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Abstract
Affective temperaments have been described since the early 20th century and may play a cen-

tral role in psychiatric illnesses, such as bipolar disorder (BD). However, the neuronal basis of

temperament is still unclear. We investigated the relationship of temperament with neuronal

variability in the resting state signal—measured by fractional standard deviation (fSD) of Blood-

Oxygen-Level Dependent signal—of the different large-scale networks, that is, sensorimotor

network (SMN), along with default-mode, salience and central executive networks, in standard

frequency band (SFB) and its sub-frequencies slow4 and slow5, in a large sample of healthy sub-

ject (HC, n = 109), as well as in the various temperamental subgroups (i.e., cyclothymic,

hyperthymic, depressive, and irritable). A replication study on an independent dataset of

121 HC was then performed. SMN fSD positively correlated with cyclothymic z-score and was

significantly increased in the cyclothymic temperament compared to the depressive tempera-

ment subgroups, in both SFB and slow4. We replicated our findings in the independent dataset.

A relationship between cyclothymic temperament and neuronal variability, an index of intrinsic

neuronal activity, in the SMN was found. Cyclothymic and depressive temperaments were asso-

ciated with opposite changes in the SMN variability, resembling changes previously described in

manic and depressive phases of BD. These findings shed a novel light on the neural basis of

affective temperament and also carry important implications for the understanding of a poten-

tial dimensional continuum between affective temperaments and BD, on both psychological and

neuronal levels.
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1 | INTRODUCTION

1.1 | Affective temperaments

The idea of temperament arises from the antique Greek authors but,

at the beginning of the 20th century, Kraepelin (1921) renewed their

concept when clinically observing a continuum between premorbid

temperament and full-blown affective pathology. A century later,

Akiskal conceptualized and operationalized four affective tempera-

ments: the cyclothymic, hyperthymic, depressive, and irritable

(Akiskal & Akiskal, 2005b; Placidi et al., 1998).

Affective temperaments can be characterized by different pat-

terns of expression in the basic psychic components including psycho-

motricity, thought and mood (Supporting Information Figure S2). For

instance, from a psychomotor point of view, the depressive tempera-

ment can be characterized by low energy levels while the hyperthymic

and cyclothymic temperaments by high energy levels, stable or unsta-

ble respectively, and the irritable temperament by dysphoricPaola Magioncalda and Matteo Martino contributed equally to this work
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restlessness (Rovai et al., 2013). Regarding thought and cognitive

behaviors, the depressive displays indecision and a tendency to worry,

while the hyperthymic and cyclothymic are usually full of plans, more

stable or highly variable respectively, and the irritable is frequently

brooding (Rovai et al., 2013). The mood of the depressive is frequently

marked by gloominess, while the hyperthymic displays emotional

intensity; moreover, the cyclothymic is characterized by emotional

instability, and the irritable often shows an irritable mood (Rovai

et al., 2013).

Affective temperaments play a key role in affective disorders

(Akiskal & Akiskal, 2005b; Evans et al., 2005; Perugi et al., 2012) and

exert an impact on symptoms and course of bipolar disorder

(BD) (Akiskal, 2000; Iasevoli et al., 2013; Perugi et al., 2012). In partic-

ular, the link between cyclothymic temperament and BD is well estab-

lished (Akiskal, 2001; Akiskal & Akiskal, 2005b; Perugi, Hantouche, &

Vannucchi, 2017). Accordingly, effective temperaments may represent

behavioral and biological endophenotypes that can affect the clinical

presentation of psychiatric disorders, like BD (Perugi et al., 2012).

However, their neurobiological underpinnings need to be clarified.

1.2 | Neurobiology of temperament

To date, few neuroimaging studies have investigated affective tem-

peraments. Cyclothymic temperament was found to be related to gray

matter volume in the left medial frontal gyrus as well as to activation/

deactivation of the left lingual gyrus during memory or judgments

tasks (Hatano et al., 2014; Kodama et al., 2015; Mizokami et al.,

2014). Temperamental features have also been investigated using

Cloninger's model (Cloninger, 1986). A relationship between the

cyclothymic temperament and high scores in novelty seeking

(NS) subscale was found [Akiskal et al., 2005; Maremmani et al., 2005;

Rozsa et al., 2008], hence making NS as a proxy of cyclothymic tem-

perament. In neuroimaging studies, NS has been related to increased

gray matter volume in the left middle frontal gyrus, and to increased

structural connectivity between the striatum, orbitofrontal cortex, hip-

pocampus, and amygdala (Kyeong, Kim, Park, & Hwang, 2014). NS has

been associated to a functional clustering of basal ganglia and prefron-

tal cortex, and to increased power of low-frequency oscillations in the

medial part of prefrontal cortex (Kyeong et al., 2014; Nakao et al.,

2013). Finally, to date, only one study explored the correlation

between NS and resting state networks (RSNs), showing a negative

correlation between NS and functional connectivity between the

regions of salience network (SN) (Li et al., 2017).

