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Abstract
Human brain imaging has revealed that stimulus-induced activity does generally not simply add to the pre-stimulus

activity, but rather builds in a non-additive way on this activity. Here we investigate this subject at the single neuron level

and address the question whether and to what extent a strong form of non-additivity where activity drops post-cue is

present in different areas of monkey cortex, including prefrontal and agranular frontal areas, during a perceptual decision

making task involving action and tactic selection. Specifically we analyze spike train data recorded in vivo from the

posterior dorsomedial prefrontal cortex (pmPFC), the supplementary motor area (SMA) and the presupplementary motor

area (pre-SMA). For each neuron, we compute the ratio of the trial-averaged pre-stimulus spike count to the trial-averaged

post-stimulus count. We also perform the ratio and averaging procedures in reverse order. We find that the statistics of

these quantities behave differently across areas. pmPFC involved in tactic selection shows stronger non-additivity com-

pared to the two other areas which more generically just increase their firing rate pos-stimulus. pmPFC behaved more

similarly to pre-SMA, a likely consequence of the reciprocal connections between these areas. The trial-averaged ratio

statistic was reproduced by a surrogate inhomogeneous Poisson process in which the measured trial-averaged firing rate for

a given neuron is used as its time-dependent rate. Principal component analysis (PCA) of the trial-averaged firing rates of

neuronal ensembles further reveals area-specific time courses of response to the stimulus, including latency to peak neural

response, for the typical population activity. Our work demonstrates subtle forms of area-specific non-additivity based on

the fine variability structure of pre- and post-stimulus spiking activity on the single neuron level. It also reveals significant

differences between areas for PCA and surrogate analysis, complementing previous observations of regional differences

based solely on post-stimulus responses. Moreover, we observe regional differences in non-additivity which are related to

the monkey’s successful tactic selection and decision making.

Keywords Decision making � Tactic selection � Data analysis � Prefrontal cortex � Single unit activity � Spiking activity �
Non-additivity

Introduction

The relationship between spontaneous brain activity and

task-evoked activity has generally been assumed to be

linear ( Fox et al. 2006, 2007; Sylvester et al. 2009; Fox

and Raichle 2007; Arieli et al. 1996; Becker et al. 2011;

Azouz and Gray 1999). This means that the activity evoked

by task or stimulus is assumed to superpose in a merely

additive way on the ongoing spontaneous activity level.

However, the generality of such a model of superposition

or additive rest-stimulus interaction (Northoff et al. 2010)

has recently been put into doubt (He 2013; Huang et al.

2017; Ding and Simon 2014; Ponce-Alvarez et al. 2015;

Lynch et al. 2018; Wainio-Theberge et al. 2021). Brain

imaging studies on the regional level of neural activity

demonstrated non-additive interaction with higher pre-

stimulus activity level leading to lower (rather than higher)

post-stimulus activity changes, and vice-versa (He 2013;

Huang et al. 2017; Ponce-Alvarez et al. 2015; Lynch et al.

2018; Cole et al. 2016; He 2013). The central role of pre-

stimulus activity has also been demonstrated on the cellular

level in rats (Haslinger et al. 2006; Kisley and Gerstein

1999; Curto et al. 2009) and mice (Llinás et al. 2002; Guo

et al. 2015; Pachitariu et al. 2015), and monkeys (van Vugt

et al. 2018).
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In this study, in contrast, we work exclusively on the

single-neuron level. We use data from non-human primates

to study how the interaction between pre- and post-stimu-

lus spiking activity (also referred to below as pre- and post-

cue activity) relates to sophisticated cognitive behavior,

namely the selection of different tactics. We addressed the

question whether non-additivity between pre-stimulus and

stimulus-induced activity can also be observed on the

cellular level in an ensemble of single neurons involved in

cognitive dynamics in a higher mammal and how it impacts

behavioral performance (Marcos et al. 2013). We per-

formed our analysis at the single neuron level, as opposed

to the level of multi-unit activity done by van Vugt et al.

(2018) and others. In this way, we do not average out the

diversity of the activity of individual neurons.

The stimulus-response relationship in neurons involved

in a cognitive task such as working memory (Shafi et al.

2007) can be very rich, displaying a wide array of features

across a population of cortical cells. The earlier work by

Tsodyks et al. (1997) had in fact already demonstrated a

paradoxical effect in neural circuitry where increasing the

input to interneurons that inhibit a second interneuron

population leads to an increase in activity of this second

population. Different cells display different levels of firing

rate variability, but also different polarities of firing rate

change. Those seminal studies and many others that it

spawned point to the importance of characterizing the

different classes of cells based on their firing statistics, and

in particular the trial-to-trial variations of activity. It has

also motivated studies of the kind of dynamics that can

explain the variability of transient and steady state activity,

e.g. in terms of the structure of recurrent architecture

(Bondanelli and Ostojic 2020). Another study (Liang et al.

2018) of medial prefrontal cortex (mPFC) has shown dis-

tinct ON and OFF ensembles of neurons that need to be

activated during social exploratory behavior, highlighting

again the necessary variability of neural activations

including the presence of ensembles that respond in an

opposing manner.

While additivity comes in basically only one form,

where a constant positive fraction of the stimulus-induced

activity simply adds to pre-stimulus activity, non-additivity

can manifest itself in many forms. For example, a weak

form of non-additivity is seen when the increase in activity

induced by a same stimulus is a decreasing function of the

pre-stimulus activity (He 2013). A high pre-stimulus

activity will then increase only marginally in response to

the stimulus compared to the case of a low pre-stimulus

activity. A stronger form of non-additivity involves e.g. an

inverse relationship where the stimulus can actually

decrease the activity of the cellular population (He 2013;

Huang et al. 2017). Whether non-additivity holds on the

single neuron level and, if so, which form it can take and

what behavioral correlates it entails remain open issues. To

address this question in the context of this strong form of

non-additivity, which could in fact be termed subtractivity

or suppression, is the goal of our study.

Specifically, in more mathematical terms, we examine

the notion of non-additivity on the level of a single trial.

Let Npre and Npost denote integer spike counts in the pre-

and post-stimulus intervals, respectively, for one trial in

one neuron. One might expect the general relationship

Npost ¼ FðNpre; SÞ, i.e. Npost is a perhaps nonlinear function

of Npre and the stimulus S. To guide our thinking

throughout our paper, we assume for simplicity that Npost ¼
Npre þ BðNpreÞ where the second term B is a positive or

negative integer that may depend on the pre-stimulus

activity and which accounts for the effect of the stimulus,

knowing that more complex relationships may be at work.

The additive case corresponds to BðNpreÞ ¼ B with B a

positive integer. All other cases can be referred to as ‘‘non-

additive’’ to varying degrees. For example, in a supra-ad-

ditive case B increases with Npre, while in the sub-additive

case B decreases with Npre; both these cases are ‘‘non-

additive’’. A stronger form of non-additivity that concerns

us in this paper occurs when B\0, meaning that the spike

count decreases on a particular trial in a manner that may

depend on Npre. The statistics Q and R defined below will

capture trends towards additivity and this strong non-

additivity.

