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Two aspects of the low frequencyfluctuations of spontaneous brain activity havebeenproposedwhich reflect the
complex and dynamic features of resting-state activity, namely temporal variability and signal synchronization.
The relationship between them, especially its role in consciousness, nevertheless remains unclear. Our study ex-
amined the temporal variability and signal synchronization of spontaneous brain activity, as well as their rela-
tionship during loss of consciousness. We applied an intra-subject design of resting-state functional magnetic
resonance imaging (rs-fMRI) in two conditions: during wakefulness, and under anesthesia with clinical uncon-
sciousness. In addition, an independent group of patients with disorders of consciousness (DOC) was included
in order to test the reliability of our findings. We observed a global reduction in the temporal variability, local
and distant brain signal synchronization for subjects during anesthesia. Importantly, we found a link between
temporal variability and both local and distant signal synchronizations duringwakefulness: thehigher thedegree
of temporal variability, the higher its intra-regional homogeneity and inter-regional functional connectivity. In
contrast, this link was broken down under anesthesia, implying a decoupling between temporal variability and
signal synchronization; this decoupling was reproduced in patients with DOC. Our results suggest that there
exist some as yet unclear physiological mechanisms of consciousness which “couple” the twomathematically in-
dependent measures, temporal variability and signal synchronization of spontaneous brain activity. Our findings
not only extend our current knowledge of the neural correlates of anesthetic-induced unconsciousness, but have
implications for both computational neural modeling and clinical practice, such as in the diagnosis of loss of con-
sciousness in patients with DOC.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Recent studies of resting-state brain activity have contributed to
our understanding of organization and integration in large-scale
brain networks. From these significant findings, two aspects of the
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low frequency fluctuations (Biswal et al., 1995; Fox and Raichle,
2007; Zhang and Raichle, 2010) of spontaneous brain activity were
suggested. These features reflect the complex and dynamic features
of resting-state activity, temporal variability and signal synchroniza-
tion/correlation specifically.

In the first instance, there is evidence suggesting that temporal var-
iability is a central measure of large-scale brain activities (Deco et al.,
2009, 2011; Faisal et al., 2008; Garrett et al., 2010, 2011, 2013a,b; He,
2011; McIntosh et al., 2010; Shew et al., 2009, 2011; Vakorin et al.,
2011). Higher temporal variability in the resting-state has been ob-
served in regions that constitute the default-mode, as well as in the
thalamocortical networks (Zang et al., 2007). Furthermore, higher tem-
poral variability reflects a greater dynamic range of possible responses
to incoming stimuli. This is beneficial to the adaptability and efficiency
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of neural systems as it permits a greater range of response to a greater
range of stimuli (Garrett et al., 2013c). In contrast, when variability is
lacking, there is little capacity for the brain to explore its state space.
This increases the possibility of the system to remain rigidly in a single
state (Deco et al., 2009; Deco and Jirsa, 2012), making state-to-state
transitions more difficult, either spontaneously or when required
(Garrett et al., 2013c).

In the second feature, brain signal synchronization describes the de-
gree of coordination of brain activity within-regional homogeneity
(Zang et al., 2004; Zuo et al., 2010, 2013) and between-functional con-
nectivity (Biswal et al., 1995; Cordes et al., 2000; Greicius et al., 2003,
2004) regions. Unfortunately, these signal synchronization metrics
scale away temporal variability in their calculation. Nevertheless, the
examination of potential links between temporal variability and signal
synchronization is inherently interesting. Using resting-state functional
magnetic resonance imaging (rs-fMRI) and biologically informed com-
putational modeling (Deco et al., 2013; Wong and Wang, 2006), Yang
et al. (2014) demonstrated how alterations in local (recurrent self-
coupling) and distant (long-range coupling) signal synchronization im-
pact temporal variability in the context of schizophrenia — another ex-
tremeexample of a conscious state. Theirmodeling results revealed that
the temporal variability increased as a function of increasing local and
distant signal synchronization. It was also suggested that the observed
increase in temporal variability in schizophrenia may arise from in-
creased neural coupling at both local and long-range scales, leading to
a cortical network that operates closer to the edge of instability than
in awake healthy subjects (Yang et al., 2014). Importantly, this study
gave us an indication that the relationship between the temporal vari-
ability and signal synchronization may be conscious relevant. Evidence,
however, regarding the variety of the states of consciousness, is still
lacking.

Other studies in altered states of consciousness, such as in anes-
thesia and disorders of consciousness (DOC), have reported abnor-
mal temporal variability (Huang et al., 2014a,b) and decreased
signal synchronization in the frontoparietal and thalamocortical net-
works (Boveroux et al., 2010; Demertzi et al., 2014; Kotchoubey
et al., 2013; Mashour, 2006; Palanca et al., 2015; Schrouff et al.,
2011; Vanhaudenhuyse et al., 2010; White and Alkire, 2003). How-
ever, the exact relationship between the temporal variability and
signal synchronization, especially its functional role in conscious-
ness, was yet to be attempted.