However, the investigation of brain's spontaneous activity is of

great importance as one would assume intrinsic patterns of tempera-

ments (as structured by the different psychic dimensions, that is,

thought, affectivity, and psychomotricity) to be related to analogous

intrinsic pattern of brain activity (rather than task-evoked activity), as

organized in the RSNs. Accordingly, different RSNs are involved in dis-

tinct functions and can therefore be linked to the aforementioned psy-

chic dimensions. Specifically, the sensorimotor network (SMN), as being

central for sensory processing and motor functions (Gottlich et al.,

2013; Huang et al., 2015), may be crucial for the psychomotor dimen-

sion. On the other hand, the default-mode network (DMN), that regu-

lates internal thoughts and affects (Christoff, Gordon, Smallwood,

Smith, & Schooler, 2009; Davidson, 2000; Mason et al., 2007), may be

implicated in affective and cognitive dimensions. Finally, other well-

defined networks are the SN, which responds to the degree of subjec-

tive salience and is implicated in the reward system (Goulden et al.,

2014; Menon, 2011), and the central-executive network (CEN), that

links cognitive and executive functions (Goulden et al., 2014). The

relationship of these various networks to affective temperaments

remains unclear though.

RSNs are mainly investigated using functional connectivity. How-

ever, recent studies in both healthy and BD have shown that yet

another measure like neuronal variability (operationalized as standard

deviation (SD) of the amplitude of resting state activity) is related to

neuronal processing of incoming stimuli and neuronal outputs

(Basalyga & Salinas, 2006; Faisal, Selen, & Wolpert, 2008; Lugo,

Doti, & Faubert, 2008; Ward, 2003; Zou et al., 2008; Zuo et al., 2010),

thus being central in mediating the internal initiation of sensorimotor

and cognitive behavior (Garrett et al., 2013; Garrett, Kovacevic,

McIntosh, & Grady, 2010; Garrett, Kovacevic, McIntosh, & Grady,

2011; Garrett, McIntosh, & Grady, 2014; Martino et al., 2016;

Northoff et al., 2018). Neuronal variability has been investigated in

the range of low-frequency oscillations (standard frequency band –

SFB: 0.01–0.10 Hz), which have been further subdivided into two

sub-frequency bands: slow4 (0.027–0.073 Hz), which is stronger in

the SMN regions, and slow5 (0.01–0.027 Hz), which is stronger in the

DMN regions (Balduzzi, Riedner, & Tononi, 2008; Buzsaki & Draguhn,

2004; Fox & Raichle, 2007; Lee, Northoff, & Wu, 2014; Xue, Li, Weng,

Northoff, & Li, 2014; Zuo et al., 2010). This makes neuronal variability

an ideal candidate for investigating resting state activity in the differ-

ent networks as related to the different affective temperaments.

1.3 | Aims and hypotheses

The general aim of our study was to investigate the neural underpinnings,

as measured by the resting state neuronal variability within the various

RSNs, of affective temperaments in a large cohort of healthy subject.

We hypothesize that different, that is, opposite, patterns in psy-

chic dimensions which characterize the different temperaments

(e.g., excited psychomotricity in the cyclothymic and hyperthymic

temperaments vs. inhibited psychomotricity in the depressive temper-

ament) show different, that is, opposite, patterns of neuronal variabil-

ity in distinct RSNs (e.g., the SMN).

2 | MATERIALS AND METHODS

2.1 | Participants and assessment

Participants were recruited from the Genoa metropolitan area (Italy).