Here we build on a previous study of the relative

involvement of three cortical regions in tactic selection and

decision making in monkeys (Matsuzaka et al. 2012). That

study focused solely on the post-stimulus activity to find

differential correlates of action and tactic selection. The

characteristics of the pmPFC activity stood out in terms of

its involvement in tactic selection. It nevertheless behaved

more similarly to the pre-SMA which is not surprising

given the reciprocal connections between these areas. Both

pmPFC and pre-SMA further differentiated themselves

from the SMA, which has no direct connection to pmPFC.

These areas do not specifically encode time-varying sen-

sory stimuli, but do quickly respond to them within 200–

300ms.

Using both pre-and post-stimulus data from that same

study, we demonstrate that a special type of strong non-

additive interaction does occur at the single neuron level in

primate cortex, especially in the pmPFC. This interaction is

quantified by the difference in the time course of the firing

rate as revealed by principal component analysis. It is also

quantified via a comparison between two ratios computed

for each neuron: (1) trial-to-trial changes in the ratio Q of

pre- to post-stimulus spike counts, averaged individually

across trials, and (2) the ratio R of the trial-averaged pre-

stimulus spike count to the post-stimulus spike count.
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These two ratios differ in the order in which the averages

are performed across trials. These statistics show that while

many neurons appear to increase their trial averaged-rates

upon stimulation, this is not the case at the single trial level

in the area known to be most important (pmPFC) for the

monkey’s choice of tactics and response during a decision

making task. Thus we find that variability in the fine

structure of single cell firing activity across the period of

stimulus presentation differs between three areas involved

in motor decisions. This represents a novel form of cellular

non-additive interaction that provides an interesting coun-

terpart to such interactions computed with macroscopic

signals such as EEG or fMRI.

Our paper is organized as follows. The ‘‘Methods’’

section describes previously recorded data which we use in

this paper, and the various analyses that we perform on

them. The Results follow, paying attention first to the area-

specific selection of responding neurons (heretofore refer-

red to as ‘‘valid’’ neurons) via the Pearson correlation

coefficient between spike counts pre- and post-stimulus.

Then follows an analysis of the behavior of the afore-

mentioned ratios Q and R in different areas, a principal

component analysis to reveal the key differences in rate

time courses across the three areas of interest and a sur-

rogate data analysis to pinpoint the statistical nature of the

firing process that exhibits non-additivity. The paper ends

with a Discussion and Conclusion.

Methods

Stimulation protocol

The full experimental methods are described in Matsuzaka

et al. (2012). Two monkeys (Macaca fuscata) were pre-

sented with red and green visual stimuli to perform a two-

choice arm reaching task. A red stimulus signaled the

monkey to reach for the right target, and a green stimulus

to the left target. The task is made more challenging by the

notion of concordant and discordant trials: in the former,

the stimulus appears ipsilaterally to the target, whereas in

the latter, it appears contralaterally to the target. In other

words, the monkey has to reach towards the visual stimulus

during concordant trials, and away from the visual stimulus

during discordant trials. If the monkey is successful, it is

rewarded with juice. For more details, we refer the reader

to Matsuzaka et al. (2012).

The data contain the timing of relevant behavioral

events: hold onset, stimulus onset Tstim, hold release Trelease,

target hit, target release time and reward delivery. It further

records for each trial the experimental layout and the

outcome of the experiment, namely success or failure,

depending on which button the monkey pressed. A timeline

of these events is presented in Fig. 1.

Single cell firing activity was recorded in three areas of

monkey cortex: the posterior dorsomedial prefrontal cortex

(pmPFC), the supplementary motor area (SMA) and the

presupplementary motor area (pre-SMA or pSMA). As was

shown previously, the firing activity of neurons in the

pmPFC is implicated in the choice of response tactics and

in particular for the correct choice of response for the

discordant trial type (Matsuzaka et al. 2012), in contrast to

the two other motor-related regions. Moreover, we focus on

the region pmPFC because neurons in this region were

previously shown to be most active when choosing the

response tactics for the dual-tactic task (both concordant

and discordant trials are present) described above (Mat-

suzaka et al. 2012, 2016). This means that neurons in

region pmPFC were more active when discordant and

concordant trial types were presented in a random alter-

nating fashion, i.e. when it was necessary for the monkey to

select a response tactic. Their response time on concordant

and discordant trials were statistically the same, suggesting

that the animal developed tactics that compensated the cue-

response conflict (Matsuzaka et al. 2012).

In summary, the work by Matsuzaka et al. (2012) sug-

gests that the pmPFC neurons are less involved in action

selection or monitoring response conflict. The distinction

revolves around the fact that action selection is about

deciding what to do, while tactic selection concerns how to

go about deciding what to do. Tactic selection is linked to

strategy and thus to supervisory control over motor

behavior. In contrast, neurons in regions pre-SMA and

SMA were equally active both under single-tactic and dual-

tactic conditions. One of our goals is to see whether these

three regions differ in the fine structure of single cell firing

between the periods before and after the stimulus. This

serves to complement the previous studies (Matsuzaka

et al. 2012, 2016) which confined their focus only to the

activity after the cue stimulus.

Given this finding of a graded response of different

cortical regions in response to different behavioral chal-

lenges, and our expectation that the animal reaches a

decision more easily in the concordant task, we split the

ensemble of neural responses according to the cortical

region and trial type (i.e. concordant or discordant). We

will use the pre-SMA and SMA regions as a control for our

findings in pmPFC. Unlike the original study (Matsuzaka

et al. 2012) from which this data set was obtained, we will

study the relationship between pre-stimulus and post-

stimulus activity. In other words, we wish to understand

how a given ensemble of neurons differentially reacts to a

precisely timed stimulus, and whether certain regions can

be distinguished based on features of these differential

reactions.
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Selection of responding neurons

We mainly use the spike counts Npre and Npost in suitably

defined pre- and post-stimulus time intervals (see below) to

quantify the neuronal activity pre- and post-stimulus. The

principal component analyses (see below) were performed

instead on the spike rates (spike count in a time window

divided by the window length) which has the same infor-

mation but in a temporally smoothed representation. The

stimulus (go-cue) always occurs at Tstim ¼ 2000ms (see

Fig. 1). Only successful outcomes are considered below, as

there weren’t many trials in which the monkeys pushed the

wrong button. But our analysis accounts for the distinction

between ‘Concordant’ and ‘Discordant’ trial types, so that

we only consider data recorded under the mixed tactics

condition, i.e. where both trial types were present.

The total numbers n of neurons (both ‘valid’ and ‘in-

valid’) in pmPFC, pre-SMA and SMA are 1268, 1266 and

1066, respectively. Data from two monkeys were pooled

(one male and one female, for details see Matsuzaka et al.