With that in mind, the aim of our study was to examine said rela-
tionship: is there a connection between temporal variability and sig-
nal synchronization during wakefulness, and, if so, does this change
during loss of consciousness under anesthesia? To address this ques-
tion, we first applied an intra-subject design of rs-fMRI for a group of
subjects during two conditions: a) wakefulness, and b) under anes-
thesia with clinical unconsciousness. Next, in order to examine if
the result of anesthesia is reproducible in other altered states of con-
sciousness, which can in turn further rule out potential drug effects
of anesthesia, we included an independent group of patients with
disorders of consciousness (DOC), as well as a healthy control (HC)
group. Three resting-state measures were including in our analysis:
(1) the standard deviation (SD) of BOLD signal across time (Garrett
et al., 2010, 2011) was utilized for the examination of the temporal
variability of spontaneous brain activity (Huang et al., 2014a,b);
(2) the regional homogeneity (ReHo) was employed to measure
local signal synchronization (Zang et al., 2004; Zuo et al., 2010,
2013); and (3) the degree of centrality (DC) was determined in
order to examine distant signal synchronization (Buckner et al.,
2009; Di Martino et al., 2013; Zuo et al., 2012). Finally, using a
region-based correlation approach (He et al., 2010; He, 2011,
2013), we correlated these measures for both the awake and anes-
thesia conditions respectively, and examined the differences of
these correlations between the two states. An identical analysis
pipeline was applied to the DOC and HC groups.
Material and methods

Subjects during wakefulness and under anesthesia

Twelve subjects undergoing an elective trans-sphenoidal approach
for resection of a pituitary microadenoma were included in this study
(5 female; 26–62 years). The pituitary microadenomas were diagnosed
by their size (b10 mm in diameter without sella expansion) based on
radiological examinations and plasma endocrinal indicators. These pa-
tients were ASA (American Society of Anesthesiologists) physical status
I or II grade. The subjects had no history of craniotomy, cerebral neurop-
athy, or vital organ dysfunction. This study was approved by the Ethics
Committee of Huashan Hospital, Fudan University. Written informed
consent was obtained from all subjects.

Protocol of anesthesia

The subjects were randomly divided into two groups, those receiv-
ing intravenous propofol anesthesia (n = 6) and those receiving inspi-
ratory sevoflurane anesthesia (n = 6). Propofol, one of the intravenous
anesthetics, selectively modulates GABAA receptors by enhancing the
gating of the receptors by GABA (Hales and Lambert, 1991; Tomlin
et al., 1998) which in turn reduces neuronal excitability (Franks,
2006). Sevoflurane, one of the inhaled anesthetics, enhances GABAA

receptor function (Krasowski andHarrison, 1999) by increasing channel
opening, hereby enhancing inhibition at both synaptic and extra-
synaptic receptors (Hemmings et al., 2005). For the group receiving
propofol, a target-controlled infusion (TCI) was used to set plasma con-
centration of propofol at 3.0–5.0 μg/ml, followed by remifentanil
(1.0 μg/kg) and succinylcholine (1.5 mg/kg) to facilitate endotracheal
intubation. The TCI propofol was maintained at a stable effect-site con-
centration (4.0 μg/ml) to reliably induce an unconscious state (Xu et al.,
2009). For the group receiving sevoflurane, anesthesia induction was
completed with 8% sevoflurane in 100% oxygen, adjusting fresh gas
flow to 6 l/min, combinedwith remifentanil (1.0 μg/kg) and succinylcho-
line (1.0 mg/kg), and maintained with 2.6% (1.3 MAC) ETsevo in 100%
oxygen, fresh gas flow at 2.0 l/min. The concentration of sevoflurane
used in our study also fulfilled the requirement to maintain loss of con-
sciousness in patients classified as ASA physical status I or II (Katoh
and Ikeda, 1998). Considering the quick elimination of the analgesic
remifentanil and depolarized neuromuscular relaxant succinylcholine
from plasma, the effects of drugs on the brain during anesthesia can be
attributed solely to propofol or sevoflurane in each respective group.

After the induction of anesthesia, the subjects were ventilated with
intermittent positive pressure ventilation, setting the tidal volume at
8–10 ml/kg, the respiratory rate at 10–12 beats per minute, and main-
taining PetCO2 (end tidal partial pressure of CO2) at 35–40 mm Hg. All
subjects fulfilled the criteria of deep sedation; neither response to verbal
command (“strongly squeeze my hand!”), nor response to prodding or
shaking was observed during anesthesia, corresponding to Ramsay 5–6
(Boveroux et al., 2010) and anOAA/S score of 1 (Chernik et al., 1990; Liu
et al., 2009; Zhang et al., 2009; Quan et al., 2013). In addition, no subject
reported explicitmemory in the post-operative follow-up. Therefore, all
subjects were considered unconscious during anesthesia.

Patients with disorders of consciousness (DOC) and healthy controls

To verify the results of wakefulness vs. anesthesia, we included 12
DOC patients and 12 healthy controls (HC). Of note, the resting-state
fMRI data of these DOC patients were selected from a data-base with a
large sample of patients (n=96) fromHuashan hospital and its affiliat-
ed rehabilitation centers. Specifically, we first excluded patients with
obvious brain lesions or distortions, thusmaking the results comparable
with subjects under anesthesia as structural changes of the brain may
confound the spatial transformation (into standard space) during data
preprocessing. This screened 12 patients with well-preserved brains,
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and the sample size also matched our anesthesia group (n = 12). The
DOC patients were assessed using the Coma Recovery Scale — Revised
(CRS-R) (Giacino et al., 2004) on the day of fMRI scanning (see Supple-
mentary Table 1 for the clinical information). Eight patients were
diagnosed as unresponsive wakefulness syndrome/vegetative state
(UWS/VS), and four were diagnosed as minimally conscious state
(MCS). Due to the limited number of patients, UWS/VS and MCS were
collapsed into one group constituting our DOC group. In addition, 12
age/gender matched healthy controls were selected from the same
data-base of 52 healthy subjects. For the healthy controls, none had a
history of neurological or psychiatric disorders, nor were they taking
any kind of medication. Informed written consent was obtained from
the patients' legal representatives, and from the healthy participants.
The study was also approved by the Ethics Committee of Shanghai
Huashan Hospital, Fudan University.

