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Abstract

Age-related variations in many regions and/or networks of the human brain have

been uncovered using resting-state functional magnetic resonance imaging. How-

ever, these findings did not account for the dynamical effect the brain's global activ-

ity (global signal [GS]) causes on local characteristics, which is measured by GS

topography. To address this gap, we tested GS topography including its correlation

with age using a large-scale cross-sectional adult lifespan dataset (n = 492). Both GS

topography and its variation with age showed frequency-specific patterns, reflecting

the spatiotemporal characteristics of the dynamic change of GS topography with age.

A general trend toward dedifferentiation of GS topography with age was observed in

both spatial (i.e., less differences of GS between different regions) and temporal

(i.e., less differences of GS between different frequencies) dimensions. Further, meth-

odological control analyses suggested that although most age-related dedifferentia-

tion effects remained across different preprocessing strategies, some were triggered

by neuro-vascular coupling and physiological noises. Together, these results provide

the first evidence for age-related effects on global brain activity and its topographic-

dynamic representation in terms of spatiotemporal dedifferentiation.
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1 | INTRODUCTION

The human brain is a dynamic system that undergoes continuous

change throughout the lifespan (Ferreira & Busatto, 2013; Lou

et al., 2019; Vij et al., 2018; Xia et al., 2019), which can be measured

in vivo by resting-state functional magnetic resonance imaging (rs-

fMRI) (Ferreira & Busatto, 2013; Xia et al., 2019; Zuo et al., 2019).

Using rs-fMRI, a host of studies have documented altered functional

organization of spontaneous brain activity with age, such as increased

or decreased functional connections (FCs) in almost all intrinsic func-

tional networks (Ferreira & Busatto, 2013; Tian et al., 2018; Tomasi &

Volkow, 2012; Vij et al., 2018). The widespread regional and network

changes suggest a global alteration of brain activity in the aging brain.

Global brain activity can be measured by the global signal (GS),

which is the mean of the whole brain blood oxygen level dependent

(BOLD) signal (Power et al., 2014, 2017). Initially considered to be

nonneuronal noise (Power et al., 2014, 2017, 2019), recent studies

have demonstrated a close association between GS and neurobiologi-

cal activities (Fox et al., 2009; Murphy & Fox, 2017) such as local field

potentials (Schölvinck et al., 2010). The GS is manifested in different

extents across various brain regions, resulting in GS topography,

which is defined as the correlation between GS correlation (GSCORR)
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and local signals (Yang et al., 2017). Recently, the GS topography has

been suggested to be an essential marker of psychopathological

symptoms, cognitive tasks, and consciousness states (Tanabe

et al., 2020). Given that the aging brain is featured with universal neu-

ral and cognitive decline (Koen et al., 2020), GS topography may delin-

eate global changes during brain aging, providing insights into the

process of healthy aging and serving as the baseline of geriatric

diseases.

In addition, the functional organization of brain networks is con-

strained by time scales from seconds (De Domenico et al., 2016;

Wang, Zou, et al., 2020) to decades (Yang et al., 2013, 2018). In the

short time scale, frequency-specific FC has been widely identified to

be a core neurophysiological mechanism of brain function (Adaikkan

et al., 2019; Buzsáki, 2006; Fiebelkorn & Kastner, 2019; Han

et al., 2017; Perrault et al., 2019; Wang et al., 2016; Watrous

et al., 2013). For example, frequency-specific alteration of the GS

topography has been observed in patients with schizophrenia (Wang,

Liao, et al., 2020). On the other hand, the human lifespan, as the larg-

est time scale of dynamic brain development, dominates and changes

the functional organization of the whole brain (Cao et al., 2014; Vij

et al., 2018). Therefore, the frequency characteristics of GS topogra-

phy across the adult lifespan are of importance for the global dynam-

ics during brain aging.

The dedifferentiation hypothesis is a key theory of brain aging

(Sala-Llonch et al., 2015), which proposes a loss of functional specific-

ity of brain regions and more homogeneous neural responses (Koen

et al., 2020; Koen & Rugg, 2019; Park et al., 2004). Research has

shown that within-network FCs decrease with age, while between-

network FCs increase, resulting in more homogeneous connectivity

patterns across the entire brain (Damoiseaux, 2017; Malagurski

et al., 2020). The GS topography has been identified as featuring dif-

ferentiated GSCORR between unimodal and transmodal regions (Ao

et al., 2021; Yang et al., 2017; Zhang et al., 2020). Previous research

has demonstrated a diminution in the differences in GSCORR

between sensory and association regions in individuals with schizo-

phrenia, suggesting a psychiatric-related dedifferentiation (Yang

et al., 2017). However, it remains uncertain whether an analogous

spatial and temporal dedifferentiation, marked by reduced local-

regional and dynamic frequency differences, can be observed in the

GS topography of the aging brain. Such spatiotemporal dedifferentia-

tion of global brain topography would provide further support on the

neural level itself for the more cognitive- and function-based dediffer-

entiation hypothesis (Baltes & Lindenberger, 1997).

