserved in the phase-shuffled surrogate 
data. This distinguishes the result from the frequency power where the 
phase components themselves like peak and trough are no longer pre-
served as the modulus of the Hilbert signal is taken. The fact that only 
the frequency power but not the phase-shuffled surrogate data impaired 
the correlation of PF with ACW suggests that the nonlinear phase 
components themselves like peak and trough, but not so much their 
exact timing, drive their relationship with ACW. 

Note that the correlation between ACW and PF shifts to a positive 
one in the 0.01–0.03 Hz band (Z = 5.18, P < 0.0001). Given that our 
shuffling method, i.e., shuffling the sequency of Fourier phase, specif-
ically eliminated the nonlinearity component of the phase dynamics 
while preserving the amplitude characteristics, this suggests that the 
negative relationship of PF and ACW is partly explained by nonlinearity 
rather than linear features of the signal in the very slow band of 
0.01–0.03 Hz but not so much in the more linear features of the faster 
bands. This is in line with our findings in Fig. 2 and previous findings on 
infraslow neural oscillations (Buzsáki and Draguhn, 2004; Zuo et al., 
2010), that 0.01–0.03 Hz corresponding to Slow-5 (0.01–0.027 Hz) 
contains unique feature with a higher frequency corresponding to 
Slow-4 (0.027–0.073 Hz). 

2.4. Effect of band-passing 

To mitigate the potential influence of filtering edge effects, we 
expanded our analysis to replicate the studies using different band- 
passing filters like 0.005–0.01 Hz as well as 0.01–0.03 Hz as being 
analyzed within a filtered band of 0.005–0.1 Hz. This supplemental 
analysis yielded results that concurred with the primary analysis (as 

delineated in Figs. 2–4 and Supplementary Fig. 9); this suggests that the 
outcomes of our study are not merely artifacts of edge effects. Note also 
the even steeper negative correlation of ACW and PF in this broader 
bandpass; this is in line with the observation that the length of the ACW 
is strongly shaped by the slower components of the frequency spectrum 
(Honey et al., 2012; Zilio et al., 2021). 

2.5. Task-modulation of infraslow phase dynamics (PF) 

The task leads to higher PF in the trough phase than in the peak when 
compared to the resting state (as shown in Fig. 5(A), left). The simple 
effect test indicated that this difference was significant only at 
0.01–0.03 Hz (T = -22.22, P < 0.0001, Fig. 5(A), right). Moreover, the 
task-state KL divergence in 0.01–0.03 Hz exceeded that observed during 
the resting state (T = -6.86, P < 0.0001, Fig. 5(C)). Topographical 
analysis the KL divergence increased mainly in visual, auditory, and 
sensorimotor cortices which, presumably, are related to the processing 
of the external sensory stimuli during the movie-watching task. 

These findings led us to hypothesize that this increased KL diver-
gence during the task state (compared to rest) is primarily driven by the 
difference between peak and trough during the task state. To investigate 
this, we compared PF between resting and task states in different phases 
at 0.01–0.03 Hz using a paired t-test. We noted a decrease in PF during 
the task state (compared to rest) across all phases. Topographical anal-
ysis shows that this PF decrease is largely present in visual, auditory, and 
sensorimotor cortices, which is consistent with the KL divergence re-
sults. Notably, the effect size of the difference between rest and task was 
greatest in the peak, while it was smallest in the trough. This observation 
suggests that the increased phase modulation in the task state is pri-
marily driven by the change in the relationship of peak and trough when 
compared to the resting state (Fig. 5(A), left). 

Several studies have indicated that resting-state and task-related 
brain activities may be associated with different frequency compo-
nents beyond the infraslow range (Chen and Glover, 2015; Palva and 
Palva, 2018). For instance, higher frequencies, such as Slow-3 
(0.073–0.198 Hz), have been shown to have specific effects in 
resting-state and cognitive functions (Ao et al., 2023; Wang et al., 2020; 
Zhang et al., 2022). In our study, we further examined the differences in 
PF during rest and task conditions across a broader frequency range of 
0.01–0.2 Hz. As demonstrated in Supplementary Fig. 10, we observed 
frequency-specific effects across various narrow bands. Notably, task 
modulation was predominantly observed in the 0.01–0.1 Hz range, 
particularly within the 0.01–0.03 Hz band. This suggests that the 

Fig. 4. Relationship between PF and ACW. (A) A graphical representation illustrating the process of calculating the correlation between ACW and PF. (B) The 
regression plot depicts the relationship between ACW and PF across four frequency bands, each dot represents each brain region. The accompanying bar chart 
highlights the differences in Pearson’s correlation coefficients across the four bands. 
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infraslow component is particularly significant in the context of a 
naturalistic continuous task like our movie-watching task. 