The study has been conducted on 109 healthy controls (HC) aged

from 18 to 60 (Supporting Information Table S1). The Ethics Commit-

tee of San Martino Policlinic Hospital of Genoa approved the study

and written informed consent was obtained from all participants. Each

participant was evaluated using the semi-structured version of the

Temperament Evaluation of Memphis, Pisa, Paris and San Diego Scale

(TEMPS-I) to assess affective temperaments (i.e., cyclothymic,
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hyperthymic, depressive, and irritable) (Akiskal & Akiskal, 2005a;

Akiskal et al., 1998 ; Placidi et al., 1998). Affective temperaments are

dimensional construct (Akiskal, 2001), all four components

(i.e., cyclothymic, hyperthymic, depressive, and irritable) are present in

each subject, but only one gives the dominant temperament. Accord-

ingly, TEMPS-I is organized in four different subscales (one for each

component) and a total score is calculated as a sum of the subscale's

items. Every subject obtains a z-score for each temperamental

subscale, and the highest determines the dominant temperament

(Akiskal et al., 1998; Placidi et al., 1998; Supporting Information

Figure S1). Thus, according to the TEMPS-I, the sample was subdi-

vided into 23 cyclothymics, 39 hyperthymics, 27 depressives, and

20 irritables (Supporting Information Table S1).

Inclusion criteria were as follows: age between 18 and 60 and

ability to provide written informed consent. Exclusion criteria were as

follows: psychiatric disorders; neurological diseases (stroke, cerebral

vascular malformations, or epilepsy); previous head injury with loss of

consciousness (for 5 or more minutes); severe or decompensated

somatic diseases, current alcohol, and substance abuse (during the

preceding 3 months); history of alcohol or substance dependence; his-

tory of abuse of synthetic or new drugs; pregnancy and lactation; left-

handedness; the inability to undergo an magnetic resonance imaging

(MRI) examination (claustrophobia, metal implants, and so forth); his-

tory of treatment with chemotherapy or brain radiotherapy.

2.2 | fMRI data acquisition

Images were acquired using a 1.5-T GE scanner with a standard head

coil. Foam pads were used to reduce head motion and scanner noise.

Functional MRI (fMRI) scanning was carried out in the dark, with par-

ticipants instructed to keep their eyes closed, to relax, and to move as

little as possible. Functional images were collected using a gradient

Echo Planar Imaging (EPI) sequence sensitive to Blood-Oxygen-Level

Dependent (BOLD) contrast (TR/TE = 2,000/30 ms, flip angle = 90�,

FOV = 24 cm). Whole-brain volumes were acquired in 33 contiguous

4-mm-thick transverse slices, with a 1-mm gap and 3.75 × 3.75-mm2

in-plane resolution. For each participant, fMRI scanning lasted 5 min

and acquired a total of 150 scans. In addition, 3D T1-weighted

anatomical images were acquired for all participants in a sagittal orien-

tation by means of a 3D-SPGR sequence (TR/TE = 11.5/5 ms, IR =

500 ms, flip angle = 8�, FOV = 25.6 cm) with an in-plane resolution

of 256 × 256, and slice thickness of 1 mm.

2.3 | Data analysis

Processing analyses were performed using AFNI (http://afni.nimh.nih.

gov/afni [Cox, 1996]). The first two volumes of each functional time

series were discarded. The remaining functional images were slice-

timing corrected and aligned (head motion correction). Each partici-

pant's motion was assessed by means of translation/rotation, and an

exclusion criterion (translation>2 mm, rotation>2�; in each direction)

was set. The T1 anatomical images of all subjects were normalized to

the Talairach space. Resting state data, masked with the T1 images,

were then spatially transformed into the Talairach space (Talairach &

Tournoux, 1988), resampled to 3 × 3 × 3 mm3 and spatially smoothed

(6 mm). The estimated head motion and the mean time series from the

WM and the cerebrospinal fluid were used as covariates in the correla-

tion computation (Fox et al., 2005; Saad et al., 2012). The data were

then filtered with a band-pass filter within the standard frequency band

(SFB) of 0.01–0.1 Hz, which is thought to reflect mainly neuronal fluctu-

ations (Biswal, Yetkin, Haughton, & Hyde, 1995; Fox & Raichle, 2007;

Zhang & Raichle, 2010). On the basis of recent findings in HC

(Buzsaki & Draguhn, 2004; Zuo et al., 2010), the data were then filtered

with two separate bands within the SFB: slow4 (0.027–0.073 Hz) and

slow5 (0.01–0.027 Hz). These frequencies are not affected by physio-

logical variables, like respiration and aliased cardiac signals, that fall in

the other ranges (slow3 and slow2; Cordes et al., 2001; Zuo

et al., 2010).

