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RESEARCH PAPER
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ABSTRACT
Environmental factors, such as culture, are known to shape individual variation in brain activity 
including spontaneous activity, but less is known about their population-level effects. Eastern and 
Western cultures differ strongly in their cultural norms about relationships between individuals. For 
example, the collectivism, interdependence and tightness of Eastern cultures relative to the 
individualism, independence and looseness of Western cultures, promote interpersonal connect-
edness and coordination. Do such cultural contexts therefore influence the group-level variability 
of their cultural members’ spontaneous brain activity? Using novel methods adapted from studies 
of inter-subject neural synchrony, we compare the group-level variability of resting state EEG 
dynamics in Chinese and Canadian samples. We observe that Chinese subjects show significantly 
higher inter-subject correlation and lower inter-subject distance in their EEG power spectra than 
Canadian subjects, as well as lower variability in theta power and alpha peak frequency. We 
demonstrate, for the first time, different relationships among subjects’ resting state brain dynamics 
in Chinese and Canadian samples. These results point to more idiosyncratic neural dynamics 
among Canadian participants, compared with more shared neural features in Chinese participants.
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Introduction

The brain’s spontaneous activity has gained increasing 
attention in neuroscience. Rather than being considered 
merely a control state for measuring stimulus- or task- 
induced activity, it exhibits its own intrinsic spatial and 
temporal features (Fox et al., 2005; Northoff, 2012, 2013a,  
2013b, 2018; Northoff et al., 2020; Raichle, 2015). Spatial 
features include functional connectivity between differ-
ent brain areas (Ding et al., 2011; Mantini et al., 2007; 
Menon, 2011; Zhang et al., 2020) while temporal features 
include the structure of neural oscillations (Buzsaki,  
2006). Spontaneous activity is characterized by oscilla-
tions in different frequency bands ranging from delta 
(1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz) to 
gamma (30-80 Hz) (Buzsaki, 2006; Buzsáki et al., 2013). 

These temporal dynamics, as measured in resting state 
recordings, modulate a variety of different cognitive 
functions like self (Bai et al., 2016; Huang et al., 2016; 
Kolvoort et al., 2020; Sugimura et al., 2021; Wolff et al.,  
2019), consciousness (Benwell et al., 2017, 2021; Northoff 
& Zilio, 2022; Zilio et al., 2021), working memory 
(Maguire & Schneider, 2019; Van Dam et al., 2015), delib-
erate cognitive processes (Pei et al., 2023), processing 
speed (Ouyang et al., 2020), and social cognition (Spreng 
& Andrews-Hanna, 2015). However, the ways in which 
the intrinsic dynamics of the brain’s spontaneous activity 
are shaped by the respective environment remain not 
fully clear.

While much attention has been paid to genetic fac-
tors underlying spontaneous brain activity (Cui et al.,  
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2016; Foo et al., 2020; Richiardi et al., 2015; Sarkar et al.,  
2016; Wang et al., 2015), it is clear that environmental 
factors also shape spontaneous neural dynamics (also 
referred to as “resting-state dynamics”): recent estimates 
suggest that up to 33% of variability in functional con-
nectivity is attributable to shared environmental inputs 
(Teeuw et al., 2019). Several environmental factors have 
been identified which may play such a role: these 
include childhood trauma (Chernyak et al., 2013; 
Duncan et al., 2015; Lu et al., 2017), socioeconomic 
status (Chan et al., 2018; Maguire & Schneider, 2019; 
Ramphal et al., 2020; Tooley et al., 2020), environmental 
enrichment (Sampedro-Piquero et al., 2018), and culture 
(Alahmadi et al., 2016; Knyazev et al., 2012, 2018; Kraus 
et al., 2021; Luo et al., 2020; Wang et al., 2013; Zhang 
et al., 2022).

The above findings demonstrate that environmental 
factors can shape individual differences in the spatio-
temporal dynamics of spontaneous activity, providing 
an important source of variation in neural phenotypes. 
Additionally, environmental factors can constrain spon-
taneous activity also in other ways. Beyond increasing or 
decreasing the value of individual neural traits (e.g., 
power and functional connectivity), environmental fac-
tors can also constrain the population-level variability of 
neural phenotypes. An environment rich in different 
resources and ecological niches may encourage greater 
phenotypic diversity (Tilman, 2000). Such population- 
level variability remains to be investigated on the neural 
level with respect to inter-subject or inter-member rela-
tionships among different cultures. In the present work, 
we hypothesize that the sociocultural context may play 
such a role, with cultural norms promoting variability or 
encouraging more common neural phenotypes.

A variety of cultural differences have been found in 
previous cross-cultural studies. For example, compared 
to Western cultures (e.g., North America and Europe), 
Eastern cultures (e.g., East Asia) are more collectivistic 
(and less individualistic) – people shaped by Eastern 
cultures value their connectedness with other group 
members, aim to maintain group harmony, and are 
strongly motivated by collective goals (Hook et al.,  
2009; Triandis, 1988). Accordingly, people raised in 
Eastern cultures tend to perceive and process their 
selves in a more interdependent way than people raised 
in Western cultures, that is, in relation to others rather 
than in distinction from others (Han & Ma, 2014; Henrich 
et al., 2010; Kitayama et al., 2020; Kraus et al., 2021; 
Markus & Kitayama, 1991). More specifically, compared 
to people from Western cultures, East Asians are more 
inclined to adjust themselves to their environment and 
to conform to others’ opinions to maintain interpersonal 
harmony, rather than emphasizing their personal 

uniqueness and stable individual traits (Chang et al.,  
2011; Heine, 2001; Ishii et al., 2014; Kim & Markus, 1999; 
Kitayama et al., 2009; Torelli, 2006); they thus show more 
of “a same self” rather than “a different self” (Triandis,  
1993). In terms of adaptive strategies, there is evidence 
that East Asian people (e.g., people in mainland China) 
show more social learning (i.e., imitation of others) than 
Westerners (Chang et al., 2011; Mesoudi et al., 2015). In 
addition, East Asian countries generally score high on 
tightness, meaning they have strong norms and low 
tolerance for deviant behavior to promote coordination 
among members, a phenomenon referred to as being 
a tight (as opposed to loose) society (Gelfand et al.,  
2011).

