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a b s t r a c t 

The brain exhibits a complex temporal structure which translates into a hierarchy of distinct neural timescales. 

An open question is how these intrinsic timescales are related to sensory or motor information processing and 

whether these dynamics have common patterns in different behavioral states. We address these questions by 

investigating the brain’s intrinsic timescales in healthy controls, motor (amyotrophic lateral sclerosis, locked- 

in syndrome), sensory (anesthesia, unresponsive wakefulness syndrome), and progressive reduction of sensory 

processing (from awake states over N1, N2, N3). We employed a combination of measures from EEG resting-state 

data: auto-correlation window (ACW), power spectral density (PSD), and power-law exponent (PLE). Prolonged 

neural timescales accompanied by a shift towards slower frequencies were observed in the conditions with sensory 

deficits, but not in conditions with motor deficits. Our results establish that the spontaneous activity’s intrinsic 

neural timescale is related to the neural capacity that specifically supports sensory rather than motor information 

processing in the healthy brain. 
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. Introduction 

.1. Intrinsic neural timescale 

The spatiotemporal dynamics of a neural system shape information

rocessing. Information is processed by the brain’s intricate temporal

tructure. In other words, much like a radio can receive messages by

ecoding the modulation of the amplitude (AM) or frequency (FM) of

adio signals, the language that the brain uses to communicate with

tself is encoded/structured in time. We consequently need to inves-

igate the temporal-spatial dynamics of the brain in order to under-

tand the fundamental processes of healthy and disordered states of
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onsciousness. Different brain regions exhibit different “temporal re-

eptive fields ” ( Cavanagh et al., 2016 ) or “temporal receptive windows ”

 Bernacchia et al., 2011 ; Chaudhuri et al., 2015 ; Chen et al., 2016 , 2015 ;

occhi et al., 2016 ; Demirta ş et al., 2019 ; Farzan et al., 2017 ; Gollo et al.,

017 , 2015 ; Hasson et al., 2015 ; Honey et al., 2012 ; Huang et al., 2018a ;

iebel et al., 2008 ; Luppi et al., 2019 ; Mohr et al., 2016 ; Murray et al.,

014 ; Runyan et al., 2017 ; Stephens et al., 2013 ; Wasmuht et al., 2018 ;

atanabe et al., 2019 ; Wolff et al., 2019 ). These findings led to the

ssumption that different regions and networks in the brain exhibit

heir specific timescales as reflected in the concept of “intrinsic neu-

al timescales ” ( Chaudhuri et al., 2015 ; Deco et al., 2019 ; Farzan et al.,

017 ; Gollo et al., 2017 , 2015 ; Liégeois et al., 2019 ; Murray et al., 2014 ;

asmuht et al., 2018 ). 
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The length of intrinsic neural timescales differs from one brain

egion to another. For example, the intrinsic neural timescales are

horter in sensory and motor regions while they seem to be longer

n higher-order cortical regions ( Murray et al., 2014 ; Ogawa and Ko-

atsu, 2010 ; Stephens et al., 2013 ). In addition, brain regions that sup-

ort temporal pooling and summation ( Himberger et al., 2018 ) of sen-

ory ( Gauthier et al., 2012 ; Hasson et al., 2008 ; Lerner et al., 2011 ;

tephens et al., 2013 ; Yeshurun et al., 2017 ), motor, and cognitive in-

ormation ( Bernacchia et al., 2011 ; Farzan et al., 2017 ; Hasson et al.,

015 ; Murray et al., 2014 ) have unique temporal signatures. Thus, these

istinct intrinsic timescales may provide a meaningful functional dis-

ociation between brain areas. However, how these intrinsic neural

imescales modulate and integrate information (e.g., sensory vs. mo-

or) remains an open question in systems neuroscience. Addressing this

uestion is the main aim of the current investigation. 

Current evidence for a role of intrinsic neural timescales in infor-

ation processing is largely indirect, stemming mainly from the use

f temporal measures in pathological cases. For example, abnormal in-

rinsic timescales from resting-state fMRI in psychiatric disorders such

s autism ( Damiani et al., 2019 ; Watanabe et al., 2019 ) are accompa-

ied by deficits in sensory processing and abnormal social behavior. Yet

nother study, using resting-state fMRI, demonstrated abnormally long

ntrinsic timescales in conditions involving reduced or absent sensory

ehavior, e.g., anesthesia, unresponsive wakefulness state (UWS), mini-

ally conscious state (MCS), or non-rapid eye movement (NREM) sleep

tages (N1-3) ( Huang et al., 2018a ). Nevertheless, there is a need for

esearch employing more direct measures of the brain’s intrinsic neural

imescale probing their involvement in specific functions like sensory

r motor functions. For example, measures that quantify the frequency

haracteristics of the periodic oscillations employed in the current study

e.g., power spectral density; PSD), arrhythmic scale-free ( “1/f noise ”)

rain activity (e.g., power-law exponent; PLE), and the repeating pat-

erns in a signal (e.g., autocorrelation window; ACW) are novel and po-

entially powerful ways to explore the temporal structure of neuronal

ommunication at the systems level. 