Drawing on our previous work (Ao et al., 2022), we aim to expand

and bolster the notion of age-related spatiotemporal dedifferentiation

by investigating the variation of the spatiotemporal organization of

GS topography across the adult lifespan using a large-sample rs-fMRI

dataset. In addition to the dedifferentiation across distributed brain

regions, we have observed a more homogenous distribution of GS

power spectrum density (PSD) across frequency bands in the aging

brain (Ao et al., 2022). We thus hypothesized that the GSCORR would

become more homogenous with age in different brain regions and fre-

quency bands. To begin, we calculated the GS topography (GSCORR)

using the magnitude-squared coherence, which captures FC in both

spatial and temporal/frequency dimensions (De Domenico

et al., 2016; Sasai et al., 2021). We then estimated Pearson's correla-

tion between age and GS topography to elucidate the variability of GS

topography with age (GS-TV). To measure the dedifferentiation of

GS topography with age, we calculated the Pearson's correlation

between GS-TV and GSCORR. If the dedifferentiation of GS topogra-

phy is genuine, the correlation should be negative, with regions having

high GSCORR decreasing with age and regions with low GSCORR

increasing with age. On the contrary, the differentiation of GS topog-

raphy occurs when there is a positive correlation. Given that the phys-

iological factors including head motion, white matter, cerebrospinal

fluid signals, and vascular components are frequently contested con-

founds in detecting BOLD signal in elderly individuals (Fabiani

et al., 2014; Tarantini et al., 2017), we aim to investigate the contribu-

tion of these physiological factors to our findings. We have demon-

strated our results both prior to and following the deconvolution of

the hemodynamic response function (HRF) to scrutinize the contribu-

tions stemming from neurovascular coupling. Furthermore, we have

applied varying control strategies to manage the influence of other

physiological signals and have subsequently discussed their outcomes.

2 | MATERIALS AND METHODS

2.1 | Participants

All subjects in this study came from a public database: the Interna-

tional Data-sharing Initiative (http://fcon_1000.projects.nitrc.org/

indi/retro/sald.html). A total of 492 healthy participants (308 females;

ages ranged: 19–80 years) were recruited from Southwest University

(SWU, Chongqing, China) through leaflets, online advertisements,

campus social networks, and face-to-face propaganda (Wei

et al., 2018). All participants were healthy, and had no history of psy-

chiatric disorder or substance abuse (including illicit drugs and alco-

hol), or magnetic resonance imaging (MRI) contraindications. The

project was approved by the Research Ethics Committee of the Brain

Imaging Center of Southwest University, following the Declaration of

Helsinki. Written informed consent was obtained from each partici-

pant before the data collection. Participants received payment

depending on the time and tasks completed.

2.2 | Imaging data acquisition

All of the data were obtained from a 3T Siemens Trio MRI scanner

(Siemens Medical, Erlangen, Germany) at the Brain Imaging Center of

SWU. During the rs-fMRI scan, subjects were instructed to lie down,

close their eyes, and rest without thinking about anything in particular

but to refrain from falling asleep. The 8-min scan of 242 contiguous

whole-brain functional images was acquired using a T2*-weighted gra-

dient echo planar imaging (EPI) sequence: slices = 32, repetition time

(TR)/echo time (TE) = 2000/30 ms, flip angle = 90�, field of
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view = 220 mm � 220 mm, thickness = 3 mm, slice gap = 1 mm,

resulting in voxels measuring 3.4 � 3.4 � 4 mm3.

2.3 | Data preprocessing

The preprocessing of functional images was conducted using the

“Data Processing Assistant for Resting-State fMRI” package

(DPARSFA, http://www.restfmri.net) (Yan et al., 2016), according to

the steps of previous studies (Fox et al., 2009; Wang, Liao,

et al., 2019): removal of the first seven volumes, slice timing, and

realignment. The corrected images were normalized to the standard

EPI template and resampled to a 3 � 3 � 3 mm3 voxel size. The linear

trend, white matter, and cerebrospinal fluid signals were regressed

out from the BOLD signals with default parameters in the DPARSFA

software. To minimize the head motion factor, we further linearly

regressed out Friston's 24 motion parameters, including 6 head

motions, 6 temporal derivatives, and 12 corresponding squares, as

well as “bad” time points, with mean framewise displacement (mean

FD) >0.2 mm (Jenkinson et al., 2002), following previous studies

(Satterthwaite et al., 2013; Yan et al., 2013). Note that we did not

exclude subjects with high levels of mean FD or contaminated vol-

umes, as doing so would introduce a bias in the sample by dispropor-

tionately excluding elder participants. Additionally, we noticed a

correlation between an augmentation in head motion and aging

(r = 0.35, p < .0001). We have chosen to document the GS-TV and its

dedifferentiation with the individual mean FD regressed. This informa-

tion is included in the Supporting Information for further reference.