Then, the neuronal variability—operationalized as SD of the ampli-

tude of resting-state BOLD signal, which represents an indirect proxy

of neuronal activity—was calculated in SFB, slow4, and slow5; the

ratio between SD for each frequency band and the entire range

(0–0.25 Hz) was then calculated, thus obtaining a normalized index of

SD, that is, fractional SD (fSD), in SFB, slow4 and slow5, as a measure

of frequency-specific contribution of total variability (which is less

sensitive to artifacts; Basalyga & Salinas, 2006; Faisal et al., 2008;

Garrett et al., 2010; Garrett et al., 2013; Garrett et al., 2014; Garrett,

Kovacevic, et al., 2011; Lugo et al., 2008; Ward, 2003; Zou et al.,

2008; Zuo et al., 2010). The subject-level voxel-wise fSD maps were

standardized into subject-level z-score maps per brain volume by

subtracting the mean voxel-wise fSD obtained for the whole brain,

then dividing by the standard deviation (SD) across voxels (Gotts et al.,

2013; Hoptman et al., 2010; Saad et al., 2012). Next, according to the

literature, spherical regions of interest (ROIs) with a radius of 6 mm

were placed in the Talairach coordinates of all cortical nodes of each

network: the SMN (Gottlich et al., 2013), the DMN (Laird et al., 2009),

the SN (Seeley et al., 2007) and the CEN (Seeley et al., 2007)

(Figure 1). Then fSD values in SFB, slow4, and slow5 were extracted

from all of the nodes. Finally, the mean fSD of all nodes was calculated

within each RSNs.

2.4 | Statistical analysis

The relationship between temperament and fSD in the different RSNs

was investigated.

First, a correlation between each temperamental z-scores

(i.e., cyclothymic, hyperthymic, depressive, and irritable) and the fSD

in the various RSNs (i.e., SMN, DMN, SN, and CEN) in SFB was

performed in the whole sample, using a Spearman partial correlation

analysis with age, sex and motion as covariates.

Second, the sample was subdivided according to the subject's

dominant temperament score, (i.e., cyclothymic, hyperthymic, depres-

sive, and irritable). An ANCOVA (with age, gender, and motion as

covariates) followed by Bonferroni post hoc tests were performed

between subgroups for fSD in those RSNs that showed significant

results from the previous correlation analysis. The same analysis was

then performed for the other RSNs, as control.

Finally, the same analysis steps were carried out in slow4 and

slow5, to specify the contribution of subfrequency bands on our

findings.
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All the results were thresholded at a corrected p < .05 (Bonferroni

correction was carried out for multiple comparisons). The statistical

analyses were performed in SPSS version 23 (SPSS Software Inc.,

Chicago, IL).

3 | RESULTS

We investigated the relationship between temperament and network

fSD using two different approaches.

First, we investigated the correlation in the whole sample of HC

between the mean z-scores obtained for each temperamental

subscale and the fSD in the different RSNs in SFB. The cyclothymic

z-score showed a significant positive correlation specifically with the

SMN fSD in SFB (ρ = 0.296; p = .002), but not with other RSNs

(i.e., DMN, SN, CEN). No significant correlation was detected for the

other temperamental z-scores (i.e., hyperthymic, depressive, and

irritable; Figure 2a; Supporting Information Table S2a).

Second, basing on previous result, we compared the SMN fSD in

SFB between the different temperamental subgroups, performing an

ANCOVA (with age, gender, and motion as covariates). A significant

difference between subgroups was found (F = 4.209; p = .008). Bon-

ferroni corrected post hoc analysis revealed a significantly higher

SMN fSD in SFB in the cyclothymic subgroup when compared to the

depressive one (p = .007); no other significant results were found for

the SMN. As control analysis, potential differences between the tem-

peramental subgroups were also investigated for the other networks

(i.e., DMN, SN, and CEN), and ANCOVAs yield no significant results

(Figure 2b; Supporting Information Tables S3 and Table S4a).