2.6. The relationship between phase dynamics (PF) and INT (ACW) 
during the task state 

We next investigated the relationship between phase dynamics (PF) 
and INT (ACW) during the task state. First, we correlated PF and INT 
during the task state. Consistent with the resting-state data, the corre-
lations are significantly negative across all four sub-bands (R = -0.54–- 
0.20, P < 0.0001, Fig. 6(A)). Both decreases and increases in ACW length 
during the task state were observed relative to the resting state. Spe-
cifically, in visual and auditory cortices, regions that play vital roles in 
processing movie stimuli, we observed an increase in ACW length during 
task-related activity compared to the resting state. Conversely, the ACW 
length in the sensorimotor cortex, the posterior cingulate cortex, and the 
prefrontal cortex decreased during the task state compared to the resting 

state (Fig. 6(B)). 
Lastly, we calculated the spatial correlation between the unthre-

sholded rest-task difference topographies of PF and ACW. As in the 
resting state, the correlation consistently shows a negative relationship 
between PF and ACW, providing yet further evidence that the task 
modulates the topographies of both PF and ACW in somewhat analogous 
ways (Fig. 6(C)). 

3. Discussion 

Utilizing the Human Connectome Project’s (HCP) 3T/7T dataset, we, 
operating in the infraslow frequency domain, investigated the sponta-
neous phase dynamics of neural waves, their association with INT, and 
the subsequent changes during a movie-watching task. 

Our first main finding consists of the observation that the speed of 
the infraslow neural waves, quantified by PF, exhibits higher values at 
peak/trough and lower values at rise/fall. This modulation of the phase 

Fig. 5. Task-state data analysis. (A) Comparison of PF on different phase cycles corresponding to Fig. 2. (B) KL divergence analysis corresponds to Fig. 3. (C) Left: 
Rest-task difference of KL divergence at 4 bands. Right: Rest-task topographical difference of KL divergence at 0.01–0.03 Hz. (D) Left: Rest-task difference of PF in 4 
phases at 0.01–0.03 Hz. Right: Rest-task topographical difference of PF at 4 phases. 
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cycle, ranging from -180◦ to 180◦, is clearly illustrated in Fig. 3. 
Significantly, this effect is notably present within the 0.01–0.03 Hz 
band, a very slow frequency range, while it is weaker in faster frequency 
ranges. During the task state, the modulation effect of the phase cycle on 
PF intensifies within the 0.01–0.03 Hz band. Intriguingly, despite a 
consistent increase in PF across four phases from rest to task, this 
stronger modulation effect is primarily driven by a heterogeneous in-
crease in PF at peak and trough positions. 

The second main finding consists of the negative correlation between 
PF and INT, corroborating the findings of the Buccellato et al. (2023) 
EEG study. While we noted task-related changes in PF and ACW, we also 
demonstrated the persistence of their negative correlation during the 
task state. In sum, we demonstrate the major role of the brain’s ongoing 
infraslow wave dynamics including its relation to INT in shaping neural 
activity during both rest and task states. 

3.1. Wave dynamics and its task modulation 

Neural activities exhibit substantial temporal variations and dyna-
mism (Kringelbach and Deco, 2020). Our research illustrates that PF, a 
measure of the speed of neural waves, varies concurrently with phase 
cycle changes. Within resting-state data, we observed higher PF values 

at peak/troughs and lower PF values during rise/fall across all brain 
regions. These findings demonstrate the importance of the ongoing 
phase cycles in shaping the dynamics, that is, the speed of neural 
activity. 