This decision was made on the basis that the aforementioned increase

in head motion could potentially introduce distortions in the post-

processed output, particularly after the effects of head motion have

been mitigated during preprocessing.

2.4 | Blind HRF de-convolution

The neurovascular factor is an essential contributor to the BOLD sig-

nal, which undergoes changes with age (Fabiani et al., 2014; Tarantini

et al., 2017). Different HRFs have been observed in brain aging,

characterized by increased time-to-peak and decreased peak ampli-

tude with age (West et al., 2019). In addition, the HRF can confound

the temporal precedence estimation (Wu, Liao, et al., 2013), which

could distort coherence analysis. Hence, we implemented the blind

HRF de-convolution at the subject-level, to control the neurovascular

factor and test its effect on the GS topography dedifferentiation. This

method has demonstrated robustness, feasibility, and efficacy in elimi-

nating neurovascular coupling effects in BOLD time series (Wang

et al., 2023; Wu, Liao, et al., 2013; Wu et al., 2021).

Analogous to our previous studies (Ao et al., 2022; Wang

et al., 2014, 2015), the following steps were conducted. After noise

regression, a point process analysis was performed to detect sponta-

neous neural events. BOLD values exceeding the mean plus one stan-

dard deviation were extracted and the onsets of neural events were

estimated and collected for HRF reconstruction (Wu et al., 2021; Wu,

Stramaglia, et al., 2013). The BOLD signal was matched with the

canonical HRF and its time derivative to get the HRF in each voxel.

Finally, a Wiener de-convolution was applied to recover signals at the

neural level (https://www.nitrc.org/projects/rshrf) (Wu, Liao,

et al., 2013; Wu et al., 2021).

2.5 | GS topography measurements and its age-
related effects

The GS was obtained by averaging BOLD signals over all voxels

within the Human Brainnetome Atlas (Fan et al., 2016; Wang,

Wang, et al., 2019). The GS topography was defined by the FC

between the GS and the time course of each brain region con-

strained by the Human Brainnetome Atlas. We used the coherence

method, which is based on frequency division and temporal correla-

tion, to avoid the limitations of traditional FC (Chen et al., 2016;

Wu et al., 2008). First, there is no consensus on the number of

bands that the low frequency brain signal should be divided into

due to insufficient knowledge about its psychophysiological mean-

ings (Baria et al., 2011; Buzsáki & Draguhn, 2004; Krishnan

et al., 2018). Furthermore, temporal correlation is sensitive to the

phase of brain signals. If there is a fixed phase lag between two sig-

nals, an uncorrelated or even anticorrelated relationship may be

uncovered by temporal correlation, even though there is informa-

tion exchange between these signals (Fox et al., 2005; Murphy &

Fox, 2017; Wang, Huang, et al., 2019). The coherence method

overcomes these limitations by differentiating the full band into

narrow frequency bins and is immune to phase lags when estimat-

ing temporal dependence (Li et al., 2015; Salvador et al., 2008;

Wang, Huang, et al., 2019). Consistent with previous studies

(De Domenico et al., 2016; Sasai et al., 2021; Wang et al., 2016),

we used the coherence coefficient C to measure FC across the full

frequency band as in Equation (1)

C fð Þ¼ P roi,gsð Þ fð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Proi fð Þ� ffiffiffiffiffiffiffiffiffiffiffiffi

Pgs fð Þp

q , ð1Þ

where C fð Þ is the coherence coefficient at frequency f. Proi and Pgs are

PSDs of local signals and the GS estimated using Welch's fast Fourier

transform (FFT) method and P(roi,gs) is the cross-PSD estimation of

local signals and the GS. We divided the grey matter into 246 regions

of interest (ROIs) defined by the Human Brainnetome Atlas and

extracted the mean time course of each ROI to represent the ROI sig-

nal. This atlas was established by the FC method and has been dem-

onstrated to show a better performance than several others in a

clinical study (Lee et al., 2021). The number of FFT (NFFT) points was

set to 512, while P(roi,gs) had a length of 257 calculated by (NFFT

+1)/2. Finally, a 246�257 C-matrix was obtained as the spatiotem-

poral GS topography for each subject.

The Pearson's correlation between age and each point of the C-

matrix was calculated with gender as a covariate, obtaining a

5908 AO ET AL.
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246 � 257 matrix of GS-TV. The correlation coefficients were then

converted to Z values using Fisher's r-to-Z transformation.