2012). Each recording session corresponds to a number of

trials on a given neuron; the number of such trials in each

session is variable. We only consider trials with at least 6

spikes unless mentioned otherwise. There must be at least 3

spikes in both the pre- and post-stimulus periods. Our

analysis does not differentiate between cue colors. Some

neurons only have a low number of valid trials, which can

result in nearly perfect correlation or anti-correlation of the

spike counts in this trial. Therefore, we also excluded all

neurons in which there were less than 4 trials for either the

concordant or discordant trial type. In addition to requiring

a minimal mean spiking activity of approximately 1:5Hz

(see above) in both pre- and post-stimulus intervals, only

neurons for which both concordant and discordant trial

types were recorded are considered here in order to facil-

itate comparison between trial types. This reduces the total

number of neurons available.

Our study does not exclude time points, but rather

considers the whole duration of pre- and post-stimulus time

intervals unless mentioned otherwise. Specifically, the pre-

stimulus time interval of duration 2000ms is between

0ms� t\2000ms, while the post-stimulus time interval of

duration 2000ms is between 2000ms\t� 4000ms. This

choice is motivated by the fact that, since we only consider

spike trains of a certain length, we wish to minimize the

number of trials and neurons that are discarded from our

analyses due to low spike counts. Another choice - not

pursued here - would have been to look at post-stimulus

intervals only up to the hold release time Trelease, requiring

in parallel an interval of length Trelease � 2000ms before the

stimulus so that pre- and post-stimulus intervals have the

same length. That choice is more reminiscent of a delay

period in working memory tasks (Shafi et al. 2007). In

either case, it is important that pre- and post-stimulus

periods have comparable lengths, since otherwise the

counting of spikes can be biased.

Responding or ‘valid’ neurons are chosen based on the

Pearson correlation coefficient (PCC) q computed on a plot

between pre- and post-stimulus counts for each individual

trial for each neuron. The significance level for our anal-

yses was set at a ¼ 0:01. The PCC is positive (negative)

when one variable shows a positively (negatively) sloped

linear trend with respect to the other, and negative when

the opposite is true. It is 0 when there is no linear trend. We

also performed a two-sided t-test against q ¼ 0 for the

Pearson correlation coefficient. A significant deviation

(p\0:01) of q from zero means that the neuron is valid and

thus kept for further analyses.

Statistics of pre-post stimulus activity

The fine structure of the activity changes in neurons is

assessed using two metrics. The first metric looks at the

following average over all Ni valid trials for a valid neuron

i:

Qi ¼
1

Ni

XNi

i¼1

Npre;i

Npost;i

� �
¼ hNpre

Npost

ii:

Q is larger than 1 if, on average, a neuron had a higher

spike count Npre;i before than after ðNpost;iÞ the stimulus

onset, so that the neuron decreased its activity after the

stimulus onset. In other words, Q reflects whether on

average (across trials), a neuron increases its spike count

(Q\1) or decreases its spike count (Q[ 1) in response to

the stimulus.

Fig. 1 Timeline of events in the experiments from Matsuzaka et al.

(2012). Recordings for each trial begin at T0, the hold button is

pressed at Thold, the cue stimulus is presented at Tstim, the hold is

released at Trelease, and the target button is hit at and released at Thit
and Thitrelease, respectively. Finally, if the trial was successful, a

reward is delivered at Treward. All times shown vary substantially from

trial to trial with the exception of the stimulus onset time Tstim. The
stimulus onset time is in the middle of each recording, which is not

depicted here according to scale due to space constraints

Cognitive Neurodynamics

123



The second metric looks at the ratio of the average pre-

stimulus spike count to the post-stimulus spike count

R � hNpreii
hNpostii

, where the average is across all valid trials for a

valid neuron. It differs from Q in the order of the averaging

and ratio operations. For R, the relative size of pre-to-post-

stimulus counts for one trial is not taken into account, but

instead it focuses on the ratio of the separately computed

and trial-averaged pre-and post-stimulus counts. Q is more

informative to understand what the neuron typically did on

a given trial. In the following, we omit the subscript trial

index i in the averages for both Q and R for simplicity.

A large value for Q (Q� 1) together with a positive PCC

q[ 0 indicates that the neuron decreased, on average

across trials, its activity after the stimulus while still

modulating its response as a function of pre-stimulus spike

count. Because q is positive, this means that increasing the

pre-stimulus spike count for this neuron also increases the

post-stimulus spike count on average.

There are a number of other analyses that we have

performed but have not included because they did not

reveal any significant differences between the areas. They

include computing the pre-post change in the coefficient of

variation of the interspike intervals, the pre-post change in

the serial correlation coefficient of the interspike intervals

and the Fano factor of the spike counts over different

counting windows. We also investigated the slope of the

pre-vs.-post spike count as it varies across successive short

windows of the post-stimulus period, i.e. as it varies during

the dynamic response to the cue, but did not find any sig-

nificant inter-areal differences in this time evolution.

Concretely, for each trial, we computed the mean rate in

the 500ms preceding the stimulus and in 151 overlapping

windows of width D ¼ 500ms after the stimulus, moved in

increments of 10ms. Thus, the first bin covers the interval

½2000ms; 2500msÞ, the second bin the interval

½2010ms; 2510msÞ, and so on. The last bin starts at

t ¼ 3500ms. After obtaining these time-courses, regression

slopes were computed across trials for each bin, resulting in

a time-series of regression slopes of length 151. We repe-

ated the same calculation for D ¼ 1500; 300 and 200ms.

This did not yield any significant differences between the

regions, but led only to a stereotypical monotonic decay as

a function of time across all areas and for all trial types.

Thus, whereas we will show that the three areas exhibit

significant differences in the quantities that we have

defined above, other statistical measures that we have not

considered here may show significant differences between

the three areas.

Principal component analysis

This analysis was carried out to reduce the dimensionality

of the responses across trials for all neurons, thereby

exposing the main features of the rate variations caused by

the stimulus. The analysis was done separately for each of

the three cortical areas of interest. The dimensionality of

the initial space was set to the number of valid neurons (for

example, 235 neurons for pmPFC concordant in Fig. 3).

Each dimension is the trial-averaged rate obtained from the

spike trains using a Gaussian smoothing kernel with width

r ¼ 20ms instead of r ¼ 5ms for the rates that were used

for the surrogate analysis (see next section). Hence, the

PCA analysis is performed on a matrix of trial-averaged

rate time courses, one for each valid neuron for a given

region (pmPFC, pre-SMA or SMA) and trial type (con-

cordant or discordant). Each row of the matrix holds the

trial-averaged rate time course for one neuron computed in

1ms bins. There areM ¼ 4000 bins. Each column holds the

rate time course at one fixed time point for all N valid

neurons (N differs between regions and trial types). Thus,

the PCA data matrix has M columns and N rows. The

dimensional reduction is now performed in the dimension

of the rows to reduce the ensemble size, so-to-speak. This

gives us a number of principal components, each of

dimension M, together with the explained variances. PCA

finds the directions (i.e. principal components or PCs) that

successively comprise the most variance in the data. In

Fig. 7, we plot one time course (PC1) or 2 time courses

(PC1?PC2) separately for concordant and discordant trials

and for each area, thus resulting in a huge reduction in the

dimensionality of the firing activity across the neural

ensembles.