.2. Metrics of temporal dynamics 

To investigate the intrinsic neural timescale of resting-state EEG, we

alculated autocorrelation using a well-established measure, the ACW.

he ACW measures repeating patterns in a signal, and enables us to

est for the relationship, e.g., correlation in neural activity patterns at

ifferent points in time ( Murray et al., 2014 ). The ACW has been ap-

lied at both the cellular ( Bernacchia et al., 2011 ; Cavanagh et al.,

016 ; Murray et al., 2014 ) and systems levels ( Huang et al., 2018b ;

orthoff et al., 2020 ; Watanabe et al., 2019 ; Wolff et al., 2019 ). There-

ore, the ACW can be regarded as a valid and direct measure of the intrin-

ic neural timescale. Moreover, it has recently been suggested that the

CW is related to slow frequencies ( Honey et al., 2012 ). Thus, we also

easured the frequency characteristics of the periodic oscillations in

EG using PSD and the arrhythmic scale-free ( “1/f noise ”) brain activity

sing PLE in our various groups ( He, 2014 ; He et al., 2010 ; Huang et al.,

017 , 2016 ; Linkenkaer-Hansen et al., 2001 ; Palva and Palva, 2018 ).

he additional measurements of the PSD and the PLE allowed us to link

he ACW to power in different frequencies across normal and disordered

tates of consciousness. Exploring the relationship between the ACW and

he frequency characteristics of the EEG will enable us to identify the

upposed role of intrinsic timescale in temporal integration of sensory

r motor stimuli ( Florin and Baillet, 2015 ; Himberger et al., 2018 ). 

.3. Processing of sensory vs. motor information 

Unresponsive Wakefulness State (UWS) and Minimally Conscious

tate (MCS): The frequency characteristics of intrinsic neural timescales

an be measured using the PSD ( Chaudhuri et al., 2015 ; Murray et al.,

014 ; Rosanova et al., 2018 ; Wolff et al., 2019 ). Slowing in the PSD
ould reflect prolongation of the intrinsic neural timescales, and would

e expected in cases of UWS, MCS, anesthesia, and slow wave sleep

N3). Behaviorally, despite their differences, UWS and MCS share the

oss of sensory function as seen by reduced sensory-evoked poten-

ials ( Banoub et al., 2003 ; Boisseau et al., 2002 ; Boly et al., 2008 ,

004 ; Fischer et al., 2010 ; Nakano et al., 1995 ; Noguchi et al., 1995 ;

istoia et al., 2016 ; Rosanova et al., 2018 ; Schiff et al., 2014 ; Sharon and

ir, 2018 ; Wang et al., 2003 ; Wijnen et al., 2014 ; Xu et al., 2012 ). In

ontrast, motor function (e.g., reflex movements and motor-evoked po-

entials) in UWS and MCS may vary including different ranges: it may

how normal latency and amplitudes, increased conduction times, uni-

aterally present or even absent which largely depends upon the under-

ying brain injury (e.g. lesion of M1, corticospinal tract, etc.) as well

s whether the patient has undergone motor rehabilitation or neuro-

odulation during the recovery phase ( Ragazzoni et al., 2017 ). For this

eason, motor evoked potentials (MEPs) may not be the sole criterion

f the presence vs absence of motor function in the assessment of con-

ciousness. This also suggests that abnormal prolongation of the intrinsic

eural timescales will be associated with a deficit, or loss, of the capac-

ty for sensory information processing, rather than for motor processing,

lthough this possibility remains to be explored. 

Locked-in-Syndrome (LIS) and Amyotrophic Lateral Sclerosis (ALS):

n contrast to UWS and MCS, locked-in-syndrome (LIS) and amy-

trophic lateral sclerosis (ALS) present the opposite behavioral pattern.

n the case of LIS and ALS, sensory function including somatosensory-

voked potentials and brain-stem auditory evoked potentials remain

ompletely, or partially intact ( Bassetti et al., 1994 ; Behr et al.,

991 ; Bensch et al., 2014 ; Facco et al., 1989 ; Gosseries et al., 2009 ;

ammond and Wilder, 1982 ; Landi et al., 1994 ; Soria et al., 1989 ;

irgile, 1984 ). However, motor-evoked potentials are lost in LIS and ALS

 Bassetti et al., 1994 ; Facco et al., 1989 ; Kotchoubey and Lotze, 2013 ;

andi et al., 1994 ). The loss of motor function in LIS and ALS is due

o the disruption of descending motor pathways, despite intact activa-

ion in cortical motor areas ( Cincotta et al., 1999 ). Movement-related

lterations of PSD in the beta band have also been reported in ALS

 Bizovi čar et al., 2014 ; Proudfoot et al., 2018 , 2017 ). However, no stud-

es have investigated intrinsic timescales in LIS and ALS (see though

 Babiloni et al., 2010 ; Proudfoot et al., 2018 , 2017 ) for observed power

hanges in alpha, beta and gamma bands). 

If it is indeed the case that intrinsic timescales are related to sensory

rather than motor) processing (as in UWS and MSC), one would predict

o changes in the intrinsic neural timescales in primarily motor condi-

ions like LIS and ALS where sensory processing is intact. To address

his, we compared the intrinsic neural timescales in primarily motor-

eficient but sensory-preserved conditions (LIS, ALS) to those of primar-

ly sensory-deficient but motor-preserved behavioral conditions (anes-

hesia, MCS/UWS) and also conditions involving normal and healthy

educed motor activity and progressive alterations of sensory process-

ng (e.g., slow wave sleep). This approach will enable us to determine

hether the intrinsic neural timescale of the brain’s spontaneous activity

s central for either sensory or motor information processing, or both. 

.4. General and specific aims 

The overarching aim of our study was, therefore, to use EEG

esting-state to investigate the relationship between the intrinsic neu-

al timescale of the brain’s spontaneous activity and sensory or motor

nformation processing. 