2.6 | Spatiotemporal dedifferentiation

Upon visual inspection, we observed an anticorrelation pattern

between the GSCORR matrix and GS-TV. Specifically, higher GSCORR

tended to get lower with age and vice versa, indicating a more homo-

geneous GSCORR distribution in the aging brain, that is, spatiotempo-

ral dedifferentiation. To quantitatively assess this observation, we

computed the Pearson's correlation between each pair of C and Z.

The same operation was further performed across 246 regions and

257 frequency points to investigate the effect of spatial dedifferentia-

tion and temporal dedifferentiation, respectively.

2.7 | Contributors detection for the
spatiotemporal dedifferentiation

As suggested in previous studies, the GS is highly susceptible to vas-

cular and physiological noises, which are significant variables in aging

(Murphy & Fox, 2017; Power et al., 2017). To investigate these contri-

butions, we incorporated three additional preprocessing protocols tar-

geting head motion, white matter signals, cerebrospinal fluid signals,

and neurovascular coupling effects. Detailed parameters for each pro-

tocol are outlined in Table 1.

A Z-test was subsequently conducted to compare these dediffer-

entiation maps with a dedifferentiation map derived from a classical

preprocessing strategy, aiming to examine the influence of neurovas-

cular and physiological noises. The methodologies applied in the third

protocol are summarized briefly in the following section.

2.7.1 | Wavelet-despiking method for head motion

In our study, we calculated the coherence, which reflects the connec-

tivity at each frequency point. This method is also recommended

(Geerligs et al., 2017) to preprocess aging data. Thus, we applied this

unsupervised approach to further reduce the influence of head motion

over a range of frequencies. This technique identifies and eliminates

abnormal events by detecting sequences of anomalous wavelet coeffi-

cients within the voxel time series. A significant metric employed in this

method is the spike percentage. This serves as an indicator of the fre-

quency at which corrections are made using the wavelet-despiking

technique, representing the proportion of voxels within each data vol-

ume that encompass a spike. Evidently, this method is proficient in

eliminating a wide range of motion artifacts, including the effects of

spin-history and other high-frequency events. The original paper pro-

vides a comprehensive explanation of this approach (Patel et al., 2014).

2.7.2 | The component-based noise correction
method

This approach employs the Principal Component Analysis to suc-

cinctly characterize the data derived from the signals of noise regions.

Subsequently, principal components are integrated as covariates in a

General Linear Model, serving as an approximation of the physiologi-

cal noise signal space. In line with preceding studies, we executed a

regression of the Component-based noise Correction method (Comp-

Cor) signals pertaining to both white matter and cerebrospinal fluid.

This included their first-order derivatives, their square values, as well

as their squared derivatives (Satterthwaite et al., 2013).

All of the cortical maps were visualized with the Connectome

Workbench (Marcus et al., 2011). Subcortical maps were visualized

with the DPABI package (http://www.restfmri.net) (Yan et al., 2016).

3 | RESULTS

3.1 | Spatiotemporal dedifferentiation of GS
topography

The results obtained from the GSCORR matrix indicated higher values

primarily in the posterior sensory cortices, which encompassed

regions in the occipital, parietal, and temporal lobes, while the lowest

values were observed in the association cortex (e.g., regions in the

TABLE 1 Different preprocessing strategies.

Protocol 1 (main

results, Figure 1)

Protocol 2 (without

deconvolution, Figure 2)

Protocol 3 (strict control for

physiological factors, Figure 3)

Protocol 4 (no control for

physiological factors, Figure 3)

Wavelet-

despiking

No No Yes No

Classical

regression

Yes Yes Yes No

CompCor

regression

No No Yes No

Blind HRF

deconvolution

Yes No Yes Yes

Abbreviations: CompCor, component-based noise correction method; HRF, hemodynamic response function.
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frontal and temporal lobes belonging to the frontoparietal network

and default mode network) and subcortical regions (Figure 1a). These

findings were consistent with previous studies (Wang, Liao,

et al., 2020; Yang et al., 2017; Zhang et al., 2020). The coherence

curve showed a bi-peak distribution, which aligned with previous

coherence studies (Drew et al., 2008; Li et al., 2015; Wang

et al., 2016; Wang, Zou, et al., 2020). Meanwhile, the correlation

between coherence and age showed a reverse trend (refer to line

charts in Figures 1a and S1A). Specifically, GSCORRs showed higher

values around �0.02 and 0.06–0.1 Hz, but lower at 0.02–0.06 Hz and

above 0.1 Hz, whereas GS-TVs displayed the opposite pattern. Over-

all, the GSCORR appeared to exhibit more homogeneity in the aging

brain, as evidenced by the negative correlation between GS-TV and

GSCORR (refer to Figures 1a and S1B).