Previous resting-state fMRI studies have identified distinct brain 
states as configured by the phase of global brain activity during peak, 
trough, rise, and fall stages (Gutierrez-Barragan et al., 2019; Scheinost 
et al., 2016). Yet, the task-related modifications of these 
phase-dependent brain states remain underexplored. Our study pioneers 
an examination of wave dynamics in the infraslow frequency domain 
including task state modulations. We found that PF decreases in the task 
state, suggesting a slowing of wave speed in response to movie stimuli. 
The slower speed potentially enables the brain to incorporate and 
integrate the shorter micro-contents into longer macro content 
providing psychological continuity, coherence, and unity of the movie in 
our perception (Himberger et al., 2018). Concurrently, we observed an 
increase in phase modulation during the task state, suggesting a broader 
range of timescales operating across different phases which, as we 
speculate, may be related to the encoding and processing of the movie’s 
different timescales (Golesorkhi et al., 2021b; Wolff et al., 2022). 
Interestingly, despite a consistent decrease in PF across the ongoing 
phase cycles, the reduction is most significant at the peak and minimal at 

Fig. 6. ACW rest-task difference. (A) Spatial correlation between PF and ACW in task state. (B) Left: ACW topography in resting state. Middle: ACW topography in 
task state. Right: T-test topography of rest-task ACW. (C) Top: Unthresholded rest-task difference of ACW. Below: Unthresholded rest-task difference of PF in 
four bands. 
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the trough, largely maintaining fast speed at the trough. Given that slow 
PF and longer INT may allow for temporal integration of inputs while 
faster PF with shorter INT favors their temporal segregation (Hua et al., 
2022; Wolff et al., 2022), we suppose that the task-related modulation of 
PF and INT allows for the concurrent integration and separation of the 
movie’s different timescales: while movie inputs related to each other 
over longer stretches of time necessitate slower activity (as through the 
lowering of PF at the peak) for their temporal integration, faster activity 
(through the preservation of higher PF at the trough) persist in pro-
cessing the fast-changing movie contents concurrently. 

Our results highlight the significant and strongest effect of the 
0.01–0.03 Hz band on phase dynamics and task-related changes. The 
function and role of this frequency band, labeled Slow-5 within the 
infraslow frequency range (Buzsáki and Draguhn, 2004; Wang et al., 
2020; Zuo et al., 2010), remains poorly understood compared to the 
higher frequency oscillations, such as theta and alpha bands. Our find-
ings propose that the Slow-5 wave may play a pivotal role in both 
spontaneous dynamics and the encoding of external stimuli, corrobo-
rating several fMRI studies (Gutierrez-Barragan et al., 2019; Han et al., 
2011; Raut et al., 2021). For instance, Gutierrez-Barragan et al. found 
that the power spectral density of brain coactivation patterns and the 
global signal peak at approximately 0.02 Hz, suggesting that brain states 
are modulated by the ongoing phase dynamics within the 0.01–0.03 Hz 
range (Gutierrez-Barragan et al., 2019). This may include also 
body-based physiological modulation as Raut et al. identified a broad 
peak of coherence at 0.025 Hz between physiological signals (including 
respiration, heart rate, and pupil size) and network signals (Raut et al., 
2021). Collectively, we propose that the 0.01 to 0.03 Hz band may 
harbor unique and vital information about brain-body coupling that 
strongly modulates spontaneous brain activity and its temporal encod-
ing of the body’s continuous inputs to the brain, a hypothesis that merits 
further investigation. 

3.2. Wave dynamics relate to the INT 

Our study reveals a negative correlation between the speed of wave 
dynamics (PF) and the length of INT. This observation aligns with ex-
pectations that a slower oscillation corresponds to a longer intrinsic 
timescale (Honey et al., 2012; Zilio et al., 2021). Such an outcome 
reaffirms the empirical findings from an EEG study investigating 
conscious states (Buccellato et al., 2023). Interestingly, that EEG study 
reported a disruption of the negative PF-ACW correlation in unconscious 
states. This provides additional evidence for the intrinsic cross-scale 
temporal organization of wave dynamics and INT. Given that both 
wave dynamics and INT are known to reflect the brain’s inherent ca-
pacity to encode inputs (Golesorkhi et al., 2021b; Samaha and Postle, 
2015) including their temporal integration and segregation (Wolff et al., 
2022; Wutz et al., 2018), we propose that this cross-scale intrinsic 
temporal relationship may be crucial for processing complex stimuli 
featured by a variety of different timescales like in a movie. 