Surrogate point process model analysis

In order to understand the statistical nature of the spike

count changes before and after the stimulus, we performed

a surrogate analysis using a simple inhomogeneous Poisson

process. The question we address with such a process is

whether the changes observed in spike count statistics

R and Q for each valid cortical neuron are expected when

assuming that each neuron can be modeled as a Poisson

point process with a time-dependent rate. We chose this

rate neuron-wise as the trial-averaged rate. In each trial, the

spike train is the sum of Dirac delta functions convolved

with a smoothing kernel of standard deviation r ¼ 5ms.

We also tried r ¼ 20ms as for the PCA (see section above),

but found that this choice is too coarse to generate any

meaningful overlap between the experimental and the to-be

generated surrogate data. Then, for each valid neuron, we

use the surrogate model to generate 100 independent spike
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train realizations (which would correspond to individual

trials per valid neuron) of the inhomogeneous Poisson

process with the experimentally derived rate. This was

achieved using a standard thinning algorithm (Lewis and

Shedler 1979; Laub et al. 2015). We then computed hNprei,
hNposti, and the ratio Q and R of the trial-wise ratios as

described above for the real data. We then compared the

distribution of these quantities (one value for each quantity

for a valid neuron) to the distribution of the corresponding

quantity in the real data by means of a two-sided Kol-

mogorov–Smirnov (KS) test. We repeated this M ¼ 100

times to generate 100 surrogate distributions for Q and

R and hence 100 p-values, whose distribution, along with

their mean, we report below. Here, large p-values indicate

that the distributions obtained from the surrogate analysis

are similar to those found in the data. Smaller p-values

indicate that the distributions are distinct and therefore, the

surrogate analysis does not capture the data well.

Results

Quantifying pre-post spike count variations

Here we consider various spiking activity statistics (see

‘‘Methods’’, ‘‘Statistics of pre-post stimulus activity’’ sec-

tion). The single neuron quantities are q, Q, R, hNprei and
hNposti. Each quantifies slightly different features of the

spiking data. q quantifies a trend in one neuron to either

increase or decrease its post-stimulus activity as a function

of the pre-stimulus activity.

On the one hand, Q directly quantifies whether the

neuron, on average across trials, fired more before or after

the stimulus on any given trial. Intuitively, for one neuron,

Q in a scatterplot of post-stimulus spike count versus pre-

stimulus spike count indicates whether points on average

lie above (Q\1) or below the identity line (Q[ 1).

Alternatively, for each neuron, R quantifies the ratio of its

pre-stimulus to its post-stimulus counts, each averaged

separately across all trials. This also tells us about whether

the neuron increases or decreases its rate after the stimulus,

but averages out the correlations between pre- and post-

stimulus spike count fluctuations. Finally, q tells us

something about the shape of this cloud of points, namely

how well it is fitted by a linear relationship, rather than its

position in the scatterplot.

We begin by considering the two main metrics R and Q

whose typical behaviors are illustrated in Fig. 2. This fig-

ure illustrates three possible scenarios for combinations of

Q and R that are present in the pmPFC data. Qualitatively

similar figures are found for the other areas (not shown).

This plot involves only neurons that are considered

minimally responsive (which we call ’valid’), i.e. for which

the value of q determined from such a single-neuron plot is

significantly different from zero (see below).

We first consider the variation of the spike count from

the pre-stimulus to the post-stimulus period across trials,

valid neurons and cortical areas. Our goal is to identify the

fine structure of the trial-to-trial variability in the hope of

extracting region-specific features. The minimal degree of

response for a neuron to be labeled valid was determined

using the Pearson correlation coefficient q between pre-

and post-stimulus spike counts, for every neuron separately

across successful trials of one given trial type (concordant

or discordant), for the three regions (pmPFC, pre-SMA and

SMA) (see ‘‘Methods’’, ‘‘Statistics of pre-post stimulus

activity’’ section). In the following figures, we plot from

top to bottom various statistics for concordant (Figs. 3, 4

and 5 A1, A2 in blue) and discordant (Figs. 3, 4 and 5 B1,

B2 in orange) trial types separately for the three areas.

A1 panels show histograms (100 equally spaced bins) of

the PCC q. This coefficient q is calculated for a given

neuron using all valid trials for that neuron. We show only

the values of q significantly different from 0, along with

the total number of neurons that met this criterion. The

majority of q values are positive and scattered around the

mean (vertical green line).

Also shown in A1 panels, below the histograms for q, is
the mean (i.e. trial-averaged) post-stimulus spike count

hNposti as a function of mean pre-stimulus spike count

hNprei; each point in this plot corresponds to one neuron.

We also write an inset with the number of neurons for

which the pre-stimulus count was larger than or equal to

the post-stimulus count as defined by the ratio R (see

‘‘Methods’’, ‘‘Statistics of pre-post stimulus activity’’ sec-

tion), i.e. which lie below the blue identity line. Most

neurons show an increase in mean activity after the stim-

ulus. There is thus a positive correlation between the mean

spike counts before and after the stimulus when averages

across trials are considered, i.e. when the detailed trial-to-

trial variability is averaged out.

Moving down to panel A2 in Figs. 3, 4 and 5, we next

show how the different single-neuron statistics correlate

with one another. At the top of the panel, we indicate the

number of neurons with Q� 1. The metric Q is larger than

1 for a neuron if, on average over its trials, there was a

higher spike count before than after the stimulus onset, so

that the neuron decreased its activity after the stimulus

onset. Q is more informative to understand what the neuron

typically did on a given trial. A large value for Q (Q� 1)

together with q[ 0 indicates that the neuron decreased, on

average across trials, its activity after the stimulus while

still positively co-varying its response with pre-stimulus

spike count.
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We first show in panel A2 how hNprei correlates with

Q. Little or no discernible correlation is visible. Next, in

the second panel in A2, we show a scatterplot of the

metrics Q and R for all valid neurons. Q and R are posi-

tively correlated. Most values for Q lie above the identity

line, i.e. Q is larger than R for most neurons in all regions.
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Fig. 2 Examples for three possible scenarios for metrics Q and R. The
data were taken from region pmPFC. Each panel shows (Npre, Npost)

pairs associated with a subset of trials for one valid neuron. The solid

red line represents the identity line. The vertical and horizontal

dashed red lines are the means of Npre and Npost, respectively.

a R[ 1, Q[ 1. b R\1, Q[ 1. c R\1, Q\1. Case A corresponds to

the case where the firing after stimulus onset decreases. Case B is

representative of cases where Q and R convey different trends in the

neuronal response to the stimulus. Thus, case B is a paradoxical case

and of great interest. Case C corresponds to the common case where

both Q and R indicate that the neuron has increased its firing after

stimulus onset. Cases with Q\1, R[ 1 are not present in the data
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Comparing the top plots in A2 in Fig. 3 to those in

Figs. 4 and 5, we see that in pmPFC, the majority of

neurons have Q� 1 in both concordant and discordant

trials. This is not the case in regions pre-SMA and SMA.

In B1 and B2, analogous plots for discordant trials are

shown. The results for the statistics don’t differ markedly

between concordant and discordant trial types in each

region.