F IGURE 1 The spatiotemporal distribution of global signal (GS) topography and its spatiotemporal dedifferentiation with age. Panel (a), left:
the grand averaged coherence between GS and local signals of all subjects (thermograph) and the mean coherence across all regions of interest
(ROIs) (line chart). Right: correlations between GSCORR and age (thermograph) and the mean correlation coefficient across all ROIs (line chart).
The red values with asterisks on the color bar indicate the threshold of significant Z values (FDR corrected, q < 0.05). Middle: the correlation
between GSCORR and the variability of GS topography with age (GS-TV), that is, the overall spatiotemporal dedifferentiation of the GS
topography with age. Panel (b): the temporal dedifferentiation of each ROI with dedifferentiated (negative) and differentiated (positive)
tendencies. Panel (c): the spatial dedifferentiation (negative) of each frequency and the corresponding scatter charts of dedifferentiated bands.
Red dotted lines represent the threshold of significant correlations (FDR corrected, q < 0.05). Significant Z value (P < 0.05, FDR corrected) are
denoted with an asterisk (*).
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As we observed an overall spatiotemporal dedifferentiation, we

conducted further analysis to explore its characteristics in temporal

and spatial dimensions, respectively. Considering the relatively small

effect size of such dedifferentiation (r2 = 0.03), we hypothesized the

presence of certain differentiation effects. By averaging the temporal

(row) and spatial (column) dimensions of the GSCORR and GS-TV, we

detected small dedifferentiation effects in both time (r2 = 0.01) and

space (r2 = 0.03). Our results, presented in Figures 1b and S1, indi-

cated the temporal dedifferentiation in most brain regions with nega-

tive r values (FDR corrected, q < 0.05; see also Figure 1b, right),

particularly in the association cortex. In contrast, the ventral visual

pathway and sensorimotor regions exhibited a trend of temporal dif-

ferentiation with positive r values (FDR corrected, q < 0.05; also refer

to Figure 1b, right). Spatial dedifferentiation, as shown in Figures 1c

and S1D, was found at approximately 0–0.014 and 0.143–0.25 Hz

(see also Figure 1c, right). These findings suggest that spatiotemporal

dedifferentiation dominates brain aging, although the sensorimotor

system showed a trend of temporal differentiation.

3.2 | Minimal effects from neuro-vascular coupling

We also examined the GSCORR and GS-TV without HRF de-convolu-

tion and found consistent distributions with the HRF

de-convolved data, as shown in Figure 2. The overall spatiotemporal

dedifferentiation was replicated (Figure 2a, middle), and the temporal

dedifferentiated and differentiated regions were similar to those in

the HRF de-convolved data (Figure 2b, left), albeit with weakened

trends in most regions, as indicated by reduced Z values in differenti-

ated regions and increased Z values in dedifferentiated regions

(Figure 2b, middle). The data without HRF de-convolution raised a

trend of spatial differentiation at middle frequency (0.031–0.076 Hz)

and remained spatial dedifferentiation at very low (0–0.005 Hz) and

fast frequencies (0.141–0.25 Hz) (Figure 2b, right), although no signifi-

cant difference between the two performances was found at any fre-

quency points. These results suggest that neuro-vascular factors

attenuated the trend of spatiotemporal dedifferentiation with age.

3.3 | Physiological factors attenuate age-related
dedifferentiation

To ascertain the contribution of physiological factors, we applied two

distinct preprocessing protocols. In protocol 3, which employed more

stringent regression of these physiological factors, we observed a

diminished effect of spatiotemporal dedifferentiation. Conversely, a

more pronounced effect of spatiotemporal dedifferentiation was evi-

dent in the absence of noise regression (Figure 3a,c).

F IGURE 2 The spatiotemporal dedifferentiation and differentiation during brain aging in data without hemodynamic response function (HRF)
de-convolution. Panel (a), GSCORR map, variability of global signal topography with age (GS-TV), and overall spatiotemporal dedifferentiation
featured by the correlation between GSCORR and GS-TV. Panel (b), left: temporal dedifferentiation in each region of interest (ROI). Middle:
difference between HRF deconvolved and no-deconvolved data for temporally dedifferentiation and differentiation in each ROI. Right: spatial
dedifferentiation (negative) of each frequency. Red dotted lines represent the threshold of significant correlations (FDR corrected, q < 0.05).
Significant Z value (P < 0.05, FDR corrected) are denoted with an asterisk (*).
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F IGURE 3 The spatiotemporal dedifferentiation and differentiation during brain aging in data with strict noise regression and without noise
regression. Panels (a and c), GSCORR map, variability of global signal topography with age (GS-TV), and overall spatiotemporal dedifferentiation
featured by the correlation between GSCORR and GS-TV. Panels (b and d), left: temporal dedifferentiation in each regions of interest (ROI).
Middle: difference between hemodynamic response function deconvolved and no-deconvolved data for temporally dedifferentiation and
differentiation in each ROI. Right: spatial dedifferentiation (negative) of each frequency. Red dotted lines represent the threshold of significant
correlations (FDR corrected, q < 0.05). Significant Z value (P < 0.05, FDR corrected) are denoted with an asterisk (*).
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The topographic distribution of temporal dedifferentiation effects