An interesting observation is the strengthening of the negative cor-
relation between PF and ACW when the low cut-off bandpass is reduced 
from 0.01 to 0.005. This finding implies that the negative relationship 
between PF and ACW is predominantly influenced by the very slow 
frequencies. Although previous research has investigated ACW in both 
the low-frequency range in fMRI (Ito et al., 2020; Raut et al., 2020) and 
the high frequency in EEG/MEG (Golesorkhi et al., 2021a; Wolman 
et al., 2023; Zilio et al., 2021), no study has examined the 
frequency-sensitivity of ACW. As our study shows that slower to faster 
PF are associated with distinct components within the ongoing phase 
cycles, we suggest that the intrinsic timescales in sub-frequency bands 
should be considered. 

3.3. Limitation 

Our study primarily utilizes resting-state and movie-watching fMRI 

data. While movie-watching is a natural continuous stimulus that shows 
distinct modes of brain function (Demirtaş et al., 2019; Finn and Ban-
dettini, 2021; Huk et al., 2018), it differs from traditional cognitive tasks 
in its continuous stimulus presentation rather than discontinuous stimuli 
as in typical event-related paradigms (Huk et al., 2018), for which 
reason it does not involve behavioral responses. This distinction is 
important to note, as our findings regarding PF-ACW correlations are 
derived under this specific condition of a continuous naturalistic task 
paradigm. Hence, future research on the PF-ACW relationship in more 
discontinuous typical event-related paradigms is warranted. Moreover, 
the lack of direct behavioral measures in our dataset limits our ability to 
draw definitive conclusions about the cognitive functionalities of wave 
dynamics and INT in more varied or specific cognitive tasks. Future 
research should aim to include a broader range of cognitive tasks 
including continuous and discontinuous with corresponding behavioral 
response data to better understand and apply these findings in cognitive 
neuroscience. 

A further limitation of our study is the use of a dataset from the HCP 
comprising solely healthy subjects. Given that wave dynamics and ACW 
reflect the individuals’ ability to process inputs, exploring individual 
differences in pathological or other extreme states could provide valu-
able insights into future research. Studies should consider including 
different groups of subjects, such as those experiencing brain aging or 
mental disorders, to better examine the behavioral and functional 
relevance of wave dynamics and INT. 

Lastly, our analysis was conducted at the conventional infraslow 
frequency of 0.01–0.1 Hz, primarily to develop a method for studying 
the dynamics of neural waves in fMRI data. Considering that important 
neural information is also contained in higher frequencies (>0.1 Hz) 
(Buzsáki and Draguhn, 2004; Chen and Glover, 2015; Zuo et al., 2010), 
future research should investigate wave dynamics in higher frequencies 
using open band passes (Sasai et al., 2021; Wang et al., 2020). This 
would provide a more comprehensive understanding of phase dynamics 
and INT across the whole frequency spectrum of timescales from longer 
to shorter. 

3.4. Conclusion 

Visualize yourself as a surfer riding the neural waves of the brain. 
Our findings indicate that the speed of these neural waves varies across 
their peaks, troughs, rises, and falls, mirroring the changing conditions a 
surfer faces on the waves of the ocean. Importantly, the length of 
intrinsic neural timescales requires adaptable responses, similar to a 
surfer adjusting to the ongoing and continuously changing wave pat-
terns. Furthermore, an adept surfer should always be ready to respond to 
unexpected changes, analogous to the way the movie task changed both 
wave dynamics and INT. Based on our research, we propose that wave 
dynamics and their relationship to the INT play a pivotal role in orga-
nizing the temporal features of the brain’s information processing. 
Future research should further investigate how specific cognitive pro-
cesses and individual differences influence wave dynamics and INT. 
Lastly, the development of effective clinical interventions and therapies, 
aimed at "mastering the neural waves", should be considered within the 
context of the temporospatial approach of the brain-mind connection 
that recently has been introduced, e.g., Spatiotemporal Neuroscience 
(Northoff et al., 2020a, 2020b). 