The first specific aim was to probe the ACW (as well as the

LE and the PSD) in the EEG resting-state of sensory-deficient but

otor-preserved behavioral conditions comparing them with sensory-

reserved healthy states. These conditions included anesthesia, sleep,

nd UWS, where sensory information processing is reduced or lost

n either naturally (sleep, UWS) and non-naturally (anesthesia) oc-

urring states. Previous findings report abnormal temporal dynamics

ith slowing of the PSD (and/or high PLE) in anesthesia, sleep, and
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Table 1 

Summary of the main characteristics of each dataset. 

Sleep dataset Anesthesia dataset UWS dataset ALS dataset 

Ketamine Sevoflurane UWS Controls Non-LIS LIS 

Number of participants 27 10 10 49 23 12 1 

Age (years) 26.00 ± 6.69 32.90 ± 9.48 41.4 ± 13.10 48.88 ± 15.62 44.11 ± 7.15 57.88 ± 13.24 52 

Sex (male:female) 9:18 6:4 8:2 36:13 13:10 7:1 + 4 n.a. 0:1 

Number of electrodes 11 256 257 121 

Sampling rate (Hz) 512 1000 1000 500 

Recording time All night 5 min 5–13 min 5 min 
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WS ( Akeju et al., 2016 ; Casali et al., 2013 ; Demertzi et al., 2019 ;

uang et al., 2018c , 2016 , 2014 ; Tagliazucchi et al., 2016 , 2013b ).

ased on these findings, we hypothesized that the ACW would be longer

n sleep, anesthesia, and UWS when compared to fully awake states in

ither the same participant (sleep, anesthesia) or some healthy control

roup (UWS). This longer duration of the ACW would suggest that neu-

al activities at more distant time points strongly correlate, and thus

trongly resemble each other. Together with the supposed shift towards

lower frequencies in the PSD and the PLE, this similarity across distant

ime points increases the processing capacity for temporal integration of

emporally distant sensory information. This, in turn, reduces the tempo-

al precision of specific sensory information at specific discrete points in

ime with the subsequent loss of perception of specific objects or events

 Himberger et al., 2018 ). 

The second specific aim was to probe the ACW (as well as the PLE

nd the PSD) in the EEG resting-state of motor-deficient but sensory-

reserved behavioral conditions comparing them with motor-preserved

ealthy states. This was done by comparing primarily motor-deficient

onditions like ALS and LIS with healthy controls. Given the evidence

hat the ACW may be central in sensory rather than motor information

rocessing (see above), we hypothesized that there would be no differ-

nces in the ACW duration (nor in the PLE and the PSD) in ALS and LIS

hen compared to healthy control participants. In order to test for the

ypothesis of no difference, we employed statistical tests of equivalence

or non-inferiority. 

We here assessed, in a static way, the temporal structure of the intrin-

ic neural timescale of the brain’s spontaneous activity using the ACW,

LE and PSD in different behavioral conditions and states of conscious-

ess. This allowed us to address the question of whether the intrinsic

imescales of the brain’s spontaneous activity support the processing of

pecific information, that is, sensory or motor information. We used a

omparative approach in healthy fully awake brain state and sensory-

nd motor-compromised states. In this way, we hoped to reveal how the

ierarchical structure of intrinsic timescales support temporal integra-

ion (or segregation) of sensory rather than motor information process-

ng across normal and abnormal states of consciousness. In addition to

evealing the functional role of intrinsic timescales, this also provides

nsight into the neural correlates that support conscious arousal and

wareness under healthy conditions. 

. Material and methods 

.1. Participants 

Following the general aim of investigating intrinsic EEG timescales

n different behavioral conditions, four datasets were analyzed: (1) sleep

ataset, (2) anesthesia dataset, (3) UWS dataset, and (4) amyotrophic

ateral sclerosis (ALS) dataset. A description of each follows and are

resented in Table 1 . 

Sleep dataset. Twenty-seven, healthy adults (age = 26.00 ± 6.69 years,

8 women) were included in this study. All participants reported nor-

al sleep patterns, and were free from signs of sleep disorders, accord-

ng to standard guidelines ( AASM, 2014 ), assessed from an overnight

olysomnographic (PSG) screening night. Participants performed a com-
lete PSG using the Embla Titanium (Natus, San Carlos, CA) PSG system.

EG, EOG and EMG signals were acquired with impedances < 5 K Ω, at

 sampling rate of 512 Hz, referenced to FPz. EEG was acquired using

1 gold-plated electrodes placed according to the conventional 10–20

ystem. The EEG signals were re-referenced offline to the average of the

astoid derivations for sleep stage scoring. Sleep stages (wake before

leep, N1, N2, N3, REM) were marked using RemLogic analysis soft-

are (Natus) following the standard criteria ( Iber et al., 2007 ). For a

urther description of the dataset, see Fang et al. (2017 ). 

Anesthesia dataset. For the anesthesia dataset, the effects of two dif-

erent general anaesthetics, i.e. ketamine and sevoflurane were eval-

ated. To assess the ketamine effect, resting-state EEG recordings

Ges300, EGI, USA) in ten right-handed surgical patients aged between

0 and 60 years (32.90 ± 9.48 years, 4 women), American Society

f Anesthesiologists (ASA) physical status class I–II, were collected in

wake (5 min eyes-closed) condition using an electrode cap (HydroCel

30) of 256 electrodes following 10–20 international system. Then, ke-

amine was given to the same 10 participants. Specifically, 1 mg/kg di-

uted ketamine in 10 ml of 0.9% normal saline was infused over 2 min,

ntil OAA/S (Observer’s Assessment of Alertness/Sedation) scale was 1.

hen, ultrashort-acting opioid remifentanil 1 𝜇g/kg and neuromuscu-

ar relaxant rocuronium 0.6 mg/kg were given for endotracheal intu-

ation. After anaesthetic induction, diluted ketamine was infused again

ver 20 min (1 mg/kg/h). EEG data (5 min) were acquired again from

5 min after the loss of consciousness. In order to avoid external noise

nterference, all participants were placed earplugs in both ears. During

he EEG acquisition at a sampling rate of 1000 Hz, electrode impedance

as kept under 5 K Ω. All channels were referenced online to Cz. 