largely remained consistent, indicating dedifferentiation in transmodal

regions and differentiation in unimodal regions. However, the effect

of spatial dedifferentiation was attenuated in protocol 3. In the

absence of nuisance regression (protocol 4), temporal dedifferentia-

tion was intensified. In terms of spatial effects, protocol 4 demon-

strated trends opposite to those observed in protocol 1, with

significantly different trends for spatial dedifferentiation and differen-

tiation at 0–0.027 and 0.143–0.25 Hz, respectively. Significant spatial

differentiation was observed at 0–0.035 and 0.127–0.239 Hz

(Figure 3b,d).

In summary, the strongest spatiotemporal dedifferentiation was

observed in the data without any nuisance control (protocol 4), with

moderate dedifferentiation found in the data treated with classical

preprocessing (protocol 1). Almost equal effects of dedifferentiation

and differentiation were observed in the data subjected to highly rig-

orous nuisance control (protocol 3). Consequently, these results sug-

gest that physiological factors such as head motion, white matter, and

cerebrospinal fluid play substantial roles in causing age-related

dedifferentiation.

4 | DISCUSSION

We investigated the spatiotemporal characteristics of GS topography

and its age-related variations during resting-state, in order to provide

a baseline for understanding the changes in GS topography in various

cognitive tasks and mental disorders. Our findings showed that GS

topography dynamically changed at the infra-slow frequency range

below 0.25 Hz, as indicated by the bi-peak distribution of coherence,

and across the lifespan from 18 to 80 years, as indicated by the age

effect. More importantly, the GS topography exhibited an overall

trend of spatiotemporal dedifferentiation with age, with dedifferentia-

tion and differentiation tendencies present in both the temporal and

spatial dimensions. These tendencies were attenuated by neural-

vascular factors and reversed by physiological noises to some extent.

To the best of our knowledge, this is the first study to extend the spa-

tial dedifferentiation of brain aging to spatiotemporal dedifferentia-

tion and to delineate dedifferentiation and differentiation at spatial

and temporal dimensions, simultaneously.

4.1 | Spatiotemporal characteristics of GS
topography and its age-related changes

We employed the coherence approach to estimate GS topography in

spatial (i.e., brain region) and temporal (i.e., infra-slow frequency)

dimensions. Coherence is a function of frequency indicating the corre-

spondence of two power spectrum signals. Based on the Parseval's

theorem, we have demonstrated that the PSD of the brain signal is

equivalent to the brain signal variability (BSV) in the corresponding

frequency band (Wang et al., 2018). BSV has been linked to the

dynamic range of brain function and kinetic energy for the brain to

achieve various potential states (Garrett et al., 2014). In this line, both

PSD and BSV are considered to reflect the energy consumption of the

brain (Wang et al., 2018). Thereby, the magnitude of coherence may

reflect the consistency of energy consumption between ROIs in dif-

ferent time scales. Accordingly, the GSCORR reflects the consistency

of energy consumption between local regions and the whole brain.

The variation of GSCORR with age, in turn, may reflect age-related

energy reallocation among functional subsystems and across time

scales (Garrett et al., 2011; Wang et al., 2018).

We observed a bi-peak distribution of coherence coefficients,

which is consistent with previous findings on coherence among local

signals (Drew et al., 2008; Li et al., 2015; Sasai et al., 2014; Wang,

Zou, et al., 2020). This finding suggests that BOLD signal fluctuations

may complete particular brain functions through particular oscillating

structures, in line with brain rhythms at traditional electroencephalo-

gram (EEG) frequency ranges. Specifically, distinct GS topographies

were captured at two peaks and two troughs of the coherence curve,

supporting the “spectral fingerprints theory” that posits the fre-

quency-specific coherence in large-scale functional networks as the

“fingerprints” underlying cognitive processes (Siegel et al., 2012).

In line with the spectral fingerprint theory, we found that age-

related variations of GS topography were frequency-specific.

Although the psychological mechanisms of multiple low frequency

bands remain unclear, many studies have focused on the frequency-

specific effects of brain functions. For instance, the GS mainly affects

the default mode network at 0.027–0.073 Hz, but also sensory

regions at 0.01–0.027 Hz in patients with schizophrenia (Wang, Liao,

et al., 2020). In addition, recent research by Wang and colleagues has

demonstrated the frequency-dependent hub role of the dorsal and

ventral anterior insula, highlighting that not only the spatial feature

(i.e., dorsal and ventral regions) but also the temporal feature (i.-

e., multiple frequency bands) underlies compound psychological func-

tions (Wang et al., 2018; Wang, Zou, et al., 2020). These studies

suggested that specific psychological functions could be differentiated

by different temporal scales of brain activity (Palva & Palva, 2018),

supporting the spectral fingerprints theory (Siegel et al., 2012). Our

findings provided new insight that age-related neural declines are cap-

tured by the GS topography in multiple low frequency bands. Overall,

these results suggest that the neural functions associated with brain

aging may depend on the specific spatiotemporal organization of the

GS topography.