The above-mentioned cultural differences may con-
strain or promote variability among members of cul-
tural groups. Greater emphasis on social 
connectedness and collective goals, greater preference 
for harmony with others, higher frequency of social 
learning, stronger norms and lower tolerance for devi-
ant behavior, etc., in Eastern cultures than in Western 
cultures, together lead us to reasonably predict that 
lower inter-individual variability of spontaneous neural 
activity would be observed in participants from 
Eastern cultures rather than those from Western cul-
tures. This assumption of cultural influences on spon-
taneous neural activity is supported by initial 
observations on the influence of these cultural differ-
ences (especially collectivism vs. individualism, and 
interdependence vs. independence) on individual- 
level traits (Knyazev et al., 2012, 2018; Kraus et al.,  
2021; Luo et al., 2020; Wang et al., 2013).

Moreover, there is a growing body of evidence sug-
gests that inter-subject neural synchrony during expo-
sure to natural stimuli or cognitive tasks is closely related 
to inter-subject similarity of personality (Liu et al., 2019; 
Matz et al., 2022), shared understanding of narratives 
and ideology (De Bruin et al., 2023; Nguyen et al.,  
2019), as well as predicts collective performance 
(Reinero et al., 2021), popularity of musical performance 
(Hou et al., 2020), marital satisfaction (Li et al., 2022), and 
friendship (Parkinson et al., 2018). In short, similar neural 
responses may be the neural basis or result of shared 
understanding of personality and the world, social coor-
dination, and close social relationships. Although the 
similarity between individuals in spontaneous brain 
activity (relative to stimulus- or task-induced activity) 
remains to be investigated, it has been proposed that 
in social interaction our default mode network (DMN) 
dynamically shapes and is shaped by others’ brains to 
achieve neural alignment, thus enabling shared under-
standing and social communication (Yeshurun et al.,  
2021). This also supports our hypothesis of lower inter- 
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individual variability (i.e., higher inter-individual similar-
ity) in spontaneous activity in Eastern cultures which 
emphasize and promote social connectedness and 
coordination.

Methodologically, the influence of environmental fac-
tors on brain activity is traditionally operationalized on 
an individual level by, for instance, correlating neural 
traits (e.g., alpha power) in individual subjects with 
their individual values on a psychological variable (e.g., 
independent self-construal; see Kraus et al., 2021). 
Group-level investigation requires more methodological 
innovation to assess inter-subject variability. Inter- 
subject correlation (ISC), a method assessing the 
between-subject consistency, has been used in analyses 
of stimulus- or task-induced activity, for investigating 
common neural responses related to specific naturalistic 
stimulation or cognitive processes (Hasson et al., 2004; 
Nastase et al., 2019; Nguyen et al., 2019; Saha & Baumert,  
2020; Seghier & Price, 2018). It has recently also been 
employed in resting state conditions, where it was used 
to explore the variability of resting state networks in 
magnetoencephalography (Wens et al., 2014). These 
studies suggest the potential utility of this method to 
compare different groups in the level of inter-subject 
correlation or variability. That makes it suitable for our 
main goal.

The main goal of our study was to examine group- 
level differences in the inter-individual variability of rest-
ing state dynamics between Eastern (China) and 
Western (Canada) samples. Our first specific aim was to 
compare the inter-individual variability of the resting 
state power spectrum between Chinese and Canadian 
samples. We hypothesized greater commonality, i.e., 
higher inter-subject correlation and lower inter-subject 

variability, in the power spectrum among Chinese sub-
jects, compared to Canadian subjects.

Our second specific aim is the investigation of alpha 
peak frequency as second marker of the resting state 
dynamics. Alpha peak frequency is well known to exhibit 
high inter-individual differences (Klimesch, 2012; 
Ouyang et al., 2020; Ramsay et al., 2021; Wolff et al.,  
2019). This makes it a likely candidate in which to 
observe group-level differences in variability. We 
hypothesized that Chinese subjects will show lower 
inter-subject variance in their alpha peak frequency 
than Canadian subjects.

To test our hypotheses, we employed a novel meth-
odology, combining three distinct measures of inter- 
subject variability and similarity (see Figure 1, and 
Methods). Firstly, we employed inter-subject correlation 
(ISC) (Hasson et al., 2004; Nastase et al., 2019) to measure 
commonality between subjects in multivariate patterns 
such as neural power spectra. Secondly, we complemen-
ted the ISC by Euclidean distance, a metric commonly 
used in machine learning as a measure of similarity or 
dissimilarity (Dokmanic et al., 2015; Yu et al., 2020); we 
termed this measure inter-subject distance (ISD). Thirdly, 
we derived relevant metrics from the power spectra 
(including frequency band power and alpha peak fre-
quency), and then compared these between groups 
based on their coefficient of variation (CV, generally 
defined as the sample standard deviation divided by 
the sample mean).

In brief, we find greater commonality in neural 
measures of resting state dynamics among subjects 
from China, when compared with subjects from 
Canada. More specifically, Canadian subjects showed 
more heterogeneity in features of their eyes-closed 

Figure 1. Schematic of the methodological procedure of the study. The study procedure involves comparing inter-subject similarity of 
neural data, using two different procedures. In the first procedure, the raw data (power spectra) are used, and inter-subject correlation 
or distance is used to create a similarity/dissimilarity matrix; these matrices are then compared between groups. In the second 
procedure, various summary indices (frequency band power and alpha peak frequency) of the raw data are computed, and these are 
compared between groups with respect to their variability.
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EEG power spectra, as well as higher variability in theta 
band power and alpha peak frequency, relative to 
Chinese subjects. These neural findings were replicated 
in independent datasets, and they also hold across 
various control analyses (see Results and 
Supplementary Materials).

Methods

Samples

We recruited four datasets from China and Canada to 
study cultural differences in population-level variability 
of eyes-closed resting state EEG temporal dynamics 
(Table 1). All data were collected from healthy 
participants.