Similarly, ten different participants (age = 41.4 ± 13.10 years, 2

omen) followed the same protocol but under sevoflurane anesthesia.

n this case, 8% sevoflurane was initially administered in 6 L/min 100%

xygen and when OAA/S score was 1, remifentanil 1 𝜇g/kg and rocuro-

ium 0.6 mg/kg was given for endotracheal intubation. After anaes-

hetic induction, the end-tidal concentration of sevoflurane was kept at

.3 MAC (2.6%). EEG data (5 min) were acquired from 15 min after the

oss of consciousness. Equipment and EEG acquisition procedures were

he same as the ones followed under the effects of ketamine. During the

tudy period, electrocardiogram, non-invasive blood pressure and pulse

ximetry were monitored in these non-premedicated participants (see

able 2 for further details). 

UWS dataset. Forty-nine UWS participants (age = 48.88 ± 15.62

ears, 13 women; aetiology = 25 stroke, 18 traumatic brain injury,

 anoxia) with Glasgow Coma Scale (GCS) score ( Teasdale and Jen-

ett, 1974 ) from 3 to 10 and Coma Recovery Scale-Revisited (CRSR)

core ( Giacino et al., 2004 ) from 1 to 8 were included in this study. EEG

ata were acquired for at least 5 min using a 256-channel system (GES

00, Electrical Geodesics, Inc., USA) and a 256-channel electrode cap

HCGSN 257-channel net cap, Electrical Geodesics, Inc. USA). EEG sig-

als were acquired at a sampling rate of 1000 Hz and referenced to Cz.

he impedance of all electrodes was kept below 20 K Ω. 

ALS dataset. A total of twelve ALS patients (age = 57.88 ± 13.24

ears, 7 men, 1 woman, 4 n.a.) with ALSFRS-R score from 3 to 40

min = 0, max = 48; Cedarbaum et al., 1999 ), as well as a single fe-

ale ALS patient (age = 52 years) suffering from LIS (ALSFRS-R = 1)



F. Zilio, J. Gomez-Pilar, S. Cao et al. NeuroImage 226 (2021) 117579 

Table 2 

The clinical data before and after anesthesia in two anesthesia groups. 

Parameter Awake state Anaesthetic state P -value 

Sevoflurane anesthesia 

HR (beats/min) 69.5 ± 7.6 67.8 ± 7.5 0.37 

SBP (mmHg) 125.2 ± 13.7 101.2 ± 23.7 < 0.01 

DBP (mmHg) 71.2 ± 9.6 56.3 ± 17.9 < 0.01 

RR (times/min) 13.2 ± 1.6 10.7 ± 1.0 0.01 

SpO 2 (%) 98.5 ± 1.4 99.0 ± 0.6 0.08 

PaO 2 (mmHg) 105.5 ± 17.4 451.5 ± 155.8 < 0.01 

PaCO 2 (mmHg) 38.9 ± 3.5 39.1 ± 3.7 0.28 

PH 7.43 ± 0.05 7.42 ± 0.01 0.55 

Ketamine anesthesia 

HR (beats/min) 75.2 ± 13.0 86.3 ± 14.0 0.02 

SBP (mmHg) 137.5 ± 18.3 151.5 ± 18.0 < 0.01 

DBP (mmHg) 73.2 ± 15.2 84.9 ± 8.3 0.01 

RR (times/min) 13.4 ± 1.6 11.4 ± 1.3 0.04 

SpO 2 (%) 98.1 ± 1.4 99.2 ± 0.6 0.08 

PaO 2 (mmHg) 105.5 ± 12.1 451.5 ± 150.8 < 0.01 

PaCO 2 (mmHg) 39.6 ± 3.1 41.8 ± 4.3 0.38 

PH 7.43 ± 0.05 7.42 ± 0.01 0.75 

Note: HR = heart rates; SBP = systolic blood pressure; DBP = diastolic 

blood pressure; RR = respiratory rates; SpO 2 = pulse oxygen saturation; 

PaO 2 = partial pressure of oxygen, and PaCO 2 = partial pressure of car- 

bon dioxide. 
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F  
articipated in the study. EEG data were acquired for 5 min (eyes-open)

sing 121 active electrodes at a sampling frequency of 500 Hz (Brain

roducts GmbH, Germany). The placement of the electrodes followed

he international 5–10 system, reference to the left mastoid. For a fur-

her description of the acquisition procedure, see Fomina et al. (2017 )

nd Hohmann et al. (2018 , 2016 ). The same protocol was undertaken

y twenty-three healthy participants in awake condition. 

.2. Ethics statement 

All participants (or their legal guardians) provided informed writ-

en consent before participation. This research was approved by the re-

pective Universities/Hospitals depending on the origin of the dataset

Western University Health Science Research Ethics Board for the sleep

ataset, Huashan Hospital, Fudan University for the anesthesia and

WS datasets, and Max Planck Society’s Ethics Committee for the ALS

ataset). This study was conducted in accordance with the Declaration

f Helsinki guidelines. 

.3. Data/code availability statement 

The Matlab code is freely available on the following URL: https://

ithub.com/Temporo- spatial/IntrinsicNeuralTimescales- . 