4.2 | The spatiotemporal dedifferentiation during
brain aging

The dedifferentiation hypothesis and compensation hypothesis are

two widely accepted theories of brain aging. The dedifferentiation

hypothesis argues that the aging brain is accompanied by the loss of

functional specificity in extensive brain regions engaged in various

psychological functions (Natasha & Mark, 2005; Park et al., 2004). On

the other hand, the compensation hypothesis posits that elders tend

to recruit neural activity in brain regions involved in higher-order
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cognitive functions to compensate for deficits in other regions

(Wingfield & Grossman, 2006). The current results clearly show that

the overall spatiotemporal structure of the GS topography becomes

more homogeneous with age, supporting that the dedifferentiation is

a primary mechanism of age-related variations of GS topography. This

finding extends the dedifferentiation theory from the spatial dimen-

sion to the spatiotemporal matrix, suggesting that brain aging is

accompanied by a homogeneous spatiotemporal structure.

In the temporal dimension, association regions exhibited the phe-

nomenon of dedifferentiation, whereas some sensory and motor

regions showed a tendency of differentiation. The different trends of

aging in unimodal and multimodal regions are consistent with the

intrinsic organization of GS topography (Ao et al., 2021; Yang

et al., 2017) as well as large-scale gradients in cortical organization of

the human brain (Huntenburg et al., 2018). Both GS topography and

cortical gradients have been demonstrated to correspond well with

the principal spatial gene expression pattern, the cortical myelination

pattern, and the cortical excitation/inhibition balance (Brown

et al., 2022), suggesting the dedifferentiation in multimodal regions

and differentiation in sensorimotor regions to be supported by the

biological evolution with age.

Several recent studies have highlighted the age-related sensory-

association segregation in dedifferentiation and differentiation of

aging. For instance, Grady and colleagues found that most brain

regions showed less BSV with older age whereas a few regions

(e.g., the superior frontal gyrus and some subcortical regions) showed

increased BSV with age (Grady & Garrett, 2014). In a combined fMRI-

EEG study, Kumral and colleagues found that variabilities of BOLD

and EEG signals in most frequency bands and brain regions are consis-

tently decreased with aging, but the temporal and sensorimotor

regions show an age-related increase of variability of beta EEG oscilla-

tions (Kumral et al., 2020). Using longitudinal aging data, Malagurski

et al. (2020) found an age-related decrease of segregation indices in

most brain networks but an increase in the limbic network. These

findings, combined with ours, suggest that dedifferentiation and dif-

ferentiation in aging coexist but in different brain regions. However,

only the variation of GS topography with age mirrored the intrinsic

gradient organization of brain functions.

The spatial dedifferentiation was mainly restricted at the lower

and higher ends of the frequency range, suggesting that spatial dedif-

ferentiation is constrained by time scales. However, the spatial

dedifferentiation was located at 0–0.014 and 0.143–0.25 Hz, which is

inconsistent with previous findings that spatial dedifferentiation

occurs in the intermediate frequencies (often at 0.01–0.1 Hz) (Chan

et al., 2014; Malagurski et al., 2020). Previous studies often examined

spatial dedifferentiation with activation, inter-regional FC, or graph

theory, while abundant evidence has revealed that GS regression

alters resting-state FC within and between networks, suggesting that

the GS itself contains variability of global connectivity (Scalabrini

et al., 2020). Different from GS affecting local activity in higher fre-

quency bands, local activity mainly affects GS at the lowest frequency

end (Wang et al., 2023), indicating that the spatial dedifferentiation

may be driven by various interactions between GS and local signals at

different time scales. Considering that neural oscillations at lower fre-

quencies are associated with functions of larger neural networks and

higher-order cognition (Buzsáki, 2006), spatial dedifferentiation at the

higher frequency end may be driven by more homogeneous local

activities while at the lower frequency end may primarily be driven by

the GS. This hypothesis warrants further investigation.

4.3 | Assessment of physiological “noise”

There is abundant nonneural information in the GS and local BOLD

signals that impacts neural activities in complex ways (Birn, 2012;

Boubela et al., 2013). Therefore, we tested the influence of HRF de-

convolution and noise regression on the current findings.