Our main datasets include the Canada 1 (CA1) and the 
China 1 (CN1). CA1 was originally collected to investigate 
the relationship between individual resting state 
dynamics and self-consciousness (Wolff et al., 2019). 
Here it was used to study cultural differences in the inter- 
individual variability of resting state dynamics. For this 
purpose, three Asian or Asian-Canadian subjects were 
excluded from the original 34 subjects in CA1. CN1 was 
originally used as a baseline for the study of stimulus- 
induced activity.

The pairing of the other two datasets, the Canada 2 
(CA2) and the China 2 (CN2) (Cai et al., 2020; Wolff et al.,  
2019), as well as their cross pairings with the main 
datasets (i.e., CA2 vs. CN1, and CA1 vs. CN2), were used 
as replications. The China 2 (CN2) is an open dataset 
from Gansu Provincial Key Laboratory of Wearable 
Computing, Lanzhou University, China (Cai et al., 2020).

Ethics approval

Written informed consent was obtained from all partici-
pants before the studies. All procedures for obtaining 
the datasets were approved by the ethics committees, 
including the ethics committees of the University of 

Ottawa Institute of Mental Health Research, the School 
of Psychology at the South China Normal University, and 
the Lanzhou University Second Hospital.

Electroencephalography acquisition and 
preprocessing

All recordings were carried out in subjects seated com-
fortably with their eyes closed, for varying durations. The 
equipment (company), online reference, sampling rate, 
electrode impedance and resting state recording dura-
tion of each EEG dataset are shown in Table 1.

To compare inter-subject heterogeneity of resting 
state EEG features, we standardized the preprocessing 
pipelines for each dataset. All EEG data were prepro-
cessed in EEGLAB (Delorme & Makeig, 2004), and down- 
sampled to 250 Hz. EEG data for CA1 and CN1 were cut 
to 2 minutes in length, and data for CA2 and CN2 were 
cut to 3 minutes. For each pair of datasets, electrodes 
which were not common to both caps were removed: 
this resulted in 57 electrodes for CA1 and CN1, and 31 
electrodes for CA2 and CN2. Next, recordings were band-
pass filtered from 1 to 30 Hz using an FIR filter, in order to 
avoid line-noise artifacts. High-amplitude artifacts were 
then cleaned and reconstructed using Artefact Subspace 
Reconstruction (Kothe & Jung, 2016). Data were then re- 
referenced to a common average reference. Finally, ICA 
decomposition was performed using the Infomax algo-
rithm in EEGLAB, and artefactual components were auto-
matically identified and removed using MARA (Winkler 
et al., 2011).

Calculation of EEG power spectra and 
power-spectrum-derived features

To assess the inter-subject variability of EEG dynamics, 
we computed power spectra and various power- 
spectrum-derived features. Power spectra were com-
puted separately for each channel using Welch’s method 

Table 1. The main and replication datasets with eyes-closed resting state EEG data.

Dataset Subject
Number 
(Female)

Age (Mdn;  
M; SD) Equipment (Company)

Online Reference; Sampling 
Rate; Electrode Impedance

Resting 
State 

Duration

CA1 Canadian 31 (17) 25; 30.58; 10.74 Neuroscan SynAmps amplifier with a 64-channel cap 
(Compumedics Neuroscan, Charlotte, NC, USA)

Right mastoid; 
1000Hz; 
Under 5 kΩ

5 minutes

CN1 Chinese 26 (8) 24; 27.15; 8.25 BrainAmp amplifier with a 64-channel cap (Brain Products 
GmbH, Munich, Germany)

FCz; 
1000Hz; 
Under 5 kΩ

2 minutes

CA2 Canadian 25 (14) 46; 45.88; 15.79 Brain Vision EasyCap with 32 Ag/AgCl electrodes (Brain 
Products GmbH, Munich, Germany)

Nose; 
500 Hz; 
Under 5 kΩ

3 minutes

CN2 Chinese 29 (9) 29; 31.45; 9.15 Net Amps Amplifier with a 128-channel HydroCel Geodesic 
Sensor Net (Electrical Geodesics Inc., Oregon Eugene, 
USA)

Cz; 
250Hz; 
Under 50 kΩ

5 minutes
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(Welch, 1967), as implemented in MATLAB R2016a. 
Power spectra were subsequently log-transformed 
(Smulders et al., 2018), and then averaged over all 
channels.

Each subject’s alpha peak frequency and individual 
alpha width were calculated using Corcoran et al.’s 
methods (Corcoran et al., 2018). Power in each frequency 
band was then calculated from the Welch power spectra 
using the individualized alpha band definitions. Delta 
was defined as 1–4 Hz. The theta band was defined as 
4 Hz to the lower bound of the subject’s alpha peak 
width, while the beta band was defined as the upper 
bound of the subject’s alpha peak width to 30 Hz. Power 
values were then log-transformed and averaged over all 
channels.

Calculation of eLORETA source time series

To determine if there were differences between regions 
with respect to the inter-subject variability of EEG spec-
tra and spectral features, we computed source-level time 
series using eLORETA (Pascual-Marqui et al., 2011), as 
implemented in Fieldtrip (Oostenveld et al., 2011). The 
standard boundary-element method headmodel 
included with Fieldtrip was used as a headmodel, and 
the Conte69 template (Van Essen et al., 2012) was used 
as a template sourcemodel. Regions of interest were 
defined using Brodmann areas, taken from the surface- 
based atlas (Van Essen et al., 2012).

Source-level time series (“virtual channels”) were first 
estimated at each vertex by multiplying the channel- 
level data by the eLORETA spatial filter. To get a single 
time series at each vertex, the three-time series esti-
mated (for the x, y, and z dipoles) were projected along 
the axis that explained the greatest variance using 
a singular value decomposition. Time series were subse-
quently averaged within each Brodmann area. We then 
computed power spectra and spectral features on each 
ROI time series using the same methods as described 
above.