4. Methods 

4.1. Data acquisition 

The study utilized the fMRI dataset from Human Connectome Project 
(HCP) S1200 release (Van Essen et al., 2013). A total of 179 subjects 
with comprehensive scan data from both 3T and 7T imaging were 
incorporated. The 3T dataset was applied for the resting-state analysis, 
while the 7T data was employed for replication and task analysis. The 
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participants’ ages span from 22 to 35 years, with 108 female 
participants. 

The 3T resting-state data collection was performed over two 
consecutive days. On each day, each participant underwent two 15-min-
ute runs, resulting in four resting-state scans per participant (rfMRI_R-
EST1_LR, rfMRI_REST1_RL, rfMRI_REST2_LR, and rfMRI_REST2_RL). 
Considering the susceptibility of time-frequency analysis to time sam-
ples, the four scans of each participant were amalgamated in the analysis 
(Honari et al., 2021; Wang et al., 2020). The study used surface-based 
CIFTI resting-state fMRI scans (MSMall registered) that had undergone 
prior pre-processing with the HCP’s ICA-based artifact removal process, 
in order to minimize the effects of spatially structured noise. All brain 
imaging data were procured on a custom Siemens 3T Skyra at Wash-
ington University in St. Louis using a multi-band sequence. Structural 
images were captured at a 0.7-mm isotropic resolution, while the 
resting-state fMRI data had a 2-mm isotropic spatial resolution and a TR 
of 0.72 s. Informed consent was obtained from all participants, with all 
methods conforming to relevant guidelines. The 3T task data were 
excluded from the analysis due to their limited scan duration (3 to 5 
min), as the objective was to investigate the very slow frequency bands. 

In correspondence with the 3T resting-state data, the 7T resting-state 
data included four 16-minute scans per participant (rfMRI_REST1_PA, 
rfMRI_REST2_AP, rfMRI_REST3_PA, and rfMRI_REST4_AP). The 7T task 
data included movie watching and retinotopy. Movie-watching data was 
incorporated, given its approximately 15-min scan duration. Each 
movie-watching scan consists of several clips with separated by 20-s rest 
periods (details are available in WU–Minn HCP S1200 Release Reference 
Manual). CIFTI fMRI scans that underwent ICA-based artifact removal 
were utilized, mirroring the 3T data selection. These data were collected 
at a resolution of 1.6-mm isotropic and 1-second TR, utilizing a multi-
band acceleration of 5, in-plane acceleration of 2, and 85 slices. 

4.2. Preprocessing 

The data used in this study have already undergone the HCP ICA- 
based denoising, negating the need for further preprocessing (Bolt 
et al., 2022; Raut et al., 2021; Van Essen et al., 2013; Zhang et al., 2020). 
For all fMRI scans, the signals from brain regions were extracted using 
the HCP-MMP 1.0 template and the activity of vertices inside each of the 
360 regions was averaged to get 1 time series per region (Glasser et al., 
2016). Subsequently, the signals from each region were filtered to the 
0.01–0.1 Hz range using a zero-phase filter ("filtfilt" function in MAT-
LAB), consistent with previous fMRI phase studies (Bolt et al., 2022; 
Honari et al., 2021). 

4.3. Peak frequency 

The rate of phase change can be characterized as the PF, which can 
be calculated by the first derivative of the phase angle time series. 
Higher PF corresponds to faster phase angle variation. This technique 
was originally developed for measuring the frequency fluctuation of EEG 
signals by Cohen (2014), who coined the term "frequency sliding" 
(Cohen, 2014). We adapt this method to low-frequency fMRI signals as 
the methodology depicted in Fig. 1. 