Summarizing the above we find that, on average and in

all three regions, the post-stimulus count is higher if the

pre-stimulus count is higher, i.e. a positive correlation q.
Further, a majority of neurons have R\1, thus increasing

their firing activity after stimulus onset. Concretely, the

percentage of neurons that decrease their firing on average

after the stimulus onset (as quantified by R� 1: see Figs. 3,

4 and 5 middle panels of A1 for concordant trials and B1

for discordant trials) is highest in pmPFC. For concordant

(discordant) trials, these percentages are 44.3 % (41:7%),

34.2 % (31:5%) and 20.5 % (25:9%) in pmPFC, pre-SMA

and SMA, respectively.

However, looking at the trial-resolved quantity Q

reveals more information about the variability. Only in

region pmPFC, most trials for the corresponding neurons

show a decrease in firing after stimulus onset, i.e. the

metric Q is equal to or exceeds 1 for most neurons.

Specifically, the percentages of neurons for which Q� 1

are for concordant (discordant): 60 % (58%), 48 % (47%)

and 33 % (32%) in pmPFC, pre-SMA and SMA, respec-

tively, as shown in Figs. 3, 4 and 5 (see the top panels in

A2 for concordant trials and B2 for discordant trials). The

difference in Q between trial types in one region is not

pronounced.

We show a summary for the regional differences of Q

and R in Fig. 6. We quantify differences using two-sample

two-sided Kolmogorov-Smirnov (KS) tests. The differ-

ences are clearest between the two regions pmPFC and

SMA (Fig. 6b, where p\10�5 for both R and Q). The

differences between pmPFC and pre-SMA are not as pro-

nounced and do not reach the 1% significance threshold

(Fig. 6a). Given that we only analyzed trials from the

A1 B1

A2 B2

Fig. 4 Statistics for region pre-SMA. A1, A2: Concordant trials. B1, B2: Discordant trials. Red dashed lines denote medians of plotted quantities.

Black dashed lines are at 1 or 0. Thin black dashed lines are regression fits
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mixed tactics condition, during which concordant and

discordant trials are randomly presented, we expect from

the results presented in Matsuzaka et al. (2012) that

pmPFC and pre-SMA are more similar than pmPFC and

SMA. Moreover, given that anatomically, the pmPFC and

pre-SMA are reciprocally connected but the SMA lacks

A1 B1

A2 B2

Fig. 5 Statistics for region SMA. A1, A2: Concordant trials. B1, B2: Discordant trials. Red dashed lines denote medians of plotted quantities.

Black dashed lines are at 1 or 0. Thin black dashed lines are regression fits
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direct connection with the pmPFC, either afferent or

efferent, we expect that the novel statistical measures that

we exhibit are more similar between pmPFC and pre-SMA

than between pmPFC and SMA. This is also confirmed in

Fig. 6. The regional difference stems from the fact that

more neurons have Q[ 1 (and to a lesser extent also

R[ 1) in pmPFC than in SMA, but not in pre-SMA (cf.

dashed horizontal lines in Fig. 6). These are neurons de-

creasing their spike count after cue onset. Thus, pmPFC

differs from SMA and to a lesser extent also from pre-SMA

because more neurons show stronger non-additive behavior

on a single-trial basis, reflected in a larger proportion of

neurons with Q[ 1.

We have added control analyses in the Supplementary

Information (SI). In the SI, Fig. 1, we show results for the

standard data set as in Fig. 6 for reference. In the SI, Fig. 2,

we show results for shorter pre- and post-stimulus inter-

vals. In the SI, Fig. 3, we show results when also spike

trains with fewer spikes (1 instead of 3) in both pre- or

post-stimulus interval are included. In the SI, Fig. 4, we

show a combination: both fewer spikes per trial and shorter

pre- and post-stimulus intervals are considered. The main

finding is that the results shown in Fig. 6 remain valid

except for short pre- and post-stimulus intervals when only

neurons with at least 3 spikes in both pre- and post-stim-

ulus intervals are included (SI, Fig. 2). In other words,

shortening the pre- and post-stimulus intervals can be

compensated for by allowing fewer spikes in each trial (SI,

Fig. 4).

Next, we discuss the influence of the hold release time

Trelease - a measure of behavioral latency - on the results in

the SI, Fig. 5. To exclude that very large hold release times

have an effect on our analysis, we show results where only

trials with small hold release times (Trelease\2300ms) were

considered (SI, Fig. 5). The results, although not as pro-

nounced, are similar to the standard data set (Fig. 6); in

particular, the differences between pmPFC and SMA

remain significant at the 1% level for all trials types and

both Q and R. Even when only keeping trials with hold

release times smaller than or equal to 2250ms, the structure

of the results still holds (not shown): differences between

pmPFC and SMA for Q are significant (p\10�3), whereas

differences between pmPFC and pre-SMA are not signifi-

cantly different (p[ 10�2).

Therefore, we conclude that the behavioral latency

results, as quantified by the hold release time statistics, do

not invalidate, and in fact lend support to our main con-

clusions presented in Fig. 6. We further conclude that our

findings of regional differences for Q and R remain valid

across a broad range of data inclusion choices.

Principal components of firing rate time courses

We next asked whether pre- and post-stimulus activity

features can be qualitatively distinguished region-wise and

condition-wise by the trial-averaged time courses of the

firing rates. This would provide a finer-grained represen-

tation of the neural activity, in contrast to the coarser-

grained spike counts over longer windows, i.e. to the very

coarse-grained firing rate picture considered up to now. To

address this question, we computed a low-dimensional

representation of the firing rate time course from all valid

neurons for a region and condition, namely, the principal

components of the rate time courses (see ‘‘Methods’’,

‘‘Principal component analysis’’ section).

The rate time course for each trial was computed using a

Gaussian window of width r ¼ 20ms. The first two prin-

cipal components together explain more than 80% of the

variance for concordant trials, and around 80% for dis-

cordant trials (Fig. 7). The third and higher PCs each carry

less than 10% of the total variance. For concordant trials in

pmPFC, the second PC ramps up before the onset of the

stimulus. In pre-SMA for concordant trials, the second PC

shows less ramping-up behavior, which is reflected in the

weighted sum of PC1 and PC2.

Importantly however, the difference between concordant

and discordant PCs is most pronounced in region pmPFC.

The ramping behaviour present during concordant trials is

not displayed during discordant trials. Further, region

pmPFC shows markedly different trial-averaged rate time-

courses compared to the other two regions. The pre-stim-

ulus activity is monotonic for pmPFC concordant, which

contrasts with a non-monotonic behavior in all other areas

and conditions where the baseline activity first dips and

then ramps up again and beyond the cue.

Finally, we now explore whether the trial-averaged data

whose dynamics we described above can be used in a

modeling context to reproduce the statistics of non-addi-

tivity described in the two previous sections.