Assessment of inter-subject variability of EEG 
dynamics

We assessed the inter-subject variability of EEG sig-
nals with two primary approaches. The first approach 
compared inter-subject correlation (ISC) and inter- 
subject Euclidean distance (ISD) between each sub-
ject’s power spectrum. We treated each subject’s EEG 
power spectrum as a vector, and computed a) 
Pearson correlation coefficient and b) Euclidean dis-
tance between each subject’s power spectrum and 

each other subject’s power spectrum. These calcula-
tions resulted in a symmetric N x N inter-subject 
correlation matrix and an inter-subject Euclidean dis-
tance matrix. Significant differences between cultural 
groups were assessed using a permutation test 
(Nastase et al., 2019). First, an observed test statistic 
for the difference between groups was calculated; 
this was the difference in the median inter-subject 
distance. To compute statistical significance, the 
assignment of subjects into cultural groups was ran-
domly shuffled 10,000 times, and the observed test 
statistics were compared with the permutation distri-
bution. The p value for the difference between the 
groups is the percentile of the observed test statistic 
within the permutation distribution. It is worth men-
tioning that the correlation coefficients were trans-
formed to z-scores before the comparisons between 
groups, using Fisher’s transformation (Nastase et al.,  
2019).

Next, we compared inter-subject variability of the 
EEG power spectrum metrics. For the alpha peak 
frequency, we used the coefficient of variation (CV) 
to compare relative variability. Statistical significance 
was assessed using the asymptotic test developed by 
Feltz and Miller (1996), as implemented in the CV- 
equality package in R (Marwick & Krishnamoorthy,  
2019). The CV was chosen as it reflects a measure’s 
relative variability, irrespective of multiplicative differ-
ences in the means of the samples; it is defined as 
the standard deviation divided by the mean. This 
measure is commonly used in organizational psychol-
ogy for comparing different groups (Carroll & 
Harrison, 1998); it has also recently seen use in EEG 
as a measure of relative variability (Wolff et al., 2019).

However, testing the CV was an invalid approach for 
log-transformed frequency-band power, as the log- 
transformed power included negative values (Salkind,  
2010). Therefore, we compared the CVs of the original 
(i.e., exponentiated) power values using a non- 
parametric permutation procedure. CV in this case 
was estimated using the formula from Koopmans 
et al. (1964), which is accurate for log-normal 
distributions: 

bcv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
es2

ln � 1
p

(1) 

We also tested for differences between cultures in the 
means of the power spectral features using Student’s 
t tests.

For topographical analyses, the steps above were 
repeated at each individual electrode: multiple compar-
isons were corrected for using false discovery rate cor-
rection (Benjamini & Yekutieli, 2001).
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Assessment of representational similarity between 
EEG power spectra and responses to the 
Self-Consciousness Scale items

Our main datasets (CA1 and CN1) also had psycho-
logical data from the Self-Consciousness Scale (SCS) 
available (Fenigstein et al., 1975; Scheier & Carver,  
1985), and thus they were also employed to investi-
gate whether inter-subject variability in resting state 
dynamics and inter-subject variability in self- 
reported personality are correlated. As mentioned 
above, with respect to stimulus- or task-induced 
activity, there is evidence that neural similarity 
between individuals is associated with their person-
ality similarity. Here the SCS was used as an example 
of self-reported personality. In previous studies, the 
SCS has been related to resting state dynamics on 
an individual level (Huang et al., 2016; Kolvoort 
et al., 2020; Wolff et al., 2019).

Subjects’ original responses to the SCS items were 
normalized by being expressed on a scale from 0 to 1, 
and each subject’s 22-item responses were treated as 
a vector to compute the Euclidean distance between 
subjects’ responses (see Supplementary Materials for 
details).

To investigate the relationship between the varia-
bility of resting state EEG dynamics and the varia-
bility of responses to the SCS items, we employed 
inter-subject representational similarity analysis 
(Nguyen et al., 2019). In this procedure, similarity 
matrices are constructed for each of the two mod-
alities (EEG power spectra and SCS item responses). 
Because the strongest group differences in variability 
were observed using Pearson correlation in the EEG 
power spectra and Euclidean distance for the SCS 
item responses (see Supplementary Materials for the 
results of the inter-subject distance analyses of 
responses to the SCS), these metrics were used to 
construct the similarity (or dissimilarity) matrices. 
Note that here Euclidean distance was log- 
transformed in order to ensure that the correlations 
with the power spectra similarity matrix were not 
outlier-driven. Representational similarity was then 
assessed by correlating the vector of the below- 
diagonal elements of these similarity matrices. 
Significance was computed by randomly shuffling 
the participants of one modality 10,000 times and 
recomputing the correlation: the p-value was com-
puted relative to this permutation distribution. This 
procedure was done once for the concatenated 
whole dataset (i.e., CA1 and CN1 together), and 
once for each of the datasets independently.

Control analyses for demographics

Since our samples were not matched with respect to 
demographics, we attempted to control for the influ-
ence of demographic variables on our analyses. 
Demographic factors could affect inter-subject variabil-
ity both due to their mean values (e.g., if women are 
more collectivistic and interdependent than men) and 
due to their homogeneity (e.g., samples which are highly 
similar in age may show lower inter-subject variability 
than samples with a large age range). In order to control 
for these two factors in our tests of relative variability 
(CV), we used a statistical framework based on the 
Levene’s test for equal variances of which the Brown- 
Forsythe test (Brown & Forsythe, 1974) is a variant. The 
p-value for the Brown-Forsythe test comes from an 
ANOVA on the absolute deviations of each subject’s 
value from the median value: 

zij ¼ yij � eyj
�
�

�
� (2) 

Where zij is the transformed response variable, yij is the 
original data point i from group j, and eyj is the median of 
group j. Schultz (1985) proposed a modified version of 
this test for comparing relative variability (CV); and in 
that case, the transformed response variable is: 

zij ¼
yij � eyj
�
�

�
�

eyj
(3) 

Since ANOVA is a special case of the general linear model 
(GLM), we controlled for demographic confounders by 
entering these as covariates into a general linear model 
on the transformed responses proposed by Schultz 
(1985). We entered both age and sex as covariates into 
these GLMs. Further, we transformed age according to 
Equation 3, and transformed sex by treating sex as 
a binary variable (0 or 1) and computing the absolute 
deviation from the mean within each sample. This gave 
us estimates of age and sex homogeneity, which we also 
entered as covariates. We computed p-values for each 
parameter in the model using a permutation test with 
10,000 permutations, as implemented in the permuco 
package in R (Frossard & Renaud, 2019).