fMRI data acquisition

For subjects duringwakefulness and under anesthesia, an intraoper-
ative Siemens 3 T scanner (Siemens MAGNETOM, Germany) with a
standard head coil was used to acquire gradient-echo EPI images of
the whole brain (25 slices, TR/TE = 2000/30 ms, slice thickness =
6 mm, field of view (FOV) = 192 mm, flip angle = 90°, image matrix:
64 × 64). In addition, high-resolution anatomical imageswere acquired.
Two 8m rs-fMRI volumeswere acquired duringwakefulness and under
anesthesia. During thewakefulness scan, the subject's headwas fixed in
the scan frame to limit its movement. The subjects were instructed to
wear earplugs, take a comfortable supine position, to relax with their
eyes closed, and not to concentrate on anything in particular. Eye-
tracking during fMRIwas not available, but off-line post-scan recordings
ensured that subjects did comply with this instruction. The subjects
were anesthetized after the wakefulness scan and given full hydration
with hydroxyethyl starch to avoid hypotension. Fifteen minutes after
stabilization of anesthetic levels and hemodynamics, the anesthetized
state scan was performed.

For the DOC patients and healthy controls, all MR images were ac-
quired on another Siemens 3 T scanner. EPI images were also acquired
for the whole brain (33 slices, TR/TE = 2000/35 ms, slice thickness =
4 mm, field of view (FOV) = 256 mm, flip angle = 90°, image matrix:
64 × 64). Two hundred EPI volumes as well as high-resolution anatom-
ical images were acquired. All subjects were instructed by the same re-
searcher to take a comfortable supine position, to relax, close their eyes,
and to not concentrate on anything in particular during the scanning. All
participants wore earplugs to minimize the noise of the scanner.

fMRI data preprocessing

Preprocessing steps were implemented in AFNI (Cox, 1996). After
discarding the first two volumes, the functional images from each scan
were aligned (head motion correction), slice timing corrected, tempo-
rally standardized, resampled to 3 × 3 × 3 mm3, spatially smoothed
(6-mm full width at half maximum Gaussian blur), transformed into
Talaraich space (Talairach and Tournoux, 1988), and linear trends
were removed. The data was then filtered with a band-pass filter pre-
serving signals between 0.01 and 0.08 Hz, which is thought to reflect
fluctuations of spontaneous brain activity (Fox and Raichle, 2007;
Zhang and Raichle, 2010). The estimated six parameters of headmotion
and mean time series from the white matter (WM) and cerebrospinal
fluid (CSF) were regressed out. To minimize partial voluming with
gray matter, the WM and CSF masks were eroded by one voxel (Chai
et al., 2012).

The issue of motion artifacts was addressed rigorously as minor
group differences in motion have been shown to artificially create
between-groups differences (Power et al., 2012; van Dijk et al., 2012).
We first calculated the indices of the amount of motion (shift and rota-
tion) for each subject (Zang et al., 2007). No difference (wakefulness vs.
anesthesia) was observed for either shift or rotation by paired sample t-
tests (Supplementary Fig. 1). In addition, the number of ‘outliers’ for the
data at each time pointwas calculated to tag the outliers of global signal
intensity and motion by AFNI program 3dToutcount. The time points
with head motion greater than 0.3 mm per TR and/or outliers compris-
ing more than 10% were excluded from the following analysis. Further-
more, to exclude the potential confound of head motion, we performed
standard GLM analyses, including headmotion indices as covariates, for
all the following group-level analysis. An identical analysis pipelinewas
applied to the DOC andHC groups. One DOC patient (No. 6)was exclud-
ed from the further analyses due to excessive and largemovements dur-
ing scanning (shift N 3 mm, rotation N 3°; in each direction).

Standard deviation (SD) of BOLD signal — temporal variability

The standard deviation (SD) of blood oxygenation level-dependent
(BOLD) signal (Garrett et al., 2010, 2011) describes the temporal vari-
ability of fluctuations in BOLD-fMRI signals across time within a partic-
ular region. The SD across the time series for each voxel was calculated
to yield an SDmap for each subject. In addition, we performed a control
analysis using a normalization procedure (Zuo et al., 2010). Specifically,
subject-level voxel-wise SD maps were standardized into subject-level
Z-score maps (SD-Z) per brain volume by subtracting the mean voxel-
wise SD obtained for the entire brain (global mean of SD) and then
dividing by the standard deviation across voxels (Zuo et al., 2010).
This normalization procedure (Z-transform across voxels) changed the
absolute values of SD; post-normalization they conformed to a Z-
distribution without changing the spatial pattern of value distribution
across voxels.