Surrogate spike trains

Results with the surrogate point process model (see

‘‘Methods’’, ‘‘Surrogate point process model analysis’’

section) are presented in Figs. 8, 9 and 10. An inhomoge-

neous Poisson process rate is fitted to the trial-averaged

response for each neuron based on all spikes, rather than on

the principal components discussed in the preceding sec-

tion. In spite of different amounts of smoothing, namely for

kernel widths r ¼ 5ms for the surrogate analysis instead of

r ¼ 20ms for the PCA, the rate time courses are the same

for the surrogate analysis and the PCA.
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We compute Q and R from 100 trials (independent

samples from the trial-averaged rate) for each valid neuron

as described in ‘‘Methods’’, ‘‘Surrogate point process

model analysis’’ section. Given that R is a trial-averaged

quantity, we expect that it is always reproduced well by the

surrogate analysis. This is confirmed by the large p-values

close to 1 in the bottom panels of Figs. 8, 9 and 10. For

Q however (top panels in Figs. 8, 9 and 10), the results are

Fig. 7 PCA analysis. For each

response type and region of

interest, the firing rate time

course to which the PCA

analysis is applied is obtained

by averaging across all relevant

trials for one valid neuron. Top

three panels (blue lines) are for

the concordant trial type, while

the bottom three panels (orange

lines) are for the discordant trial

type. Left: First and second PCs

together with their explained

variance. Right: Weighted sum

of first and second PC. The

weighting factor j is given by

ratio of the explained variance

of the second and first principal

component, whose values are

indicated in the legend of the

left subplot
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markedly different. The p-values are smaller than for

R across regions, indicating that the surrogate analysis does

not capture the distribution for Q as well as for R. For

pmPFC concordant, the smallest mean p-value is obtained,
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followed by pmPFC discordant. Mean p-values for Q in

pre-SMA and SMA are larger than in pmPFC, but smaller

than for R. This indicates that the surrogate analysis for

Q works slightly better in pre-SMA and SMA than in

pmPFC, but worse than for R. Thus, non-additivity as we

have defined it is also reflected by how well trial-averaged

rates approximate single-trial quantities.

We note that the fraction of neurons that have R� 1 and

Q� 1 is approximately reproduced by the surrogate anal-

ysis. For pmPFC, neuron numbers with Q� 1 for concor-

dant/ discordant are 133.34/73.11 versus 140/81 in the data.

For R� 1, the corresponding numbers are 101.34/60.46

versus 104/58. Similar observations hold for the regions

pSMA and SMA (pSMA: nðQ� 1Þ: 65.92/48.08 versus 71/

52, nðR� 1Þ: 51.7/36.15 versus 51/35; SMA: nðQ� 1):

39.31/36.17 versus 43/36, nðR� 1Þ: 27.89/27.52 versus

27/29).

We conclude that Q and R are related (see also the Q-

R scatterplots in the lower parts of panel A2 and B2 in

Figs. 3, 4 and 5), but the surrogate analysis clearly only

captures the behavior of R and not of Q across all regions

and trial types. The agreement for both Q and R is better in

SMA than in pre-SMA and pmPFC. The agreement for R is

only slightly better in pre-SMA than in pmPFC.

Discussion

Summary and implications

We have presented a study of the single cell firing statistics

and a model for such statistics in different cortical areas

related to motor tactics and decision making. Our goal was

first to see whether non-additivity effects are at work in

these areas in shaping the pre- to post-stimulus transition in

cortical firing activity. We have uncovered a strong form of

non-additivity that manifests itself at the single trial level.

Only in region pmPFC, it involves a slight majority of

neurons decreasing their spike count in a post-stimulus

window in comparison to a window of same duration

immediately before the stimulus. The associated statistic

Q takes into account the trial-to-trial variability of pre- and

post-stimulus spike counts, as well as the trial-wise

covariations of these counts. This slight majority turns into

a slight minority when the spike counts forming the pre-to-

post count ratio are first averaged across trials, which

removes the correlated variability seen trial-to-trial. This is

the case in pmPFC for both concordant and discordant trial

type, and supports previously reported studies that this area

is the main player in the tactic selection and decision

process (Matsuzaka et al. 2012).

Hence, in pmPFC, the time courses of neural activity

before and after the stimulus show marked variability and

both increases and decreases in mean firing rate. In the two

remaining motor-related regions pSMA and SMA, this is

not as strongly the case: neurons more generically just

increase their firing rates after stimulus onset. This com-

plex modulation of neuronal activity in pmPFC might serve

as a neural correlate for successful tactic selection for

decision making during a two-choice forearm reaching

task. These results speak to the importance of paying

attention to the trial-to-trial statistics as well as to the

heterogeneity of responses across cell types in regions

underlying cognitive behaviour. Thus, they support the

view put forward by Shafi et al. (2007).

We have presented evidence for non-additive interac-

tions between spontaneous and evoked activity on the

cellular level of the single neuron including its association

with behavioral performance. Together with recent data on

the regional level of neural activity (He 2013; Huang et al.

2017; Wainio-Theberge et al. 2021), our results put the

generality of the commonly assumed additive model for the

relation between spontaneous and evoked activity into

doubt. This, as also demonstrated in our data, carries major

implications for assessing the relationship between stimu-

lus-induced activity and behavior.

The analysis of the experimental data point to the fact

that the statistic Q, in which the numerator and denomi-

nator are evaluated on a trial-to-trial basis, differ from

those using an average of Npre and Npost across trials, which

forms the basis of the statistic R. In parallel, the CV of

spike counts systematically increases after the cue (not

shown). The correlated fluctuations in the relative size of

pre-and post-stimulus counts for individual trials are

washed away in the averaging operation. Trials that see a

large increase in spike count after stimulus onset can

therefore dominate and tilt the results to a ratio R ¼ hNprei
hNposti

that can still be less than one for a given neuron. While this

is not a strong effect, it is significant (Fig. 6). It may be

related to the manner in which we have estimated the rate

for each neuron, but it is nevertheless a property of an

inhomogeneous process with the rate as we computed it

with a standard smoothing kernel (‘‘Methods’’, ‘‘Surrogate

point process model analysis’’ section and Figs. 8, 9 and

10).

The neural ensemble where most neurons have Q� 1 is

thus only present in region pmPFC. In fact, the size of the

neural ensemble with Q� 1 monotonically decreases from

pmPFC to pre-SMA to SMA (Figs. 3, 4 and 5). Why might

such an ensemble endow the monkey with a neural basis

for cognitive processes that leads to fast and successful

decision making in the presence of a cue-response conflict?

Whereas the answer of this question is well beyond the

scope of the present study, we speculate that such non-

additive subensembles function as a neural correlate for
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mental preparation in anticipation of a stimulus, that in the

experiments analyzed here takes the form of a go-cue,

prompting the well-trained monkey to press either a left or

right button. Differently put, we hypothesize that the non-

additive sub-ensemble sets the state for mental processes

that then lead to the tactic selection and ultimately suc-

cessful behavior in the form of correct button presses.

Answering this question would require a selective silencing

of the non-additive subensemble.