We found that spatiotemporal dedifferentiation was slightly

weakened in data that did not undergo HRF de-convolution, which

was mainly manifested as weakened temporal dedifferentiation in

most brain regions. Furthermore, we observed significant spatial dif-

ferentiation within 0.031–0.076 Hz. These findings suggest that

neurovascular factors tend to preserve the pattern of spatiotemporal

differentiation in the elderly brain. Although some studies found

unchanged neurovascular coupling with normal aging (D'Esposito

et al., 1999; Grinband et al., 2017), others have suggested that neu-

rovascular, cardiovascular, and cerebrovascular factors could explain

brain aging to a large extent (Fabiani et al., 2014; Tsvetanov

et al., 2021). A large number of studies have revealed that cerebral

hemodynamic activities at 0.04–0.1 Hz reflect underlying neural

information (Auer, 2008; Du et al., 2014; Fox & Raichle, 2007; Ma

et al., 2016; Tong & Frederick, 2010; Wright et al., 2017; Xie

et al., 2016). Yang et al. (2018) also revealed cognitive-related fre-

quency and amplitude modulation in aging at 0.045–0.087 Hz, sug-

gesting that neurovascular factors at this frequency band are

cognitive-related. Although the blind de-convolution algorithm can-

not fully remove vascular effects, it was shown that neurovascular

coupling could be an important protective factor of aging to some

extent.

Traditional physiological noises including head motion, white mat-

ter, and cerebrospinal fluid signals, strengthened spatiotemporal

dedifferentiation in general. However, they preserved spatial differen-

tiation perhaps at the expense of increasing temporal dedifferentia-

tion. The migration of brain signal fluctuations from lower frequencies

to higher frequencies was observed during both lifespan development

and cognitive tasks (Churchill et al., 2016; He, 2011), resulting in the

weakening of scale-free properties and enhancement of temporal

dedifferentiation. This temporal reorganization of brain activities was

suggested to reflect the brain engaging with more effort on immediate

functional networks (He et al., 2010). Although the temporal dediffer-

entiation of aging has been uncovered (Ao et al., 2022) and verified

here, it is still unknown how these altered temporal structures influ-

ence and interact with the spatial organization of brain function dur-

ing brain aging. Therefore, the spatiotemporal perspective is valuable

for uncovering the dynamic organization of brain functions across

temporal and spatial dimensions.
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In addition, the HRF de-convolution and noise regression exerted

distinct effects on different frequencies and regions, suggesting that

neural, physiological, and other signals have separable spatiotemporal

structures. Considering that physiological networks nicely mirrored

neural networks (Chen et al., 2020), the opposite trend of spatial

dedifferentiation between data with and without noise regression

suggested that GS topography may serve as an alternative approach

to separate neural signals and physiological noises. On the other side,

head motion (Zeng et al., 2014), white matter (Li et al., 2019), cerebro-

spinal fluid (Fultz et al., 2019), respiratory (Park et al., 2020), and car-

diac signals (Mosher et al., 2020) have been demonstrated to contain

meaningful physiological and pathological information. This evidence

argues that noise plays an important role in brain function (Ghosh

et al., 2008; McDonnell & Ward, 2011; Miši�c et al., 2010).

Our results demonstrated that the GS topography holds a strong

promise to reveal the changes of age-related brain functions. Our

findings suggested that it is critical for future studies to pay caution to

“noises” when interpreting their results. As Uddin has argued, “as we

continue to embrace the idea that there may be untapped information

in spontaneous neural activity, perhaps we should not be so hasty in

future efforts to separate brain signal from noise” (Uddin, 2020).

4.4 | Limitations

Several limitations should be taken into account in our study. First,

the precise sources of the age-related dedifferentiation observed here

cannot be determined with certainty as the physiological data such as

respiratory and cardiac signals were not available in the dataset. While

we re-analyzed the data without HRF de-convolution and nuisance

regression, future studies should consider collecting simultaneous

physiological recordings, given the complex interplay between neural

and vascular activities (Das et al., 2021). Moreover, our study did not

account for the nonzero lag effects of neurovascular coupling, white

matter, and cerebrospinal fluid, which calls for future research on

brain aging.

Secondly, the subjects were not uniformly distributed in age (Wei

et al., 2018), which may have influenced the correlation between age

and GS topography to some extent. Finally, it is important to note that

the dedifferentiation theory of aging is primarily associated with cog-

nitive performance. As our study only examined the phenomenon of

spontaneous brain activities without cognitive tasks, the findings

should be interpreted with caution.

5 | CONCLUSION

The GS topography has an intrinsic spatiotemporal architecture and

varies with age. Brain aging exhibits spatial and temporal dimensions

which are characterized by distinct dedifferentiation and differentia-

tion trends, originating from different signals or “noises.” Our discov-

ery of the spatiotemporal dedifferentiation phenomenon provides

novel insights into the spatiotemporal organizational mechanisms

underlying brain aging. These findings serve as a catalyst for future

research, enabling more nuanced examinations of age-related func-

tional connectivity at both the global and local levels.
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