.4. Pre-processing 

Given the variety of datasets from different equipment and condi-

ions used in the present study, the specific pre-processing procedure

as carried out for each dataset depending on the particular require-

ents of the data. We took special care in removing muscular and ocu-

ar artefacts in the case of anesthesia, UWS and ALS datasets. For that

urpose, EEG signals were bandpass filtered between 0.5 and 40 Hz

sing a finite impulse response (FIR) filter. Then, independent compo-

ent analysis (ICA) was applied to remove components from the mus-

ular and ocular artifacts. On the other hand, due to the length of the

EG recordings (polysomnography during a normal sleep), epochs la-

eled as noise epochs by a registered technologist were completely re-

oved from the data. In the remaining epochs, FIR filter between 0.5

nd 40 Hz was applied to the data. All recordings were re-referenced to

he average activity. Finally, stationary artifacts, specifically eye move-

ents and muscular noise, were reduced using ICA. Particularly, runica
unction in EEGLAB ( Delorme and Makeig, 2004 ). Further details of the

re-processing are explained in Supplementary material. 

.5. Temporal analysis 

After pre-processing, the ACW was computed for each of the par-

icipants from the four datasets. For that purpose, custom scripts

ere developed to compute the ACW by measuring the full-width-

alf-maximum of the temporal autocorrelation function of each elec-

rode, following the description provided by Honey and colleagues

 Honey et al., 2012 ). Autocorrelation was calculated using windows of

0 s-length with and overlap of 50%. The lag was set to 0.5 s since we

bserved in a previous study that the ACW values agreed for different

ag values (ranged from 0.1 to 1 s) ( Wolff et al., 2019 ). The full-width-

alf-maximum of the main lobe of each the autocorrelation functions

as then computed for each epoch. ACW was estimated as the average

f all the epochs for each electrode and condition. In order to reduce the

umber of comparisons and to minimize type I errors, a grand average

cross electrodes was performed. ACW values represent the extent of the

eriodicity of the EEG signal, whereby longer ACWs can be interpreted

s greater stability of the frequencies over time. The length of the ACW

an be seen, therefore, as an index that summarizes the degree of reg-

larity of a signal, with longer ACW associated with more regular EEG

scillations. On the contrary, considering the extreme case, the autocor-

elation of a white noise signal will have a peak in the origin, whereby

he ACW, in this case, would be zero. 

.6. Spectral analysis 

To estimate the PSD of the EEG data, Welch’s method was computed

 Welch, 1967 ). This method requires a split of the EEG time series into

verlapped segments of length L . For our analyses, L was set to 3 times

he sampling rate, (e.g., 3 s), with an overlap of 50%. Then, segments

ere smoothed using a Hamming window. Fast Fourier Transform (FFT)

as applied in an epoch-based way to obtain the modified periodogram.

inally, the PSD was estimated by averaging all the periodograms. This

llows us to obtain an adequate resolution (two data samples per Hz)

ith an assumable increase of the computational cost. PSD values rep-

esent the power of oscillatory neuronal activity across the frequency

pectrum. 

Once the PSD was computed, PLE was obtained using in-house Mat-

ab scripts. For that purpose, PSD representation was log-log trans-

ormed in both the frequency and the power spectrum range. Then, the

lope of the PSD was estimated computing linear least squares regres-

ion. Other approaches, as robust linear regression could be applied.

his method is less prone to being biased by the presence of spurious

r oscillatory peaks (see Gao et al., 2017 ). However, since appreciable

ifferences between both methods were not observe (see Fig. S1 in the

upplementary material), we decided to apply linear squares regression

or the sake of comparability with most of the studies. Finally, the PLE

f each was defined as the absolute value of the slope of such regres-

ion. The averaged PLE across epochs and channels was used for further

nalyses. PLE values represent the extent of broadband arrhythmic neu-

onal activity in the EEG. Thereby, lower PLE values, i.e. more flatness

n the PSD function, is associated with a more arrhythmic activity. The

xtreme is again a white noise signal, with a completely flat PLE. 

It is worth noting that the PLE complements the PSD analysis by

dentifying differences in the temporal structure of the spectrum power

in a static way). While the PSD shows the differences of the power

pectrum in terms of the absolute power at particular frequencies, the

LE instead highlights the specific relationship in power between slow

nd fast frequencies, showing how their balance is altered in certain

tates, e.g. in anesthesia ( Zhang et al. 2018 ). For this reason, the increase

n power of slower frequencies is not always and necessarily associated

ith higher negative slope of the PSD (i.e., higher PLE) and vice versa.

or example, a PSD that shows high power in slower frequencies may be

https://github.com/Temporo-spatial/IntrinsicNeuralTimescales-
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ssociated with low PLE (flat slope) in case of an increased power also

n faster frequencies. On the other hand, a PSD that shows low power

n slower frequencies may be associated with higher PLE in case of an

xcessive decrement in the faster frequencies. 

.7. Statistical analysis 

Statistical analysis was done with Matlab ‘Statistics and Machine

earning’ Toolbox (version 2017b). Both to analyze the distribution of

he values of each dataset (violinplots) and to study the distribution

f the measurements calculated on the scalp (topoplots) the normal-

ty and homoscedasticity were assessed using Kolmogorov–Smirnov test

nd Levene test, respectively. For parametric data, paired two-tailed

 -tests were used for within-group comparisons, whereas independent

wo-tailed t -tests were used for between-group comparisons. When para-

etric assumptions were not met, Mann–Whitney U -tests and Wilcoxon

igned rank tests were used for within and between-group compar-

sons, respectively. In the particular case of the sleep dataset, compar-

son among 5 different conditions (i.e. awake, N1, N2, N3 and REM)

ere assessed. Since the data did not meet parametric assumptions, the

riedman test was applied. Post-hoc comparisons were performed af-

er controlling for False Discovery Rate (FDR) following the Benjamini–

ochberg procedure. This includes pairwise comparisons between con-

itions in the sleep datasets and statistical topographical maps (for the

ultiple comparisons across electrodes). 