Regional homogeneity (ReHo) — local synchronization

Regional homogeneity (ReHo) measures intra-regional (local) syn-
chronization which is the coordination of activity between voxels with-
in a region (Zang et al., 2004). Specifically, for each voxel, Kendall's
coefficient of concordance (KCC) was calculated between the BOLD
time series for the specified voxel and those of its 26 nearest neighbors
(Zang et al., 2004; Zuo et al., 2013)

W ¼
X

Rið Þ2−n R
� �2

1
12

K2 n3−n
� �

where W is the KCC among given voxels, ranged from 0 to 1; Ri is the
sum rank of the ith time point; where R ¼ ððnþ 1Þ=KÞ=2 is the mean
of the Ri's; K is the number of time series within a measured cluster
(here, K = 27; one given voxel plus the number of its neighbors); and
n is the number of ranks (here n = 238, according to 238 volumes in
the data). ReHo analysis was performed for each subject by AFNI pro-
gram: 3dReHo, giving a voxel-wise ReHo map. As spatial smoothing
could artificially enhance ReHo intensity and reduce its reliability (Zuo
et al., 2013),we calculated ReHo based on non-smoothed BOLD time se-
ries. After this, spatial smoothing was performed with a 6-mm full-
width at half-maximum (FWHM) Gaussian kernel for the ReHo map.
In addition, similar to the above calculation of SD-Z, the individual
ReHo map was standardized into subject-level Z-score maps (ReHo-Z)
by subtracting the mean voxel-wise ReHo obtained for the entire
brain (global mean of ReHo) then dividing by the standard deviation
across voxels (Zuo et al., 2010, 2013).

Degree of centrality (DC) — distant synchronization

In graph theory, a complex system is modeled as a “graph”, which is
defined as a set of “nodes” linked by “edges”. For a binary graph, degree
of centrality (DC) is the number of edges connecting to a node. For a
weighted graph, DC is defined as the sum of weights from edges
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connecting to a node, which is also sometimes referred to as the node
strength (Zuo et al., 2012). The DC analysis was performed for each sub-
ject by AFNI program 3dTcorrMap. Specifically, voxel-based graphs were
generated for each participant. Each voxel constitutes a node in the
graph and each significant functional connection (Pearson correlation)
between any pair of voxels is an edge. A voxel-based graph is thus a
mathematical representation of the functional network consisting of
nodes or voxels and their edges or connections (Buckner et al., 2009;
Di Martino et al., 2013; Zuo et al., 2012). To obtain each participant's
graph, the correlation between the time series of each voxel with every
other voxel in the individual whole brain mask was computed. A binary,
undirected adjacency matrix was then obtained by thresholding each
correlation at r N 0.3. Based on the graph, DC was calculated at the indi-
vidual level (Zuo et al., 2012).We computed DC by counting the number
of functional connections (positive correlations) between each voxel and
all other voxels. In addition, normalized DC (DC-Z) indiceswere calculat-
ed by transforming DC to Z-scores based on the global mean of DC and
standard deviation across voxels in the brain (Buckner et al., 2009; Di
Martino et al., 2013; Zuo et al., 2012).

To examine if our results are robust regarding the choice of thresh-
old, we applied a range of thresholds (0.1 ≤ r ≤ 0.8, 0.1 increments) to
binarize the correlation matrix. The DC indices for each threshold was
calculated and then divided by the expected number of such supra-
threshold voxels that would occur from white noise time series, using
the option of “−VarThreshN” in 3dTcorrMap. BothDCandDC-Zwere ob-
tained for each threshold and each subject.

Group analysis of whole brain SD, ReHo and DC

The non-normalized and normalized SD, ReHo, and DC maps were
tested in paired t-tests, respectively, to examine the differences
between wakefulness (n = 12) and under anesthesia (n = 12). Three
potential confounds were used as covariates: 1) head motion indices,
2) type of anesthetic agent (propofol and sevoflurane), and 3) age. Spe-
cifically, we performed stand GLM analyses without covariate, with sin-
gle covariate, and with all three covariates (main results) to examine
the consistency of our results. Unless otherwise stated, all resulting t-
maps were thresholded at a corrected p-value of b0.05. That is, the
multiple-comparison error was corrected usingMonte Carlo simulation
as implemented in AFNI programAlphaSim, yielding a family-wise error
rate (FWER) at p b 0.05 with a minimal cluster size of 97 voxels. The
smoothness used in the AlphaSim was the average smoothness across
subjects. To testwhether groupdifferences (wakefulness vs. anesthesia)
are due to the effects of the physiological impacts of the anesthetic agent
used, or if these are actually markers of consciousness, we performed a
two-way ANOVA to examine the potential interaction effect between
conscious state (awake and anesthetized) and type of anesthetic agent
(propofol and sevoflurane).

Defining nodes of intrinsic connectivity networks

We used the 8 min resting state of each subject during wakefulness
to analyze resting-state functional connectivity (rs-fc). We thereby de-
fined the default mode network (DMN) (Raichle et al., 2001) as well
as three other large-scale networks, namely the salience network (SN)
(Eckert et al., 2009; Sadaghiani et al., 2010; Seeley et al., 2007),
executive-control network (ECN) (Fox et al., 2005; Seeley et al., 2007)
and sensorimotor network (SMN) (de Pasquale et al., 2012; Heine
et al., 2012). Seed regions for calculating rs-fc networks were voxels in
a sphere of 6 mm radius centered on stereotactic coordinates reported
by other laboratories: (1) posterior cingulate cortex (PCC)/precuneus
(−4,−52, 22) for theDMN (Laird et al., 2009); (2) right caudal anterior
cingulate cortex (4, 16, 33) for the SN (Seeley et al., 2007); (3) left dor-
solateral prefrontal cortex (−32, 41, 13) for the ECN (Seeley et al.,
2007); and (4) left central sulcus (−36, −24, 49) for the SMN
(Pasquale et al., 2012). Next, for each of the four seed regions, voxel-
wise rs-fc maps to a given seed were computed as maps of temporal
correlation coefficients between BOLD time course in each voxel and
BOLD time course averaged across voxels in the seed region. Contrast
images were created for each subject then transformed by Fisher's Z
transform for second-level one-sample t-tests. The group rs-fc maps of
theDMN, SN, ECN and SMNwere defined as the non-overlapping voxels
from each of the other maps at threshold p b 0.005, uncorrected, cluster
extent N 100 voxels. Nodes of intrinsic connectivity in the subsequent
analysis were defined as voxels in a sphere of 6 mm radius centered
on each cluster of the networks. In order to balance the number of
nodes across networks, only the largest 6 clusters – sorted by cluster
size –were included, yielding a total of 24 nodes across the 4 networks.