FIGURE 1 ROIs. Abbreviations: ROIs = regions of interest;

SMN = sensorimotor network; DMN = default-mode network;
SN = salience network; CEN = central executive network [Color
figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Relationships between temperaments and fSD in resting state networks. (a) Correlation between cyclothymic z-score and fSD in

resting state networks in SFB. Spearman correlation (with age, gender, and motion as covariates) between temperamental z-scores
(i.e., cyclothymic, hyperthymic, depressive, and irritable) and fSD in RSNs (i.e., SMN, DMN, SN, and CEN) in SFB, in the whole sample. Results are
corrected with Bonferroni test for multiple comparisons. (b) Comparison of fSD in resting state networks in SFB between the temperamental
subgroups. ANCOVAs (with age, gender, and motion as covariates) and Bonferroni post hoc tests of fSD in RSNs (i.e., SMN, DMN, SN, and CEN)
in SFB between the temperamental subgroups (i.e., cyclothymic, hyperthymic, depressive, and irritable). Corrected p < .01**. Abbreviations:
RSNs = resting state networks; SMN = sensorimotor network; DMN = default-mode network; SN = salience network; CEN = central executive
network; fSD = fractional standard deviation; SFB = standard frequency band; CYC = cyclothymic; HYP = hyperthymic; DEP = depressive;
IRR = irritable [Color figure can be viewed at wileyonlinelibrary.com]
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Finally, SMN findings were further explored and characterized in

the subfrequency bands slow4 and slow5 (using the same approach as

for SFB). A positive correlation between the cyclothymic z-score and

the SMN fSD was found in the whole sample in slow4 (ρ = 0.259;

p = .007), while no correlation was observed in slow5 (Figure 3a; Sup-

porting Information Table S2b). The ANCOVA of SMN fSD showed a

significant difference between the temperamental subgroups in slow4

(F = 2.9; p = .039); in particular, the Bonferroni post hoc analysis

revealed significantly higher SMN fSD in slow4 in the cyclothymic tem-

perament when compared to the depressive (p = .027). No significant

difference was found between subgroups in slow5 (Figure 3b; Support-

ing Information Table S4b).

3.1 | Replication study in an independent dataset

To replicate our findings, we applied the same analysis steps to an inde-

pendent data set which consisted of 121 HC and is part of an openly

available fMRI resting-state data set (OpenfMRI database UCLA

Consortium for Neuropsychiatric Phenomics LA5c Study—CNP:

https://openfmri.org/dataset/ds000030/). Although the sample was

not characterized according to the TEMPS, all subjects have been

tested with a battery of scales including the Temperament and Charac-

ter Inventory (TCI) instrument for assessing Cloninger temperaments.

The NS from the TCI is associated with the cyclothymic temperament

(Akiskal et al., 2005; Maremmani et al., 2005; Rozsa et al., 2008); this

allows to indirectly replicate our result on the neuronal background of

temperaments, and more specifically on the relationship between cyclo-

thymic temperament and SMN fSD, using the TCI data. For each partic-

ipant, images were acquired using a 3 T scanner. Functional images

were collected using a gradient 5 min length Echo Planar Imaging (EPI)

sequence sensitive to BOLD contrast (TR/TE = 2,000/30 ms). Anatomi-

cal images used were three-dimensional T1-weighted anatomical

images (TR/TE = 2.53/0.331 ms). For more detailed information, see

the website. We applied the same processing steps to these data as in

our main sample to obtain the fSD in the SMN.

Considering the relationships between NS and cyclothymic tem-

perament (Akiskal et al., 2005; Maremmani et al., 2005; Rozsa et al.,

2008), as well as the relationship between cyclothymic temperament

and SMN fSD (observed in our main sample), we investigated the cor-

relation between the NS (as proxy of cyclothymic temperament) and

the SMN fSD in SFB. A positive correlation was found (ρ = 0.195;

p = .039), coherently with our main finding (Figure 4).