It is important to note that some of our comparisons require more

han a conventional superiority test. In particular, we sometimes want

o check the equivalence between two different distributions (i.e. H1),

hich is the opposite of the conventional goal. In this case, the null

ypothesis (H0) would be the contrary (both distributions are differ-

nt) and equivalence or non-inferiority testing are required ( Walker and

owacki, 2011 ). In this study, we select the more restrictive (equiva-

ence testing), which is tantamount to applying two traditional one-side

ests ( Walker and Nowacki, 2011 ). Equivalence margin was set to 50%

f the PLE and the ACW differences between awake and N1 in the sleep

ata. This value was chosen following the most restrictive recommenda-

ions of the FDA in mortality studies ( Walker and Nowacki, 2011 ). This

rocedure allows us to minimize type I errors. For correlations, Spear-

an’s rho test was used since we do not have a priori hypothesis about

he type of relationship between the variables (i.e. linear or non-linear

elationship). 

Finally, aimed at controlling for possible bias due to the variety of

ataset used, we performed a frequency-to-frequency analysis to reveal

pectral bands with significant differences between groups (see Fig. S6

n the Supplementary material for details). 

. Results 

.1. The subtle differences between power spectral density and 

utocorrelation window 

The relationship between autocorrelation function and power

pectral density is well-known. In fact, Blackman–Tukey approach

 Blackman and Tukey, 1958 ), which is based on the Wiener–Khinchin

heorem ( Kay, 1988 ), states that the Fourier transform of the autocorre-

ation function of a time series is equivalent to the power spectral density

PSD) of such time series. However, the association between ACW and

LE is far from being obvious. 

The ACW (defined as the full-width-at-half-maximum of the auto-

orrelation function) and the PLE have been previously used in several

euroimage studies due to its ability to identify subtle differences be-

ween time series that the PSD is not able to recognize depending on the

pectral resolution of it ( Honey et al., 2012 ; Walden and Zhuang, 2019 ;

olff et al., 2019 ). Nonetheless, both measures have not directly com-

ared before, remaining unclear their similarities and differences. To il-

ustrate their behavior and to better understand the main findings of this
tudy, a number of simulations were conducted. In particular, four dif-

erent 1-min length time series were synthetically generated: pink noise,

inusoidal wave of 10 Hz, white noise and up-chirp signal. These signals

ere chosen for their characteristics (differences and similarities in PLE

nd ACW that help illustrate their relationship) and for being present,

o a greater or lesser extent, in the EEG. All of them were generated with

00 points per second (simulating a sampling rate of 500 Hz). The time

eries of the mentioned signals, along with PSDs and the autocorrelation

unctions of such signals are shown in Fig. 1 . 

In view of the figures, we can claim that each signal contributes dif-

erently to the total PLE and ACW of the EEG. For example, white noise

deally has an ACW close to zero and flat frequency response, therefore,

ts contribution to both measures is quite limited. On the other hand,

ink noise, whose contribution to the spectral structure of the EEG is

ignificant, shows an autocorrelation window close to zero, but a rele-

ant contribution to PLE. Sine-like waves (sine wave at 10 Hz and chirp)

sually have lower power than pink noise on the EEG, but their contri-

ution to signal pre-periodicity (and therefore to ACW) is not negligible.

Apart from their different contribution of the signals to the total PLE

nd ACW, the simulations reveal a dissociation between both measures.

n the one hand, we can see that white and pink noise signals differ in

he time and the spectral domain, showing a higher contribution of low

requencies in the pink noise signal. These differences are reflected in

he autocorrelation function, showing larger ACW for pink noise (0.077)

s compared with white noise (0.002). In fact, as previously mentioned,

he ACW of a perfect white noise is zero. It is noteworthy that, due to

he random nature of these two signals, the ACW was computed as the

verage of 100 surrogate data. This example reflects the influence of

ow frequencies in the ACW. On the other hand, the up-chirp signal and

 simple sinusoidal wave were also analyzed. In this case, the signal

eriodicity of the sinusoidal wave is higher than the chirp. However,

s Fig. 1 shows, the PSD of both signals are very similar showing, in

oth of them, an important influence of low frequencies. Despite the

igh degree of similarity in both PSDs, the periodicity of the signal is

irectly reflected in the autocorrelation functions, showing more than

ouble ACW value for the sinusoidal wave (0.666) than the up-chirp

0.306). These simulations reflect the influence of the signal periodicity

n the ACW, which makes it useful for measuring subtle differences in

he signals in particular cases. At the same time, this example shows the

heoretical different contribution of the signals as well as the dissocia-

ion between ACW and PLE. 