Node-based correlation analysis

For each node, the values of SD, ReHo and DC were extracted from
each subject and averaged across subjects for both wakefulness and
under anesthesia, respectively. To establish the association between
temporal variability (SD), local (ReHo), and distant (DC) signal synchro-
nization, Pearson correlation analyses (95% confidence interval based
on 1000 bootstrap samples) were performed on each pair of measures,
namely SD ∝ ReHo, SD ∝DC and ReHo ∝DC, across the 24 nodes for both
wakefulness and under anesthesia, respectively. This region-based ap-
proach could also counter between-subject measurement noise (He
et al., 2010; He, 2011, 2013). Next, the correlation coefficients for each
pair ofmeasureswere compared betweenwakefulness and under anes-
thesia. This analysis pipeline was also applied to the normalized mea-
sures, SD-Z ∝ ReHo-Z, SD-Z ∝ DC-Z and ReHo-Z ∞ DC-Z.

To confirm that the above node-based correlation analysis at the
group level was not due to individual noise, we performed group com-
parisons based on individual correlation coefficients. Specifically, the
correlation coefficients of SD ∝ ReHo, SD ∝ DC and ReHo ∝ DC, as well
as normalized pairs, were first calculated for each subject, and then
transformed into Fisher's Z scores. Next, paired sample t-tests were per-
formed between wakefulness and under anesthesia.

In light of the fact that the correlation between SD and DC may be
confounded by local synchronization (ReHo), we further performed a
partial Pearson correlation (95% confidence interval based on 1000
bootstrap samples) between SD and DC by including ReHo as a covari-
ate. The same procedure was applied to SD-Z ∝ DC-Z using ReHo-Z as
a covariate.

To confirm that our findings did not dependent upon the definition
of nodes, we repeated our calculation, as described above, by using an-
other nodes' template which had previously been well-defined (He
et al., 2010; He, 2011, 2013). The template contains 31 ROIs including
attention, default-mode, motor, saliency, and visual networks, as well
as the hippocampus, thalamus and cerebellum (see Table 1 in He,
2011). One node in the medial prefrontal cortex was excluded due to
relatively higher signal dropout (Preston et al., 2004).

Finally, to examine if the result of anesthesia is reproducible in other
altered states of consciousness, and to rule out potential drug effects of
the anesthesia, we applied the same node-based correlation analysis
(30 ROIs defined as above) in an independent group of DOC patients
and a healthy control (HC) group.

Results

Whole brain SD, ReHo and DC (wakefulness vs. unconsciousness)

The comparison between wakefulness and unconsciousness (under
anesthesia) for the SD, ReHo and DC showed a remarkable reduction
across wide-spread cortical regions during unconsciousness (Fig. 1A;
see Supplementary Fig. 2 for normalized measures, i.e., SD-Z, ReHo-Z
andDC-Z). Thiswas confirmedby comparing the globalmean (wakeful-
ness vs. unconsciousness) of SD (t(11)= 4.51, p= 0.001), ReHo (t(11)=
4.91, p = 0.000) and DC (t(11) = 4.07, p = 0.002) (Fig. 1B). No



Fig. 1. Temporal variability, local and distant signal synchronization (wakefulness vs. unconsciousness). A. Group comparison of SD, ReHo andDC. All t-mapswere thresholded at corrected
p b 0.05. The color bar shows voxel-wise t-values. B. Comparisons of globalmean (across voxels of thewhole brain) for SD, ReHo andDC. ***p b 0.005. SD: standarddeviation of BOLD signal
describing the temporal variance of brain activity; ReHo: regional homogeneity indicating local signal synchronization; and DC: degree of centrality indicating distant signal
synchronization.
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interaction effect between conscious state (awake and anesthetized)
and type of anesthetic agent (propofol and sevoflurane) was observed
for any measure, either with or without normalization, suggesting that
the above observed differences are consciousness relevant rather than
the physiological impacts of the anesthetic agent used. In the following
results, the two groups were pooled into one in order to enlarge the
sample size. We further confirmed our observation using type of anes-
thetic agent, headmotion and age as covariates in standard GLM analy-
ses. Again, consistent results were seen by comparing the results
without covariate, with single covariate, and with all covariates (see
Supplementary Figs. 3, 4, and 5).

Node-based correlations between SD, ReHo and DC

Twenty-four nodes were defined from four distinct networks: the
default mode (DMN), the salience (SN), executive-control (ECN) and
sensorimotor networks (SMN), identified by seed-based functional con-
nectivity analysis (Table 1; Fig. 2A). The networks thatwe obtained here
are in agreement with previous studies (Eckert et al., 2009; Fox et al.,
2005; Greicius et al., 2003; Heine et al., 2012; Laird et al., 2009; De
Pasquale et al., 2012; Raichle et al., 2001; Sadaghiani et al., 2009;
Seeley et al., 2007).