FIGURE 3 Relationships between temperaments and fSD in SMN in Slow4 and Slow5. (a) Correlation between cyclothymic z-score and fSD in

the SMN in slow4 and slow5. Spearman correlation (with age, gender, and motion as covariates) between temperamental z scores
(i.e., cyclothymic, hyperthymic, depressive, and irritable) and fSD in the SMN in slow4 and slow5, in the whole sample. Results are corrected with
the Bonferroni test for multiple comparisons. (b) Comparison of fSD in the SMN in slow4 and slow5 between the temperamental subgroups.
ANCOVAs (with age, gender and motion as covariates) and Bonferroni post hoc tests of fSD in the SMN in slow4 and slow5 between the
temperamental subgroups (i.e., cyclothymic, hyperthymic, depressive, irritable). Corrected p < .05*; p < .01**. Abbreviations:
SMN = sensorimotor network; fSD = fractional standard deviation; CYC = cyclothymic; HYP = hyperthymic; DEP = depressive; IRR = irritable
[Color figure can be viewed at wileyonlinelibrary.com]
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4 | DISCUSSION

4.1 | Main findings

Our main findings are the following: (a) in the whole sample of HC the

cyclothymic z-score is positively correlated to the SMN fSD in SFB;

(b) the SMN fSD in SFB is significantly increased in the cyclothymic

temperament subgroup compared to the depressive temperament sub-

group; (c) the relationship between SMN fSD and cyclothymic tempera-

ment concerns the faster frequency of slow4 rather than the slower

frequency of slow5; (d) our finding is further supported by a positive

correlation between NS from TCI (as proxy of cyclothymic tempera-

ment) and SMN fSD (detected in an independent dataset). Together,

our results demonstrate a specific relationship between cyclothymic

score and neuronal variability in the SMN, which shows an opposite

pattern between the cyclothymic (i.e., high SMN fSD) and depressive

(i.e., low SMN fSD) temperaments. Thus, our data show for the first time

neural correlates of intrinsic brain functioning for affective tempera-

ments, specifically cyclothymic versus depressive temperaments in HC,

also carrying major implications for psychiatry and especially for BD.

4.2 | Sensorimotor network and cyclothymic
temperament

Our findings show a strict relationship between neuronal variability in

the SMN and the cyclothymic component of temperament. The variabil-

ity of neuronal activity has been proposed as a central feature for the

“tonic” ongoing activity of the brain and this activity is a fundamental

substrate for the “phasic” or stimulus-driven activity which permits spe-

cific behaviors (Garrett et al., 2013). Consequently, an increase of vari-

ability in a neural system can enhance the detection of weak signals,

allowing subthreshold neurons to fire and facilitating outputs, thus

affecting the neuronal processing of incoming stimuli and neuronal

outputs (Basalyga & Salinas, 2006; Faisal et al., 2008; Garrett et al.,

2013; Lugo et al., 2008; Ward, 2003). Considering that the SMN is

involved in processing of incoming sensory stimuli and motor outputs

(Basalyga & Salinas, 2006; Faisal et al., 2008; Garrett, McIntosh, &

Grady, 2011; Gottlich et al., 2013; Huang et al., 2015; Lugo et al., 2008;

Ward, 2003; Zou et al., 2008; Zuo et al., 2010), the setting of threshold

for external or internal stimuli by decreases or increases in neuronal

variability in the SMN might affect different patterns in the behavioral

manifestation of psychomotricity in subjects with cyclothymic and

depressive temperaments. In particular, the increased neuronal variabil-

ity that makes the SMN more reactive to internal and external stimuli

for initiating movements might result in NS with over-reactions to exter-

nal stimuli and tendency to act with impulsivity, core features of the

cyclothymic temperament. On the contrary, decreased neuronal variabil-

ity in SMN might results in inhibited psychomotricity with low energy

levels and less reactivity to external stimuli (Perugi et al., 2017; Rovai

et al., 2013), as manifested in the depressive temperament (Figure 5).

This particular relationship between SMN fSD and cyclothymic/

depressive temperaments is further confirmed by its specific occur-

rence in slow4 rather than slow5, in accordance with previous data

showing stronger power of slow4 specifically in the sensorimotor

areas (Zuo et al., 2010). Moreover, our findings are indirectly con-

firmed by the replication study in an independent dataset where NS

was positively correlated to the SMN fSD (since cyclothymic and

depressive temperaments have been positively and negatively associ-

ated with the TCI NS, respectively; Akiskal et al., 2005; Maremmani

et al., 2005; Rozsa et al., 2008). Cloninger described the NS as respon-

sible for the behavioral activation system that is involved in responses

to positive stimuli (Cloninger, 1987; Cloninger, Svrakic, & Przybeck,

1993; Kyeong et al., 2014). Thus, these data suggest that changes in

neuronal variability in the SMN affect the relationship between sen-

sory input and psychomotor response, as manifested in opposite way

in the cyclothymic and depressive temperaments.