To provide additional evidence on the dissociation between ACW

nd PLE we calculated the correlation (Pearson’s rho test) between both

easures in the sleep dataset. If both measures were redundant, the

orrelation between them should be not only high, but very similar re-

ardless of the signals and states assessed. These correlations can be

bserved in the Fig. 1 B, along with the correlation coefficient and the

orresponding p -value. As the results show, although the correlations

re always positive, they are very different in each sleep stage (espe-

ially in the NREM3). Even the correlation is significant in the awake

tate, but is not in any of the sleep stages. This shows that both mea-

ures must be showing different yet unknown aspects of the underlying

hysiology 

.2. Intrinsic neural timescales in sleep 

First, the PSD for all the sleep stages were estimated (see Fig. S2

n the Supplementary material for PSD representations) and visually

nspected. Then, the ACW and the PLE were computed. Our results

howed a significant increased length of the ACW values as the sleep

tages become deeper (Friedman test, 𝜒2 (4) = 79.63, p < 0.01). Interest-

ngly, the ACW in wake was significantly lower than in N2 (Wilcoxon

igned-rank test, z = − 4.29, p < 0.01) and in N3 (Wilcoxon signed-rank,

 = − 4.28, p < 0.01). The ACW in REM was also significantly lower than

3 (Wilcoxon signed-rank test, z = − 4.26, p < 0.01), but not significantly

ifferent from N2 (Wilcoxon signed-rank test, z = 1.17, p > 0.05) (see also
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Fig. 1. Simulation examples showing the dissociation between PSD and ACW. Different signals are shown in the upper row (some of them usually present on 

the EEG). The second row shows the autocorrelation function for each of the above signals. Autocorrelation window (ACW) is almost zero for pink noise and white 

noise. The bottom row shows the power spectral density (PSD) of each signal. The sine wave and the chirp signal show a very similar power-law exponent (PLE). 

The procedure for obtaining the ACW and the PLE is shown on the left. 
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halighi et al., 2013 ) (see Fig. 2 c). Analogous changes were observed in

he PLE (Friedman test, 𝜒2 (4) = 87.1, p < 0.01). Importantly, as with the

CW, we could clearly observe increase of the PLE from the awake state

ver N1 (Wilcoxon signed-rank test, z = − 4.14, p < 0.001), N2 (Wilcoxon

igned-rank test z = − 4.29, p < 0.01), N3 (Wilcoxon signed-rank test,

 = − 4.29, p < 0.01) and REM (Wilcoxon signed-rank test, z = 1.24, p

 0.01), with more noticeable differences with N2 ( Fig. 2 d). Finally, in

oth the ACW and the PLE, global changes were observed in the topo-

raphical maps ( Fig. 2 e and f), which is supported by widespread statis-

ical differences found both for the ACW and for the PLE except for REM

s N2/N3 comparisons. Note that for Fig. 2 and the subsequent figures of

ach dataset, graphics and topoplot colormaps were adjusted to permit

 fair comparison between healthy controls and pathological/abnormal

roups. 

.3. Intrinsic neural timescales in anesthesia 

The participants receiving sevoflurane (OAA/S = 1) showed the ACW

nd the PLE values that doubled those shown by the same participants

n the awake condition. This is comparable with the results found for N3

n the sleep dataset. Wilcoxon signed-rank tests showed statistically sig-

ificant differences between awake and sevoflurane conditions in both

he ACW ( p = 0.0125, z = 2.50) and the PLE ( p = 0.0051, z = 2.80)

or the mean distribution of all the electrodes, demonstrating their ab-
ormally high values in the anaesthetic states as compared to the same

articipants’ awake state ( Fig. 3 a and b). 

Similar patterns were found for ketamine condition (OAA/S = 1),

oth for the ACW and for the same participants’ awake state. How-

ver, the increases in the ACW and the PLE as compared to the awake

tate were much less noticeable than in the sevoflurane group. In this

ase, no significant differences were found for the ACW (Wilcoxon

igned-rank test, z = 1.27, p > 0.01) and PLE (Wilcoxon signed-rank

est, z = 1.24, p = 0.01). Although the ACW and the PLE in the

etamine condition were not significantly different from the awake

tate, non-inferiority testing showed non-equivalence between ketamine

nd awake conditions (see Supplementary material for further de-

ails). In other words, ketamine changes enough the ACW and PLE val-

es enough to be considered relevant as compared to placebo condi-

ions. However, these changes cannot be considered significant as com-

ared to the awake condition when the mean of all the electrodes are

ompared. 

In other to further characterize these changes, the same procedure

as applied but using the joint distribution of all electrodes (not only the

ean). In this case, significant differences were found both for the ACW

Wilcoxon signed-rank test, z = 18.03, p < 0.001) and the PLE (Wilcoxon

igned-rank test, z = 25.21, p < 0.001) as compared to awake condition.

hese differences between sevoflurane and ketamine effects agree with

he visual inspection of the PSD, where sevoflurane showed an overall
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Fig. 2. ACW and PLE assessment in the sleep dataset. Illustrative explanation of ( A ) the ACW and ( B ) the PLE computation is shown. ( C ) The ACW distribution 

and ( D ) the PLE distribution are depicted using violin plots and boxplots for each of the sleep stages. A significant increase for both the ACW and the PLE is observed 

for deeper sleep stages (Friedman test). ( E ) Topographical maps for the difference between sleep stages in ACW and ( F ) the PLE are also represented following a 

repeated measures design. Statistical differences (Wilcoxon signed-rank test) after FDR correction for (G) ACW and for (H) PLE, indicating global changes for the 

comparison of most of the sleep states. 
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Fig. 3. ACW and PLE assessment in the anesthesia dataset. ( A ) The ACW distribution and ( B ) the PLE distribution are depicted using violin plots and boxplots 

for anesthesia and non-anesthesia conditions. Non-inferiority testing showed non-equivalence between ketamine and awake conditions both for the ACW and the 

PLE. In addition, a significant increase for both the ACW and the PLE is observed for sevoflurane as compared to awake (Wilcoxon signed-rank test). Topographical 

maps for ( C ) the ACW and ( D ) the PLE are represented for the difference between awake and anesthesia conditions, following a repeated measures design. Statistical 

differences (Wilcoxon signed-rank test) after FDR correction for (E) ACW and for (F) PLE, indicating widespread statistical differences in the scalp in sevoflurane 

conditions. On the contrary, the effects related to ketamine condition are more focused on the parieto-occipital brain region. 
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teep decay of the PSD compared to the awake state, with higher PSD

alues in the slow frequencies (1–8 Hz), a flattening of the alpha peak

nd a large PSD slope in the higher frequencies (20–40 Hz). 