Different mechanisms may underlie the observations of

strong non-additivity that our analyses reveal. They can be

supported by special single cell input-output functions and/

or by circuitry effects involving differential responses of E

and I neurons, but pinpointing this mechanism is not pos-

sible given the available experimental data. The cue likely

changes the E-I balance of inputs to the neuron under

consideration. But not knowing whether a given neuron is

of E or I type, along with the notorious complexity of

cortical circuitry with E cells and different types of I cells

(some of which inhibit each other), impedes the narrowing

down of possibilities. One can speculate, e.g. by assuming

that a strongly non-additive cell with both R[ 1 and

Q[ 1 is an E cell. Its activity will decrease if it receives

more inhibition and/or less excitation, i.e. its net input

decreases following the cue. This suggests that neurons

whose activities go down are E cells; it would be less likely

for the activity of pre-synaptic I cells to go down in this

scenario, unless this decreased inhibition were counter-

acted by an even larger decrease in excitation from the

network following the cue. A similar story can be elabo-

rated in the case where the recorded cell is of I-type. A

more subtle possibility could implicate one inhibitory

population I1 inhibiting another inhibitory population I2.

Then, if the cue increases the activity of I1, the activity of

I2 would drop, and a recording of I2 would be interpreted

as strong non-additivity due to increased inhibition. An

alternate scenario would see the cue somehow decrease the

activity of I1, thus raising that of I2, thus decreasing that of

the E cells. In this scenario, the strong non-additivity would

be seen directly in I1, as well as in the E cell as a conse-

quence of disinhibition of I2.

Only more detailed modeling of an EI network with

different hypotheses for the effect of a ‘‘cue’’ input could

make predictions about the outcomes, and this would entail

many control simulations. This is also the case for the more

subtle situations where Q[ 1: the Poisson neurons repro-

duce some of the statistics well, except for pmPFC con-

cordant. Then, all that we can say is that these pmPFC

neurons, whatever their internal firing dynamics and inputs

are, behave the least like inhomogeneous Poisson neurons.

This may be due to network effects, i.e. the changes in the

net input to the cell. But this may also arise in part from

distinct deviations of pmPFC single neuron firing

properties from generic Poisson spiking, e.g. in the form of

nonlinearities and adaptation which will add correlations

between firing events with, and even without a stimulus

(Braun et al. 2017).

The surrogate analysis (Figs. 8, 9 and 10) further

enabled us to show that only the trial-averaged quantity

R can be convincingly modeled by an inhomogeneous

Poisson process whose time-dependent rate has been fitted

from the individual trials for that neuron. For Q, which

reflects more reliably what the neuron actually did on a

given single trial, the surrogate analysis breaks down in

region pmPFC, especially for concordant trials. It is more

reliable in pre-SMA and further still in SMA. Thus, this

surrogate analysis enables the distinction between the three

areas. One can argue that the surrogate-based distinction

between the concordant and discordant cases for pmPFC

shows that the statistics employed by these neurons are

most altered under the two experimental conditions, and

that tactic selection may somehow utilize - or impose -

these different firing patterns. This also speaks to the pre-

viously reported distinction between pmPFC and the pre-

SMA and SMA with respect to decision making.

More detailed modeling is required to better reproduce,

and thus understand, the response variability seen for

concordant pmPFC and the other areas and trial types. For

now we can also add that the surrogate model can repro-

duce similar pre- and post- stimulus spike counts, but not

their ratio on a single-trial basis. Since the simple inho-

mogeneous Poisson model can’t account for the behavior

of Q, it is likely that more assumptions, i.e. mathematical

features, need to be incorporated in the model. These fea-

tures could offer more insight into the origin of the finer

statistical structure of the pre-to-post activity changes (see

discussion on ‘‘Methodological limitations’’ section

below).

A further possibility that we considered in devising a

surrogate analysis would be to perform a rate estimate for

each trial for each neuron. Then we could compute the

statistics Q and R anew for each trial from multiple real-

izations of the resulting inhomogeneous Poisson process.

We felt however that, although this approach would likely

lead to better fits to the observed statistics, it would amount

to an over-fitting of the data from which little could be

learned. Future work could focus on unraveling the char-

acteristics of the trial-averaged rate time course that lead to

the observed statistics.

There is much interest in the origins of the variability in

evoked cortical responses at the cellular level, dating back

at least to the seminal work of Arieli et al. (1996) and

Azouz and Gray (1999). Later studies have quantified the

various types of interactions between spontaneous and

evoked activity including non-additive interactions ((He

2013; Northoff et al. 2010; Huang et al. 2017). The last
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decade has seen efforts to pin down contributions from

various mechanisms that prepare the state of the system

such as oscillatory tendencies (Haslinger et al. 2006; Curto

et al. 2009), or memory of past stimuli (Marcos et al.

2013). It continues to this day with dynamical modeling

studies of neural activity that consider the impact of the

stimulus on the phase space trajectories available to the

system (Ponce-Alvarez et al. 2015). A recent study has

even predicted how the variability of cortical activity due

to the chaotic motion combined with stochastic synaptic

transmission is compatible with a temporal code for spikes

in response to a deterministic input (Nolte et al. 2013). It

remains to be seen whether there are further distinctions

between areas and conditions that could be made in our

data on the basis of temporal coding rather than spike

counts. Headway into this question could build on such

modeling efforts involving more biophysically realistic

cellular and synaptic dynamics.

Our PCA analysis in Fig. 7 reveals that the time course

of the two main components capture around 80% of the

variance of the data in all regions and for both trial types.

Interestingly, the PC1?PC2 activity exhibits little quali-

tative difference between the concordant and discordant

conditions for both the pSMA and SMA regions, but this is

not the case for the pmPFC region. In contrast, two features

stand out from the pmPFC results.

Firstly, the concordant and discordant conditions differ

both before and after the stimulus. Prior to the stimulus, the

concordant stimulation sees a monotonic increase in PC

activity, while the discordant condition displays a non-

monotonic activity. Post-stimulus, the concordant condi-

tion has a bi-phasic character, exhibiting a narrow peak

followed by a trough. This differs from the discordant

condition which first dips and then has a broad peak fol-

lowed by a monotonic decrease. Secondly, the behavior of

the pre-stimulus period is monotonic for pmPFC concor-

dant, while for all other areas and conditions, a non-

monotonic behavior appears.

The obvious difference in the shape of the PC responses

between pmPFC and the other regions supports the dis-

tinctive character of this region in terms of its implication

in tactic selection and decision making. The same can be

said regarding the salient difference between PC responses

in the pmPFC concordant and discordant cases. This cor-

tical area is clearly at work producing separate response

features for separate trial types.

Overall, pmPFC behaves differently than the other two

areas with respect to the statistics of Q, R and the PCA.

Furthermore, in the surrogate analysis, pre-SMA and SMA

show more similar results than pmPFC for Q. Thus, our

analysis using pre-post stimulus statistics further supports

the special role pmPFC plays in terms of tactic selection.