On the other hand, hyperthymic temperament did not show any

significant relationship with SMN fSD, despite it is characterized by

high energy levels and increased psychomotricity (Akiskal, 2004; Rovai

et al., 2013). This might depend on specific psychomotor pattern of

hyperthymics that is more stable and less sensitive to external stimuli

with respect to the cyclothymics. Moreover, no significant relation-

ships were found between neuronal variability in the other networks

(i.e., DMN, SN, and CEN) and temperaments. This might suggest the

specificity of the relationship between SMN fSD and psychomotor

behavior as manifested in the cyclothymic/depressive temperaments,

while the proper investigation of other temperaments and their

psychic dimensions might need different neuronal measures or differ-

ent temperamental constructs.

In summary, we can speculate that the more is the neuronal vari-

ability in the SMN (an indirect index of intrinsic neuronal activity that

favors the motor response to incoming stimuli), the more is the excita-

tion of psychomotor activity as manifested in the cyclothymic tempera-

ment. On the other hand, reduced neuronal variability in the SMN could

underpin an inhibition of psychomotricity, as manifested in the depres-

sive temperament. However, future investigations are needed to con-

firm such correspondence between neuronal variability in the SMN and

psychomotricity.

FIGURE 4 Replication of results in an independent dataset.

Spearman correlation (with age, gender, and motion as covariates)
between TCI Novelty Seeking score and fSD in the SMN in SFB, in
the whole sample. p < .05*. Abbreviations: TCI = Temperament and
Character Inventory; SMN = sensorimotor network; fSD = fractional
standard deviation; SFB = standard frequency band [Color figure can
be viewed at wileyonlinelibrary.com]
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4.3 | Implications for psychiatric disorders

Interestingly what we observe in HC is in line with results of our prior

work on BD where we found a shift of the DMN/SMN fSD balance

towards the SMN in mania and the opposite in depression (Martino

et al., 2016). Psychomotricity in mania is usually described as increased,

unstable, and influenced by external stimuli (as manifested in symptoms

like hyperactivity and distractibility). This shows similarities with the

physiological pattern of cyclothymic temperament, hypothetically repre-

senting its pathological side. On the contrary, psychomotricity in

depression is typically inhibited and behavior withdrawn from the envi-

ronment, potentially representing the pathological side of the depres-

sive temperament (Kraepelin, 1902; Minassian et al., 2010; Northoff,

2014; Northoff, 2016a; Northoff, 2016b; Perugi et al., 2017; Rovai

et al., 2013). These results on neuronal variability in the SMN suggest a

continuum between affective temperaments and BD, in accordance

with Kraepelinian clinical observations and the conceptualization of

bipolar spectrum (Ghaemi, 2013; Ghaemi & Dalley, 2014; Kraepelin,

1921). Thus, we hypothesize fSD in SMN as a proxy of psychomotor

behaviors, both in physiology and pathology. Future studies are needed

to better clarify the common ground and specific differences between

temperament, BD, and their relationship to the underlying neuronal var-

iability in SMN. This view is also well compatible with the NIMH

Research Domains Criteria (RDoC) approach which is mostly focused

on clinical dimensions and on a neuroscience-based classification of

psychiatric disorders rather than on their diagnostic categorization

based on clinical consensus (Cuthbert, 2014; Insel et al., 2010).

4.4 | Limitations

Images were acquired using a 1.5-T scanner. Thus, the analysis

concerned only cortical areas. Moreover, the replication study was

performed on a 3-T data set, confirming our main findings.

5 | CONCLUSION

We here report, for the first time, an association between neuronal

variability in SMN and cyclothymic/depressive temperament in

healthy. Neuronal variability in SMN is higher in cyclothymic tempera-

ment and lower in depressive temperament. This, in turn, could

explain their opposite behavioral pattern with regard to psychomotri-

city, which is increased in cyclothymic and decreased in depressive

temperaments. Our findings complement recent observations of

abnormal neuronal variability in SMN in BD, suggesting a neuronal

continuum between affective temperaments in healthy and BD, as

well as neuronal variability in SMN as a proxy of psychomotricity. This

is well in accordance both with Kraepelin's original description of

affective disorders and with the recently introduced RDoC classifica-

tion. Hence, our findings carry far-reaching implications for psychiatry

to obtain more specific, patient-based, and individualized biomarkers

of disease.
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