In order to control for demographic and noise-related 
factors in our ISC and ISD results, we used a mixed- 
effects modeling procedure which is recommended for 
testing ISC with covariates (Chen et al., 2017; Nastase 
et al., 2019). The details of this procedure are described 
in G. Chen and colleagues’ study (Chen et al., 2017). 
Briefly, subject-related variance is accounted for in this 
model by including subjects as crossed random effects. 
In order to ensure normality, Euclidean distance values 
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were square-root-transformed for normality prior to this 
procedure. Pearson’s r values were transformed using 
Fisher’s z-transformation as described previously. This 
procedure allowed us to enter sex and age as covariates. 
We also considered age homogeneity by creating two 
variables for age: one reflecting the sum of ages 
between a participant pair, and the other reflecting the 
absolute value of their difference. We did not conduct 
the same procedure for sex, as this is already accounted 
for when considering the Male-Female subject-pair 
category.

Control analyses for signal-to-noise ratio

Differences in inter-subject variability in EEG could con-
ceivably be due to differences in signal-to-noise ratio 
between the groups, due either to different EEG ampli-
fiers, different recording conditions, or differences in 
brain or skull conductivity. To investigate this possibility, 
we assessed signal-to-noise ratio in our EEG data in 
several ways.

The first method was to consider within-subject varia-
bility as “noise”. While it is known that spontaneous 
fluctuations in neural activity are not entirely noise but 
contain functionally meaningful information (Uddin,  
2020), we considered them here as “noise” because 
even the functionally relevant components of intra- 
individual variation are confounders for our hypothesis. 
If Chinese subjects show increased inter-subject similar-
ity merely because they show greater intra-subject sta-
bility, this complicates our interpretation of inter-subject 
similarity as being reflective of Eastern cultural norms 
about relationships between individuals. As such, we 
computed the power spectrum and each power spectral 
feature in 30-second sliding windows with no overlap. 
We then computed the signal-to-noise ratio as the intra- 
class correlation coefficient (ICC), treating each sliding- 
window estimate as a “rater” for each subject’s EEG 
spectral feature (Bartko, 1966; Caceres et al., 2009; 
Fleiss & Shrout, 1978). We compared the ICCs between 
groups using a permutation test with 
10,000 permutations.

The second method we used was to include various 
measures of artifact contamination as covariates in our 
group comparisons. We computed three metrics 
obtained from our preprocessing pipeline assessing arti-
fact contamination: amount of data rejected by Artifact 
Subspace Reconstruction, percent variance retained 
after ICA component removal, and mean artifact prob-
ability of retained ICA components. The latter two are 
used in the HAPPE pipeline as metrics of preprocessing 
quality (Gabard-Durnam et al., 2018). These metrics were 
then used as covariates in our analyses as described 

above. As an estimate of noise, we also entered intra- 
subject variability into the model, computed as the 
coefficient of variation of each parameter across sliding 
window estimates.

Finally, we attempted to control for amplifier differ-
ences by cross-comparing the EEG datasets: comparing 
CA1 with CN2, and CA2 with CN1. In each case, we 
preprocessed the data again in order to make the num-
ber of electrodes equivalent between the datasets. Then, 
we followed the same methods described above in order 
to compare the inter-subject variability in EEG power 
spectral features.

Results

Chinese participants show less heterogeneity in 
resting state EEG spectral dynamics

In the introduction, we predicted greater neural com-
monality between subjects would be observed in the 
Eastern rather than Western samples, according to their 
different cultural orientations. We tested to see whether 
this pattern of sharing versus idiosyncrasy could be 
observed in eyes-closed resting state EEG recordings.

First, we computed resting state EEG power spectra 
for each subject in the main Canadian and Chinese 
datasets (CA1 and CN1). We next compared the inter- 
subject variability of these power spectra using inter- 
subject correlation (ISC) and inter-subject distance (ISD) 
(Figure 2). A permutation test with 10,000 permutations 
showed a significant difference in ISC (z = −2.28, p =  
0.0202) between the Canadian and Chinese datasets, 
with higher correlation between the Chinese subjects’ 
power spectra than the Canadians. A permutation test 
also revealed a marginally significant difference in ISD (z  
= 1.81, p = 0.0666), with distances between subjects 
being larger in the Canadian sample than in the 
Chinese sample. We observed that these variability dif-
ferences were mainly present in bilateral frontal regions 
for the ISC, and frontal and bilateral temporo-occipital 
regions for the ISD (Figure 2c). Together, these findings 
demonstrate that the spectral dynamics of resting state 
EEG are more consistent among Chinese participants 
than among Canadian subjects, where they are more 
heterogeneous.

Next, we computed features of the EEG spectral 
dynamics including alpha peak frequency and power in 
different frequency bands, and compared the relative 
variabilities of these features between the main 
Chinese and Canadian datasets. First, we compared the 
power in different frequency bands in terms of the 
means and variabilities of these power values between 
the two datasets (Figure 3a and b). While there were no 
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significant differences between the main datasets in 
mean power, we observed lower coefficient of variation 
(CV) in each frequency band in the Chinese dataset. This 
was significant in the theta band (z = −1.87, p = 0.0462), 
but not in any other band (delta: z = −0.819, p = 0.439; 
alpha: z = −1.48, p = 0.141; beta: z = 0.586, p = 0.577), 

using the permutation procedure described in the meth-
ods for log-normal data. Considering the topography of 
the theta power results, a similar spatial pattern to the 
ISC/ISD results was observed, with variability differences 
being most pronounced in temporo-occipital regions 
(Figure 3c).