Methodological limitations

The fact that the simplest inhomogeneous Poisson process

model does not account for the pre-post changes in firing

statistics for Q in all areas (although the agreement for

SMA and pre-SMA is clearly better than for pmPFC,

Figs. 8, 9 and 10) raises interesting questions about the

cellular and network dynamics that underlie firing in those

cases. We have considered only inhomogeneous Poisson

processes with zero deadtime, i.e. with no absolute

refractory period following a spike. While refractory

effects may not be expected at low firing rates, certain

cortical neurons nevertheless can exhibit threshold increa-

ses or other adaptive properties following spiking, making

the Poisson spiking with time-dependent rate picture

potentially too simplistic. Pushing the analysis in this

direction could enhance the agreement between the firing

behaviors of the surrogate model and those observed in the

data, leading perhaps to more distinctions between the

areas and conditions, and providing more precise targets

with which to eventually validate network models of those

areas.

Ultimately, repeating the experiments over the same

areas but with optogenetically tagged neurons would

enable a parsing out of the effects related to neural sub-

types, e.g. to principal cells versus interneurons and asso-

ciated circuitry. Finally it may be that there is a story

behind the neurons that do not significantly change their

firing rate based on our Pearson correlation coefficient

criterion and which we therefore excluded from our anal-

ysis. Other statistics may reveal responsiveness and in turn

this may alter the conclusions of our study.

Conclusion

In conclusion, we here demonstrate a novel form of strong

non-additivity in the interaction between pre-stimulus and

post-stimulus activity on the cellular level of neuron

ensembles in the medial prefrontal cortex of macaque. This

non-additivity highlights that a majority of trials see spike

counts decrease following a cue stimulus, in contrast to the

ratio of pre-to-post trial-averaged counts. Our data show

additive and non-additive sub-ensembles, the proportions

of which vary between the regions and the concordant

versus discordant trial type. The temporal dynamics of

firing of the non-additive sub-ensemble in pmPFC, and

associated fine structure of the firing statistics, stands apart

from that in the other regions. This further supports the

distinctive nature of pmPFC activity and its closer associ-

ation with decision making in motor tasks involving mul-

tiple tactics as reported in previous studies based solely on
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post-stimulus statistics (Matsuzaka et al. 2012, 2016). A

surrogate data analysis reveals that the behavior of the trial-

averaged quantity R is well modeled by an inhomogeneous

Poisson process in which the time-dependent firing rate is

the neuron-specific trial-averaged rate. Our data at the

cellular level complement recent results on the regional

level with fMRI and extend the relevance of non-additivity

of rest-stimulus interactions to complex behaviors relating

to decision making.
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J, Li N, Macklin JJ, Phillips JW, Mensh BD, Branson K,

Hantman AW (2015) Cortex commands the performance of

skilled movement. eLife 4:e10774

Haslinger R, Ulbert I, Moore CI, Brown EN, Devor A (2006)

Analysis of LFP phase predicts sensory response of barrel cortex.

J Neurophysiol 96(3):1658–1663

He BJ (2013) Spontaneous and task-evoked brain activity negatively

interact. J Neurosci 33:4672–4682

Huang Z, Zhang J, Longtin A, Dumont G, Duncan NW, Pokorny J,

Qin P, Dai R, Ferri F, Weng X, Northoff G (2017) Is there a

nonadditive interaction between spontaneous and evoked activ-

ity? Phase-dependence and its relation to the temporal structure

of scale-free brain activity. Cereb Cortex 27:1037–1059

Kisley MA, Gerstein GL (1999) Trial-to-trial variability and state-

dependent modulation of auditory-evoked responses in cortex.

J Neurosci 19:10451–10460

Laub PJ, Taimre T, Pollett PK (2015) Hawkes processes. arXiv1507.

02822 [math.PR]

Lewis PAW, Shedler GS (1979) Simulation of nonhomogeneous

Poisson processes by thinning. Nav Res Logist Q 26:403–413

Liang B, Zhang L, Barbera G, Fang W, Zhang J, Chen X, Chen R, Li

Y, Lin DT (2018) Distinct and dynamic on and off neural

ensembles in the prefrontal cortex code social exploration.

Neuron 100:700-714.e9

Llinás RR, Leznik E, Urbano FJ (2002) Temporal binding via cortical

coincidence detection of specific and nonspecific thalamocortical

inputs: a voltage-dependent dye-imaging study in mouse brain

slices. Proc Natl Acad Sci 99:449–454

Lynch LK, Lu KH, Wen H, Zhang Y, Saykin AJ, Liu Z (2018) Task-

evoked functional connectivity does not explain functional

connectivity differences between rest and task conditions. Hum

Brain Mapp 39:4939–4948

Marcos E, Pani P, Brunamonti E, Deco G, Ferraina S, Verschure P

(2013) Neural variability in premotor cortex is modulated by

trial history and predicts behavioral performance. Neuron

78:249–255

Cognitive Neurodynamics

123

https://doi.org/10.1007/s11571-021-09702-0
https://doi.org/10.1007/s11571-021-09702-0
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/arXiv1507.02822
http://arxiv.org/abs/arXiv1507.02822


Matsuzaka Y, Akiyama T, Tanji J, Mushiake H (2012) Neuronal

activity in the primate dorsomedial prefrontal cortex contributes

to strategic selection of response tactics. Proc Natl Acad Sci

109:4633–4638

Matsuzaka Y, Tanji J, Mushiake H (2016) Representation of

behavioral tactics and tactics-action transformation in the

primate medial prefrontal cortex. J Neurosci 36:5974–5987

Nolte M, Reimann MW, King JG, Markram H, Muller EB (2013)

Cortical variability amid noise and chaos. Nat Commun 10:3792

Northoff G, Qin P, Nakao T (2010) Rest-stimulus interaction in the

brain: a review. Trends Neurosci 33:277–284

Pachitariu M, Lyamzin DR, Sahani M, Lesica NA (2015) State-

dependent population coding in primary auditory cortex. J Neu-

rosci 35:2058–2073

Ponce-Alvarez A, He BJ, Hagmann P, Deco G (2015) Task-driven

activity reduces the cortical activity space of the brain:

experiment and whole-brain modeling. PLOS Comput Biol

11:1–26

Shafi M, Zhou Y, Quintana J, Chow C, Fuster J, Bodner M (2007)

Variability in neuronal activity in primate cortex during working

memory tasks. Neuroscience 146:1082–1108

Sylvester CM, Shulman GL, Jack AI, Corbetta M (2009) Anticipatory

and stimulus-evoked blood oxygenation level-dependent modu-

lations related to spatial attention reflect a common additive

signal. J Neurosci 29:10671–10682

Tsodyks MV, Skaggs WE, Sejnowski TJ, McNaughton BL (1997)

Paradoxical effects of external modulation of inhibitory

interneurons. J Neurosci 17:4382–4388

van Vugt B, Dagnino B, Vartak D, Safaai H, Panzeri S, Dehaene S,

Roelfsema PR (2018) The threshold for conscious report: signal

loss and response bias in visual and frontal cortex. Science

360:537–542

Wainio-Theberge S, Wolff A, Northoff G (2021) Dynamic relation-

ships between spontaneous and evoked electrophysiological

activity. Commun Biol 4:741

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Wilhelm Braun1,2 • Yoshiya Matsuzaka4 • Hajime Mushiake5 • Georg Northoff3 • André Longtin2
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