The relationship between temporal variability (SD), local (ReHo),
and distant (DC) signal synchronization was established by correlating
each pair of measures for both wakefulness and unconsciousness, re-
spectively. During wakefulness, significant positive correlations were
observed for SD ∝ ReHo (r = 0.758, p b 0.001), SD ∝ DC (r = 0.778,
p b 0.001) and ReHo ∝ DC (r = 0.731, p b 0.001). In contrast, no signif-
icant correlation was found in either SD ∝ ReHo (r = 0.287, p = 0.174)
or SD ∝DC (r= 0.297, p= 0.158), whereas ReHo ∝DC remained signif-
icant (r = 0.841, p b 0.001) during unconsciousness (Fig. 2B). Further-
more, we observed significant differences between wakefulness and
unconsciousness in both SD ∝ ReHo (Z = 3.19, p = 0.0014) and
SD ∝ DC (Z = 3.36, p = 0.0008), while no difference was seen in
ReHo ∝ DC (Z = −1.35, p = 0.177). In a next step, we confirmed that
our node-based correlation analysis at the group level is not due to indi-
vidual noise, as the group difference still holds based on individual cor-
relation coefficients (Fig. 2C). Additionally, one might argue that the
significant correlation between SD and DC during wakefulness could
be confounded by regional synchronization (ReHo). We confirmed



Table 1
Nodes of four distinct intrinsic connectivity networks identifiedwith seed-based function-
al connectivity analysis.

Anatomical region Abbreviation BA x y z

Default mode network (DMN)
Posterior cingulate cortex PCC 31 0 −54 23
Medial prefrontal cortex MPFC 9 0 43 25
L middle temporal gyrus L-MTG 22 −54 −12 −6
L angular gyrus L-AG 39 −43 −63 30
R angular gyrus R-AG 39 48 −59 28
R middle temporal gyrus R-MTG 21 58 −17 −6

Salience network (SN)
Caudal anterior cingulate cortex cACC 24 1 6 37
R thalamus R-Tha – 10 −13 12
L insula L-Ins 13 −32 15 8
R insula R-Ins 13 33 16 4
R superior frontal gyrus R-SFG 9 30 40 31
L superior frontal gyrus L-SFG 9 −30 42 32

Executive control network (ECN)
L dorsolateral prefrontal cortex L-DLPFC 9 −38 22 28
L inferior parietal lobule L-IPL 40 −40 −52 44
R middle frontal gyrus R-MFG 6 39 7 41
R dorsolateral prefrontal cortex R-DLPFC 10 35 41 12
R culmen R-Cul – 30 −63 −26
L medial frontal gyrus L-MFG 6 2 −22 51

Sensorimotor network (SMN)
L postcentral gyrus L-PostC 2 −39 −24 44
R precentral gyrus R-PreC 6 49 −15 34
R cuneus R-Cun 18 2 −85 20
R superior parietal lobule R-SPL 5 23 −42 59
R declive R-Dec – 17 −54 −12
R precuneus R-PreCu 7 26 −77 31

BA, Brodmann area; R, right; L, left. x, y, z coordinates are provided in Talairach space.
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that the correlation of SD ∝ DC remained significant (r = 0.504, p =
0.014) by including ReHo as a covariate. Similar results were seen for
the normalized measures (Supplementary Fig. 6).

Several other potential confounds were addressed in order to
confirm our results. First, as graph theoretical results (DC) may be de-
pendent on the threshold used, we applied a range of thresholds
(0.1 ≤ r ≤ 0.8, 0.1 increments) to binarize the correlationmatrix.We con-
firmed that our resultswere robust to the choice of threshold in terms of
the relationships between SD and DC, as well as ReHo and DC. That is,
the group differences (wakefulness vs. unconsciousness) in SD ∝ DC
were significant across all thresholds applied (p b 0.005), while no sig-
nificant difference was seen in ReHo ∝ DC for any threshold (Fig. 3A).
Similar results were observed for the normalized measures (Supple-
mentary Fig. 7). Second, to examine whether our results had any bias
on the nodes' definition, we repeated our calculation using another
nodes' template (He et al., 2010; He, 2011, 2013). As expected, we
found similar results (Fig. 3B), indicating that our analysis was not sub-
stantially affected by nodes selection.

Third, to examine if the result of anesthesia is reproducible and to
rule out potential drug effects of the anesthesia,we compared the corre-
lations between SD, ReHo and DC in both DOC and HC groups. As ex-
pected, significant positive correlations were observed for the HC in
SD ∝ ReHo (r = 0.766, p b 0.001), SD ∝ DC (r = 0.413, p = 0.023) and
ReHo ∝DC (r= 0.425, p= 0.019). In contrast, no significant correlation
was found for the DOC in either SD ∝ ReHo (r =−0.349, p = 0.058) or
SD ∝ DC (r=−0.045, p= 0.812), whereas ReHo ∝ DC remained signif-
icant (r= 0.538, p= 0.002) (Fig. 4A). We also confirmed the group dif-
ference using individual correlation coefficients (Fig. 4B). Again, similar
results were observed for the normalized measures (Supplementary
Fig. 8). In addition, the unconscious patients (under anesthesia) and
DOCwere compared by ANCOVAwith scanner type (1 for the first scan-
ner data, and 2 for the second) as a covariate. No significant difference
between the two groups was observed in either SD ∝ ReHo (p =
0.136) or SD ∝ DC (p = 0.833) by posthoc t-tests (Supplementary
Fig. 9).
Discussion