We first applied a zero-phase filter to the raw BOLD signal (step 1) to 
yield a filtered signal without phase distortion (step 2), as recommended 
by a prior fMRI study on phase (Honari et al., 2021; Pedersen et al., 
2018). Previous fMRI phase studies have advocated narrow-band 
filtering to satisfy Bedrosian’s theorem and generate meaningful enve-
lopes and phases of an analytic signal (Pedersen et al., 2018). In our 
pursuit to examine frequencies from slow to fast, we divided the signal 
into four narrow sub-bands: 0.01–0.03 Hz, 0.03–0.05 Hz, 0.05–0.07 Hz, 
and 0.07–0.09 Hz. We then applied the Hilbert transform to obtain the 
analytic representation and extract the phase angle time series, as given 
by the following equation (step 3): 

z(t) = y(t) + j̃y(t) = a(t)ejφ(t) (1)  

where j =
̅̅̅̅̅̅̅
− 1

√
, ỹ denotes the Hilbert transform of y, a(t) denote am-

plitudes and φ(t) denote phases of signal z(t). Upon calculating the first 
derivative of the phase angle time series, we applied a median filter 
using MATLAB’s "medfilt" function to the derivative time series to 
mitigate large "blips" and negative derivatives due to jumps in the 
unwrapped phase angle time series. Given that fMRI data comprise 
fewer time points than EEG data, we increased the median filter order 
from 10 (used in EEG) to 20 to counteract larger phase jumps in BOLD 
signal (step 4). To discern phase-specific PF, we calculated the mean PF 
within a narrow phase window (e.g., a peak is defined from -π/12–π/12 
or -15◦–15◦). 

To rule out the edge effect that may be caused by the 0.01–0.03 Hz 
filtering, the same analysis is done for 0.005–0.01 Hz within 0.005–0.1 
Hz band-pass filtering. 

4.4. Validation on Lechner and Northoff (2023) method 

The Frequency Sliding Method, initially conceived for high- 
frequency EEG/MEG analysis, is deployed for the first time on fMRI 
data in this study. In an endeavor to assess its replicability, we explored 
its congruence with the recently formulated Lechner and Northoff 
(2023) method. The Lechner and Northoff (2023) method has been 
developed to measure the stability of phase dynamics. It designates the 
-π as the commencement point for each cycle. It computes the time de-
lays from the starting point of a given cycle to the starting points of the 
successor cycle, subsequently forming a series corresponding to each 
cycle duration. We further assessed the spatial similarity between the 
average of PF and cycle duration across the entire time series for each 
brain region. 

4.5. Phase cycle modulation on PF 

We employed the normalized Kullback-Leibler (KL) divergence of PF 
distribution P on each phase cycle against a uniform distribution Q to 
quantify the phase modulation effect on PF. To scrutinize fine-grained 
phases, phases from -180◦ to 180◦ were binned into 360 windows, 
each with a length of 30◦ and a step length of 1◦. Hence, the cycle of 
phase is divided into -180◦ to -150◦, -179◦ to -149◦, -178◦ to -148◦, and 
so forth. As a result, we obtained 360 values of PF at each phase cycle. 
The probability distribution of PF is given by the following equation: 

PPF =
PF(ϕ)

∑
PF(ϕ)

where PF(ϕ) represents the value of PF at phase ϕ degree. Subsequently, 
Shannon entropy was calculated, which reflects the quantity of infor-
mation for a distribution. If a time series is highly predictable, Shannon 
entropy will be lower; If a time series is uniformly distributed and hence 
unpredictable, Shannon entropy is maximal. Shannon entropy of PF is 
calculated as the equation below: 

H(P) = −
∑N

j=1
PPF(j)logPPF(j)

where N is the length of the total phase bins. Log(N) is the maximal 
entropy of a distribution, corresponding to a uniform distribution. The 
KL divergence is calculated by the following equation: 

DKL(PPF ,Q) = Log(N) − H(P)

Since the uniform distribution is represented by Log(N), we 
normalized the KL divergence by the following equation: 

DKL norm.(PPF ,Q) =
DKL(PPF,Q)

Log(N)
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This definition of normalized KL divergence aligns with previous 
studies, which used it to examine cross-frequency phase modulation on 
amplitude (Tort et al., 2010) or behavioral reaction (Helfrich et al., 
2018). 