Figure 2. Comparison of inter-subject variability in EEG power spectra between the main Canadian and Chinese datasets (CA1 and 
CN1). A) log power spectra for each group, estimated with Welch’s method; each line is one subject. B) Top: Inter-subject correlation 
(left) and Euclidean distance (right) matrices for each dataset. Bottom: Distribution of inter-subject correlation coefficients and 
Euclidean distances. Red line indicates mean, salmon-colored box indicates SEM, and purple box indicates SD. Asterisks indicate 
p values: (*) = p < 0.1, * = p < 0.05. C) topographical distribution of variability and group differences in variability of the power spectra, 
using inter-subject correlation (left) and inter-subject distance (right). Top: topographical distributions of the median inter-subject 
correlation (left) and Euclidean distances (right). Bottom: topographical distribution of p-values from a permutation test comparing 
the median inter-subject correlation (left) and Euclidean distance (right) between the Canadian and Chinese datasets. -log10 of the 
p-value is plotted; all p-values are FDR corrected. White dots indicate significant electrodes at p < 0.05 following FDR correction.
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Following observations of the power spectra, we 
then compared the samples based on variability of 
the alpha peak frequency (Figure 4a and b). It was 
found that the Chinese dataset displayed significantly 
lower CV in alpha peak frequency (χ2(1) = 4.06, p =  
0.0438). No difference in the mean alpha peak fre-
quency was found between samples (t(53) = −0.380, p  

= 0.705). The differences in alpha peak frequency varia-
bility followed a similar pattern to the original power 
spectrum results, with differences being most pro-
nounced in temporo-occipital and frontal regions, 
and with a tendency toward right-hemisphere laterali-
zation (Figure 4c). The above findings suggest that 
theta power and alpha peak frequency are more 

Figure 3. Inter-subject variability of power in different frequency bands. A) power spectral density (PSD) for the main Canadian and 
Chinese datasets, with schematic black bars to indicate the bounds of the frequency bands. B) Top: Box plots of the distributions of 
log-transformed delta, theta, alpha, and beta power. Red lines indicate mean, salmon box indicates SEM, and purple box indicates SD. 
Bottom: Bar plots of the means, and coefficients of variation of the data (CV calculated on the exponentiated data, as described in the 
methods). Asterisks indicate significant differences between groups: (*) = p < 0.1, * = p < 0.05, ** = p < 0.01. C) topographical 
distribution of variability and group differences in variability of theta power. Top: topographical distributions of the CV of theta power. 
Bottom: topographical distribution of p-values from the test comparing the CVs between the Canadian and Chinese datasets. -log10 of 
the p-value is plotted; all p-values are FDR corrected. White dots indicate significant electrodes at p < 0.05 following FDR correction.
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Figure 4. Comparison of variability in alpha peak frequency. A) power spectra, as in Figures 2 and 3, with alpha band highlighted. B) 
Top: Box plots of alpha peak frequency values for each dataset. Red line indicates mean, salmon-colored box indicates SEM, and purple 
box indicates SD; individual data points are also plotted in grey. Bottom: Bar plots of means and coefficients of variation of each 
dataset. Asterisks indicate significant differences between groups: (*) = p< 0.1, * = p < 0.05, ** = p < 0.01, *** = p < 0.001. C) 
topographical distribution of variability and group differences in variability of alpha peak frequency. Top: topographical distributions 
of the CV of alpha peak frequency. Bottom: topographical distribution of p-values from the test comparing the CVs between the 
Canadian and Chinese datasets. -log10 of the p-value is plotted; all p-values are FDR corrected. White dots indicate significant 
electrodes at p < 0.05 following FDR correction.
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similar among subjects in the Chinese sample than in 
the Canadian sample.

We finally assessed whether the differences in varia-
bility observed in our EEG data were localized to parti-
cular regions, for example default-mode network 
(DMN) regions known to be involved in self-related 
processing (Murray et al., 2015; Northoff, 2016; Qin 
et al., 2020). To this end, we conducted the same 
analyses on several regions of interest, whose activity 
was calculated using exact Low-Resolution 
Electromagnetic Tomography (eLORETA; Pascual- 
Marqui et al., 2011). These results are described in 
the Supplementary Materials (Supplementary Fig. S4). 
In brief, no particular region or set of regions appears 
to be consistently modulated by culture; group differ-
ences in variability found using different measures 
appear to be prominent in multiple regions. 
However, group differences in both power spectrum 
inter-subject distance and alpha peak frequency varia-
bility showed a slight tendency toward right hemi-
sphere lateralization. Overall, these findings suggests 
that the increased inter-subject consistency we 
observed in the Chinese subjects is not localized to 
specific regions. This, however, is a tentative inference 
given the low spatial resolution of source-localized 
EEG.

Taken together, the results show that Chinese par-
ticipants have significantly more similar resting-state 
EEG spectral dynamics. This was manifest in the over-
all power spectrum, as well as in specific features 
such as alpha peak frequency and theta band 
power. These differences in homogeneity were spa-
tially distributed, and occurred without comparable 
differences in mean power or peak frequency, sug-
gesting an overall more shared neural features in 
Chinese participants.

Replication of results in independent datasets

To increase the confidence in our results, we attempted 
to replicate our findings in two independent EEG data-
sets (see Methods and Supplementary Materials for 
more details). Preprocessing and analysis followed the 
same procedures as described above.

In general, the findings presented above were repli-
cated in the additional datasets: the Chinese replication 
dataset displayed lower ISDs in their power spectra, as 
well as lower variability in theta power and alpha peak 
frequency, than the Canadian replication dataset (see 
Supplementary Fig. S1-3). Similar results were also 
observed in cross-comparisons, i.e., when comparing 
the main Canadian and replication Chinese datasets 
and vice versa (see Supplementary Fig. S6–10). 

Additionally, except for the marginally significant differ-
ence in ISC of the power spectra between the two 
Chinese datasets (z = 1.79, p = 0.0724), no other signifi-
cant differences were found in within-culture compari-
sons (see Supplementary Table S15). These results 
suggest that cultural shaping of variability in sponta-
neous neural activity is a robust phenomenon, not lim-
ited to our main samples.