We reported various measures of resting-state activity – temporal
variability measured by the standard deviation of BOLD signal (SD),
local and distant brain signal synchronizationmeasured by regional ho-
mogeneity (ReHo), and degree of centrality (DC) respectively – in anes-
thesia. We observed a global reduction in SD, ReHo and DC for subjects
under anesthesia. Importantly, we found a link between SD, ReHo and
DC during wakefulness: the higher the degree of temporal variability,
the higher its intra-regional homogeneity and inter-regional functional
connectivity. In contrast, this link was broken down in anesthesia, im-
plying a decoupling between temporal variability and signal synchroni-
zation; this decoupling was reproduced in patients with DOC (see Fig. 5
for a summary of our results). Our results imply that there appears to be
some as yet unclear physiological mechanisms of consciousness which
“couple” the two mathematically independent measures, temporal var-
iability and signal synchronization of spontaneous brain activity. Our
findings not only extend our current knowledge of the neural correlates
of anesthetic-induced unconsciousness, but have implications for both
computational neuralmodeling and clinical practice, such as in thediag-
nosis of loss of consciousness in patients with DOC.

Two aspects of the low frequency fluctuations (Biswal et al., 1995;
Fox and Raichle, 2007; Zhang and Raichle, 2010) of resting-state fMRI-
BOLD signals were suggested as having a role in the neural basis of con-
sciousness: 1) temporal variability (Huang et al., 2014a,b) and 2) brain
signal synchronization (Boveroux et al., 2010; Mashour, 2006; Schrouff
et al., 2011;Uehara et al., 2013;White andAlkire, 2003). In thefirst case,
our results extend previous observations by showing a global reduction
of temporal variability in wide-spread cortical regions measured by SD,
and altered spatial (topographical) distribution pattern across midline
and lateral cortical regions in anesthesia (measured by SD-Z). This is
in linewith the increasing evidence that temporal variability of brain ac-
tivity is a useful attribute of neural systems (Deco et al., 2009, 2011;
Faisal et al., 2008; Garrett et al., 2010, 2011, 2013a,b; He, 2011;
McIntosh et al., 2010; Shew et al., 2009, 2011; Vakorin et al., 2011).
For the second aspect, brain signal synchronization, our results are con-
sistentwith recent functional neuroimaging studies that show impaired
functional connectivity in the frontoparietal and thalamocortical net-
works in loss of consciousness, such as during anesthesia (Boveroux
et al., 2010; Mashour, 2006; Palanca et al., 2015; Schrouff et al., 2011;
White and Alkire, 2003), and in the vegetative state (Demertzi et al.,
2014; Kotchoubey et al., 2013; Vanhaudenhuyse et al., 2010).

Theoretically, the scale of the signals (temporal variability) should
be independent of the correlation coefficient (signal synchronization).
Several studies, however, have revealed a close relationship between
the two from both neural modeling (Litwin-Kumar and Doiron, 2012;
Yang et al., 2014; Zhigulin et al., 2003) and neuroimaging observations
(Abou Elseoud et al., 2014; Di et al., 2013; Huang et al., 2014a,b; Xuan
et al., 2012; Yuan et al., 2013). Because of this, there appears to be
some ill-defined physiological mechanisms of their relationship that
exceeds purely theoretical or mathematical assumptions. Of note, this
relationship was carefully examined in a recent fMRI study on schizo-
phrenia by Yang et al. (2014). The authors found abnormal increases
of temporal variability in schizophrenia, which can be explained by
net increases in local (recurrent self-coupling) and distant (long-range
coupling) signal synchronization. Specifically, the authors explored the
neurobiological mechanisms using a biophysically based computational
model of resting-state fluctuations in multiple parcellated brain regions
(Deco et al., 2013). They observed that the temporal variability in-
creased as a function of increasing local and distant signal synchroniza-
tion. Their result may serve as an initial proof-of-principle of the neural



Fig. 2. Decoupled temporal variability and brain signal synchronization in anesthesia. A. Nodes of intrinsic connectivity were defined from four distinct networks: the default mode net-
work (DMN), salience network (SN), executive-control network (ECN) and sensorimotor network (SMN). B. Left: spatial patterns of value distribution of SD, ReHo, and DC (divided by
5000 for visualization purpose) across the 24 nodes for wakefulness (pink background) and unconsciousness (blue background). Right: scatter plots showing the correlation between
SD, ReHo and DC during both wakefulness and unconsciousness, respectively. C. Confirmation of node-based correlation analyses. The correlation coefficients (Fisher's Z) of SD ∝ ReHo,
SD ∝ DC, and ReHo ∝ DC were first calculated for each subject and then compared between wakefulness and unconsciousness at the group level. ***p b 0.005, *p b 0.05, (*) marginal
significance.
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bases of temporal variability, as the model explicitly excludes non-
neural signal sources (Yang et al., 2014).