4.6. Autocorrelation window (ACW) 

The autocorrelation functions for time courses of the 360 regions 
were calculated using MATLAB’s "autocorr" function. The ACW value 
was subsequently defined as the first lag at which the autocorrelation 
diminishes to zero within the infraslow frequency range (0.01–0.1 Hz), 
consistent with prior studies (Golesorkhi et al., 2021a; Ito et al., 2020; 
Raut et al., 2020). It is important to note that we did not assess ACW 
across the four narrow bands corresponding to the PF calculations. This 
decision is grounded in the understanding that ACW represents the 
neural temporal receptive window, reflecting the duration over which 
neural activity returns to its baseline (Golesorkhi et al., 2021a). In line 
with this concept, the INT should encompass a broad spectrum of neural 
signal timescales, rather than being restricted to a specific frequency 
band (Golesorkhi et al., 2021b). To maintain data transparency, we have 
illustrated the ACW topography for these four narrow bands in Sup-
plementary Fig. 1. As narrowband filtering imposes a fixed timescale on 
the neural signal, it revealed topographies with less variability across 
regions. Moreover, the constrained temporal resolution of fMRI limits 
the computation of ACW in higher frequency narrow bands due to the 
scarcity of time samples, leading to a uniform distribution of ACW across 
different regions (see 0.07–0.09 Hz Supplementary Fig. 1). 

4.7. Spatial similarity 

We evaluated the similarity between PF and ACW using spatial 
correlation. Initially, brain maps of PF and ACW were z-scored on an 
individual basis. Subsequently, spatial similarity was calculated as a 
single Pearson’s correlation coefficient between PF and ACW topo-
graphical maps across brain regions. This calculation was performed 
after averaging across subjects, thereby generating a single brain per 
condition (Golesorkhi et al., 2021a; Wang et al., 2018). 

We further examined the correlation between ACW and non-phase- 
based frequency power (Cohen, 2014). The phase information of PF, i. 
e., its phase angle, captures the non-linear properties of a signal (Cohen, 
2014; Glerean et al., 2012; Laird et al., 2002), while these nonlinear 
properties are eliminated when calculating frequency power (Hua et al., 
2022). In the case of frequency power, the analysis paralleled that of PF, 
with one distinction: frequency power involves extracting the modulus 
of the Hilbert transform, thereby reflecting the amplitude/power of a 
frequency band based on its linearity (Cohen, 2014). We calculated the 
frequency power across our four sub-frequency bands as a linear mea-
surement, and evaluated its correlation with ACW relative to PF, to 
investigate which metric exhibits greater correlation with INT. 

4.8. Surrogate data examination 

To estimate the influence of phase modulation on PF and the simi-
larity between PF and ACW under the null hypothesis of a linear and 
Gaussian stationary stochastic process (Chang and Glover, 2010; 
Liégeois et al., 2021; Zalesky et al., 2014), we employed surrogate data 
generated by shuffling the Fourier phases. This method manipulates 
only the phase information of a signal while preserving its amplitu-
de/power spectrum characteristics (Schreiber and Schmitz, 2000). The 
process begins with the application of a Fourier transform to the 
time-series data, converting it to the frequency domain. Subsequently, 
the timings of the signal’s phases are randomized independently across 
each frequency component. Following this phase randomization, an 
inverse Fourier transform is applied, reconverting the data back to the 
time domain. In our study, the time series data from various regions, 
sessions, and individuals in the actual dataset were each shuffled to 

generate a surrogate dataset that mirrors the original in the phase 
structure albeit shifted along the time points. 

4.9. Statistics 

Given that the same subjects were included in both the 3T and 7T 
resting-state and task-state data, we conducted a 4-by-4 within-subject 
ANOVA for PF in four sub-bands (0.01–0.03 Hz, 0.03–0.05 Hz, 
0.05–0.07 Hz, and 0.07–0.09 Hz) and for four phases [peak (-15◦~15◦), 
trough (165◦~180◦&-180◦~-165◦), rise (-105◦~-75◦), and fall 
(75◦~105◦)]. A one-way ANOVA was applied for the KL divergence in 
the four sub-bands. All post-hoc tests were conducted using two-tailed t- 
tests. Additionally, we assessed the correlations of R values using two- 
tailed z-tests. Furthermore, all multiple comparisons—including those 
of brain regions, frequencies, and phases—were corrected using the 
False Discovery Rate (FDR) criterion. 
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