Representational similarity between EEG power 
spectra and SCS item response profiles

Previous studies have found that neural similarity 
between individuals correlates with their personality 
similarity, as mentioned in the introduction. As our 
main datasets also had data from the Self- 
Consciousness Scale (SCS), we investigated the relation-
ship between inter-subject variability of resting-state 
EEG dynamics and inter-subject variability of responses 
to the SCS items, using the inter-subject representa-
tional similarity analysis (Nguyen et al., 2019). The simi-
larity of responses to the SCS items is used here as an 
example of personality similarity.

In brief, this procedure involves creating inter-subject 
similarity matrices for both the EEG power spectra and 
the SCS item response profiles and correlating the 
below-diagonal elements of these matrices: 
a significant correlation indicates that subjects which 
are similar in their EEG power spectra are also similar in 
their SCS responses, suggesting a link between the EEG 
metrics and personality. Significance of the representa-
tional similarity is assessed with a permutation test.

We observed significant representational similarity 
between the EEG power spectra and the SCS responses 
across both datasets (Figure 5a: r = −0.246, p = 0.0002): 
note that the sign of the correlation is negative because 
the Pearson correlation measures similarity while the 
Euclidean distance measures dissimilarity. However, the 
result may partially be influenced by the group differ-
ences: as such, we carried out the same representational 
similarity analyses within each of the cultural groups. 
Within the Canadian dataset alone, we did not observe 
significant representational similarity (Figure 5b: r =  
−0.0683, p = 0.397); however, we did observe significant 
representational similarity within the Chinese dataset 
alone (Figure 5c: r = −0.302, p = 0.0202). When combin-
ing the p-values from the independent tests using 
Fisher’s method (Fisher, 1992), the overall effect was 
significant across both groups (p = 0.0468). These results 
indicate that the closer the resting state EEG power 
spectra between individuals, the closer their responses 
to the Self-Consciousness Scale items, especially in the 
Chinese sample.
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In addition, a permutation ANOVA with 10,000 permu-
tations on the distances between pairs of subjects’ nor-
malized 22-item responses showed a significant 
between-group difference (z = 2.97, p < 0.001, 
Bonferroni-Holm corrected), with the inter-subject dis-
tances being larger in the Canadian dataset than the 
Chinese dataset, which was consistent with the pattern 
of EEG results (see supplementary Fig. S11A; see 
Supplementary Materials for details on the methods). 
Considering the results of the representational similarity 
analysis, group differences in inter-subject variability of 
responses to the Self-Consciousness Scale items might 
be related to group differences in inter-subject variabil-
ity of resting state EEG dynamics.

Control analyses: Demographics, and noise

Demographics: We controlled for the influences of demo-
graphic variables such as age and sex. General linear 
models were created including age, sex, and the sample- 
wise homogeneity of these variables as covariates (see 
Methods for detailed procedures). These results are 
reported in the supplementary materials 
(Supplementary Tables S1–7). In brief, while demo-
graphic factors had numerical effects on some of the 
results (such as the alpha peak frequency findings), no 
demographic factor emerged as a consistent 

confounder, and findings generally remained significant 
in at least one of the main and replication datasets.

Signal-to-noise ratio: Differences in inter-subject 
variability in EEG could be due to differing signal-to- 
noise ratios in the EEG datasets. With this in mind, we 
performed three procedures to determine if signal-to- 
noise ratio influenced our results; results of these are 
reported in the supplementary materials. In the first 
procedure, we targeted intra-individual variability by 
computing each measure in 30-second sliding win-
dows, and subsequently computed the intra-class 
correlation coefficient as a measure of intra- 
individual reliability (Bartko, 1966; Caceres et al.,  
2009; Fleiss & Shrout, 1978) of the data (with each 
30-second window estimate serving as a “rater”). 
Reliability was generally higher in the Canadian data-
sets, indicating higher signal-to-noise ratio in these 
datasets: this is the opposite of what would be 
expected if technical artifacts in the Canadian data-
sets were driving the finding of increased inter- 
subject variability (Supplementary Fig. S5). In 
the second procedure, we included intra-subject 
variability (the operational definition of “noise” in 
the first procedure) and three metrics related to arti-
fact contamination as covariates in our EEG analyses: 
our results were generally robust to the inclusion of 
these covariates (Supplementary Tables S8–14).

Figure 5. Inter-subject representational similarity analysis of EEG power spectra and self-Consciousness Scale item responses. A) shows 
the overall representational similarity across both groups; B) and C) show representational similarity within the main Canadian and 
Chinese datasets, respectively. Within each panel, the distance matrix (calculated as 1 – Pearson’s r) of the EEG power spectrum is 
shown left, and the distance matrix for the SCS items (calculated as Euclidean distance) is shown right. A scatter plot of the 
representational similarity correlation is shown centrally: each dot is a pair of subjects. All p values shown are derived from 
a permutation test with 10,000 permutations.
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Discussion

Cultural differences in population-level variability 
of brain dynamics

While culture is known to shape individual variation in 
spontaneous brain activity (Knyazev et al., 2012, 2018; 
Kraus et al., 2021; Luo et al., 2020), it was not known prior 
to our study whether culture also shape population-level 
variability of spontaneous neural dynamics. We 
hypothesized that greater population-level commonal-
ity of brain’s resting state dynamics would be observed 
in Eastern (Chinese) participants rather than Western 
(Canadian) participants. The reason is that the cultural 
orientations shown in East Asian societies (e.g., China), 
such as collectivism which emphasizes social connected-
ness, interpersonal harmony and collective goals 
(Hofstede, 1984; Hook et al., 2009; Triandis, 1988), inter-
dependent self-construal and its preference for self- 
other harmony and conformity over deviance and 
uniqueness (Heine, 2001; Ishii et al., 2014; Kim & 
Markus, 1999; Kitayama et al., 2009, 2020; Markus & 
Kitayama, 1991; Torelli, 2006), preference for social learn-
ing over personal learning (Mesoudi et al., 2015), and 
tight society with strong norms and low tolerance for 
deviant behavior (Gelfand et al., 2011), may together 
encourage greater neural consistency among cultural 
members.