Our results showed that the temporal variability (SD) correlates pos-
itively with both local (ReHo) and distant (DC) signal synchronization
during wakefulness; the higher the degree of temporal variability, the
higher its intra-regional homogeneity and inter-regional functional
connectivity. This finding confirms the model prediction by Yang et al.
(2014). Interestingly, these correlations were no longer observed in
subjects under anesthesia as well as in patients with DOC. These find-
ings, apparently, cannot be explained by their model, because a general
reduction of temporal variability and signal synchronization (seen in
Fig. 1) does not necessarily lead to a dissociation of the two. However,
one important factor that must be taken into account is the “common
shared signal” given the known large contribution of global signal in
empirical data (Yang et al., 2014). Furthermore, since implementing
this common shared global signal component into the model architec-
ture of Yang et al.'s study, their model produced results that 1) best
match human patterns of functional connectivity, and 2) build-up a
biophysically based linkage between temporal variability and signal
synchronization. Therefore, we argue that the decoupling between tem-
poral variability and signal synchronization may indicate a lack of
shared signal of global activity, whichmay be conscious relevant. Never-
theless, future investigations on the origin of the shared signal, as well
as other information integration measures, for instance the complexity
index (Casali et al., 2013) and transfer entropy (Mäki-Marttunen et al.,
2013), are necessary to support such a tentative hypothesis. It is also in-
teresting to better address the validity of our findings by examining
more active conscious states during, for instance, basic finger tapping
or motor learning (Hardwick et al., 2013).

To distinguish between drug and consciousness-related effects of
anesthesia, we included two different subgroups in which anesthesia
was induced by drugs with different molecular targets, propofol and
sevoflurane (Franks, 2008; Hemmings et al., 2005; Kaisti et al., 2003).
We scanned each subjects twice, once awake and once in the anesthe-
tized state, with clear differences between the two states in the SD,
ReHo and DC. Despite the fact that propofol and sevoflurane anesthesia



Fig. 3. Group differences (wakefulness vs. unconsciousness) are both robust to the choice of threshold in the DC analysis and nodes definition. A. A range of thresholds (0.1 ≤ r ≤ 0.8, 0.1
increments) were used to binarize the correlation matrix. Significant differences in SD ∝ DC were seen across all thresholds applied (p b 0.005). No significant difference was seen in
ReHo ∝ DC for any threshold. B. Ruling out potential bias on nodes definition. All correlation analyses were repeated using another nodes' template (He, 2011). Similar results as those
in Fig. 2 were seen. ***p b 0.005.
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have different physiological effects in terms of regional cerebral blood
flow (Kaisti et al., 2002, 2003), regional cerebral glucose metabolism
(Jeong et al., 2006), and cerebral perfusion pressure (Marval et al.,
2005), our results are not likely due to the drugs themselves. As
shown, no interaction effect between conscious state and type of anes-
thetic agent was found. This was further confirmed using type of anes-
thetic agent as covariates in standard GLM analyses. We deduce that
although the two anesthetic agents have different molecular targets
as well as physiological effects, their impact on consciousness may
share a common brain network (Franks, 2008; Hemmings et al.,
2005; Kaisti et al., 2003). As is known, GABAA receptors play an impor-
tant role, or even a causal link, in anesthetic-induced unconsciousness
(Franks, 2008). Specifically, the intravenous anesthetics, such as
propofol, represent more potent and specific positive modulators of
GABAA receptors by enhancing the gating of the receptors by GABA
(Hales and Lambert, 1991; Tomlin et al., 1998) thereby reducing neuro-
nal excitability (Franks, 2006). The volatile anesthetics, on the other
hand, such as sevoflurane, enhances GABAA receptor function
(Krasowski and Harrison, 1999) that increases channel opening
which enhances inhibition at both synaptic and extrasynaptic recep-
tors (Hemmings et al., 2005). Therefore, it seems both propofol and
sevoflurane enhance the function of GABAA receptors, which is the
most abundant fast inhibitory neurotransmitter receptor in the central
nerve system. Alternatively, the results could indicate a lack of power
in detecting differences between anesthetic agents due to a relatively
small sample size. Future studies with larger sample size are needed
to provide a final verdict.

More importantly, the decoupling between temporal variability and
signal synchronizationwas reproduced in an independent group of sub-
jectswith disorders of consciousness, such as unresponsivewakefulness
syndrome and minimally conscious state, using a well-established clin-
ical assessment (Giacino et al., 2004). For this reason, this finding fur-
ther ruled out the potential drug effects of anesthesia. Taken together,
the differences between wakefulness and the anesthetic state observed
are likely due to differences in the level of consciousness rather than
drug-specific factors.

Finally, an interesting comparisonmay involve unconscious patients
(under anesthesia) and disorders of consciousness (DOC). However,
considering that the rs-fMRI datasets of two groups were acquired by
different scanners, as well as different scanning parameters, we were
unable to make sound inference by comparing them. Future studies
with a full factorial design (the degree of consciousness as a factor)



Fig. 4. Decoupled temporal variability and brain signal synchronization in patients with disorders of consciousness (DOC). A. Scatter plots showing the correlation between SD, ReHo and
DC for both healthy controls (HC) and DOC patients, respectively. B. Confirmation of node-based correlation analyses. The correlation coefficients (Fisher's Z) of SD ∝ ReHo, SD ∝ DC, and
ReHo ∝ DC were first calculated for each subject and then compared between HC and DOC at the group level. ***p b 0.005, *p b 0.05, (n.s.) non-significance.
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and larger sample size, including healthy controls, and anesthetized and
DOC patients, may potentially provide important insights in terms of
the neural correlates of (un)consciousness.
Conclusions

We report, for the first time, a global reduction in the temporal var-
iability, local and distant brain signal synchronization during loss of con-
sciousness in anesthesia. Importantly, we found a decoupling between
temporal variability and signal synchronization across various brain
Fig. 5. The temporal variability and signal synchron
regions in anesthesia. Our findings not only extend our current knowl-
edge of the neural correlates of anesthetic-induced unconsciousness,
but have implications for both computational neural modeling and clin-
ical practice.
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