To test our hypothesis, a variety of datasets and novel 
methodological tools were employed. We observed that 
Chinese participants showed significantly higher inter- 
subject correlation and lower inter-subject distance in 
their EEG power spectra than Canadian participants, as 
well as lower variability in theta power and alpha peak 
frequency. Together, we demonstrate, for the first time, 
different relationships among subjects’ resting state 
brain dynamics in Chinese and Canadian samples. 
These results point to more idiosyncratic neural 
dynamics in Canadian participants, compared with 
more shared neural features in Chinese participants.

Furthermore, the results may shed light on the inter-
action between brain and culture, namely, the “encul-
turation” of brain (Northoff, 2021). The results indicate 
that the influence of sociocultural environment goes 
beyond the individual attitudes, cognitions and neural 
traits, and is manifest in the group-level neural makeup 
of cultures.

Sociocultural context encoded in the spontaneous 
brain activity

Notably, we saw higher neural commonality between 
subjects in the Chinese samples with respect to their 
resting state activity, without any cognitive task 

demands. This suggests that the information of socio-
cultural context (or inter-subjectivity) is already encoded 
in our brain’s spontaneous activity independent of any 
specific, conscious cognitive tasks.

Recent studies have linked resting state brain 
dynamics to social cognition; the default mode network, 
a network active during resting state conditions and 
implicated in self-related processing (Huang et al., 2016; 
Northoff et al., 2006), has been of particular interest (Mars 
et al., 2012; Spreng & Andrews-Hanna, 2015; Spreng et al.,  
2020). Similarly, a recent study revealed that brain’s spon-
taneous activity predicts animate (relative to inanimate) 
stimulus-induced activity (Scalabrini et al., 2019). These 
results suggest that the inter-subjectivity of our brain’s 
spontaneous activity might reflect in part the inter- 
subjectivity constructed by social cognition within speci-
fic cultural contexts. However, it is also possible that 
lower neural variability simply reflects the neural correlate 
of lower psychological variability during the EEG record-
ing, a plausible hypothesis given our findings regarding 
inter-subject representational similarity between the EEG 
power spectra and the Self-Consciousness Scale 
responses, and significantly lower inter-subject variability 
in self-report of self-consciousness in the Chinese dataset 
relative to the Canadian dataset (see Supplementary 
Materials for details). While our data are unable to contra-
dict this possibility, we note that either interpretation 
cements our main conclusion, namely that population- 
level inter-subject variability varies considerably between 
Eastern and Western cultures.

In addition, many recent studies have showed corre-
lations between neural similarity to stimuli or tasks and 
shared understanding of personality and the world, 
social coordination and intimate social relationship (De 
Bruin et al., 2023; Hou et al., 2020; Li et al., 2022; Liu et al.,  
2019; Matz et al., 2022; Nguyen et al., 2019; Parkinson 
et al., 2018; Reinero et al., 2021). For example, inter- 
subject similarity in personality predicts inter-subject 
synchronization of neural responses (Matz et al., 2022); 
similarity in the interpretation of narratives correlates 
with similarity in neural responses (Nguyen et al.,  
2019); and similarity in neural responses predicts friend-
ship (Parkinson et al., 2018). We also observed 
a correlation between the inter-subject similarity of rest-
ing state EEG power spectra and the inter-subject simi-
larity of the Self-Consciousness Scale responses, 
especially within the Chinese dataset. This supports 
Yeshurun et al.’s (2021) idea that our brains actively 
shape each other in social interactions to achieve neural 
alignment for mutual understanding and coordination.

The greater neural commonality shown in Chinese 
subjects may imply their more homogeneous under-
standing of personality and the world, which contributes 
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to their social harmony and social coordination. This is 
what Eastern cultures like Chinese culture value.

Methodological issues – Confounding factors and 
limitations

We conducted various control analyses to rule out the 
potential impact of demographic factors, different EEG 
amplifiers, and noise in the EEG data. There are never-
theless some limitations remaining.

While we replicated our findings in an additional 
Chinese dataset and an additional Canadian dataset, 
we did not have data to extend our findings to other 
Eastern and Western cultures. Further work should 
attempt to replicate these findings in other cultures, 
like Japan and the UK. In addition, future work should 
better explore the relationship between neural similarity 
and cultural orientations, by using scales, such as the 
Self-Construal Scale (Singelis, 1994), the Individualism- 
Collectivism Scale (Singelis et al., 1995).

Our results preliminary show that inter-individual 
similarity in resting state dynamics correlates with inter- 
individual similarity in responses to the Self- 
Consciousness Scale items. This neural similarity may 
also correlate with similarity in other psychological 
scales. The relationship of resting-state neural similarity 
to a shared understanding of personality and the world 
and to social harmony and coordination remains to be 
further explored and confirmed.

Besides, the population of immigrants and the degree 
of cultural diversity may also contribute to the inter- 
individual variability, especially in Canada. Excluding 
the Asian subjects from the Canadian samples at least 
partially controlled this issue.

Finally, we did not consider differences in genetic 
homogeneity; if for instance Chinese participants are 
genetically more homogenous, it may explain their 
higher degree of homogeneity in resting state EEG 
dynamics.

Conclusion

Eastern and Western cultures exhibit a variety of differ-
ences, for instance, collectivism vs. individualism, inter-
dependence vs. independence, high frequency of social 
learning vs. personal learning, tightness vs. looseness, 
etc. These differences all center around the idea of col-
lective vs. individual orientations, and all may constrain 
or promote variability among group members. 
Employing novel methods to test for cultural differences 
in population-level variability of neural phenotypes, we 
demonstrate that participants in Eastern cultures like 
China show greater neural commonality with each 

other than Western participants from Canada, with 
respect to their resting state EEG dynamics. The results 
reveal that the sociocultural environment may shape not 
only the individual-level features of resting state brain 
dynamics, but also second-order statistics such as the 
population-level variability of such features. The results 
improve our understanding of cultural variation in brain 
dynamics by showing a complex relationship between 
individual-level psychological and cognitive features 
and the group-level sociocultural environment.
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