On the contrary, ketamine showed a slight flattening of the PSD, with

 slowdown and a shift of the alpha peak towards lower frequencies

see Fig. S3 in the Supplementary material). Finally, as in sleep, the

opographical maps showed global effects rather than regionally specific

hanges for sevoflurane ( Fig. 3 c and d), showing statistical differences

cross the entire scalp ( Fig. 3 e and f). On the contrary, the effects related

o ketamine condition are more focused on the parieto-occipital brain

egion ( Fig. 3 e and f). 
.4. Intrinsic neural timescales in UWS 

Similar to sleep and sevoflurane anesthesia, the ACW was signif-

cantly longer in UWS as compared to the healthy controls (Mann–

hitney U -test, U = 216, p < 0.001) ( Fig. 4 a). Analogously, the PLE

as also significantly higher in UWS as compared to healthy controls

Mann–Whitney U -test, U = 205, p = 0.0013) ( Fig. 4 b). These results

re in line with the visual inspection of the PSD, which showed an over-

ll steeper decay compared to healthy participants, with more power in

he slow frequencies and a complete flattening of the alpha peak (see

ig. S4 in the Supplementary material). Finally, as in sleep, the topo-
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Fig. 4. ACW and PLE assessment in the UWS dataset. ( A ) The ACW distribution and ( B ) the PLE distribution are depicted using violin plots and boxplots for 

UWS participants and healthy controls. A clear increase for both the ACW and the PLE is observed for UWS participants. Topographical maps for the ACW ( C ) 

and the PLE ( D ) are also represented for healthy controls and UWS participants, indicating regionally no specific effects. This is supported by statistical differences 

(Mann–Whitney U -test after FDR correction) found in most of the electrodes both for (E) the ACW and for (F) the PLE. 
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raphical maps for AWC and PLE showed a global effect without any

pecific regional changes ( Fig. 4 c and d), which is supported by statis-

ical differences found in most of the electrodes both for ACW and for

LE (see Fig. 4 e and f). 

.5. Intrinsic neural timescales in ALS with and without locked-in 

yndrome (LIS) 

We also investigated a unique group of participants suffering from

LS with and without LIS. Despite their motor impairment, no signifi-

ant differences in the ACW (Mann–Whitney U -test, U = 487, p > 0.01) or

he PLE (Mann–Whitney U -test, U = 162, p > 0.01) were found between

LS without LIS and healthy controls ( Fig. 5 ). Importantly, although

nly one individual with LIS participated in this study, this participant

howed ACW and PLE values in the same range as both ALS (without

IS) and healthy controls ( Fig. 5 a and b). To statistically assess this,

 -score normalization was performed over the ACW and PLE values of

he LIS participant. In all cases, normalized values showed less than one

tandard deviation from the ACW of the healthy controls ( z = − 0.7181),
he ACW of the ALS participants without LIS ( z = 0.0802), the PLE of

he healthy controls ( z = − 0.2633) and the PLE of the ALS participants

ithout LIS ( z = 0.4285). 

Consistent with these results, the visual inspection of the PSD,

howed a very similar trend for the LIS participant, the ALS participant

ithout LIS and the healthy controls (see Fig. S5 in the Supplemen-

ary material). Again, no specific topographical changes were observed

 Fig. 5 c and d), which is supported by the regional statistical assessment

see Fig. 5 e and f). Only slight differences were found in the perimeter

rea of the occipital region. Taken together, these results suggest that

he intrinsic neural timescale for ALS either with or without LIS could

ot be differentiated from healthy controls. 

. Discussion 

Using resting-state EEG, in a comparative approach, we investigated

he relationship between the intrinsic neural timescale of the brain’s

pontaneous activity and sensory and/motor information processing

hrough their manifestation in various sensory- or motor-compromised
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Fig. 5. ACW and PLE assessment in the ALS dataset. Due to the number of participants, The ( A ) ACW distribution and ( B ) the PLE distribution are depicted 

using beeswarm plots for healthy controls, non-LIS participants and the LIS participant. A similar tendency is shown for the three groups for both the ACW and 

the PLE (non-inferiority testing). Topographical maps for ( C ) the ACW and ( D ) the PLE are also represented for healthy controls and non-LIS participants and 

the LIS participant. Statistical differences (Mann–Whitney U -test) after FDR correction for (E) ACW and for (F) PLE, indicating higher statistical differences in the 

parieto-occipital brain regions. 
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ehavioral states. We compared two types of behavioral states: (i) those

here sensory information processing is lost while motor information

rocessing seems to remain largely intact, e.g., sleep, anesthesia, and

WS, and (ii) those where sensory information processing is preserved

ith only motor information processing being largely deficient, e.g., ALS

nd LIS. 

As predicted, we demonstrated prolonged intrinsic neural timescales,

ndexed by the ACW in sensory-deficient but motor-preserved behav-

oral conditions, e.g., sleep, anesthesia, and UWS. Changes in ACW were

ccompanied by shifts towards slower frequencies in the PLE and the

SD. In contrast, and as predicted, we did not observe abnormal values

n the ACW (or the PLE and the PSD) in motor-deficient but sensory-

reserved behavioral conditions like ALS and LIS. Based on converging

vidence from these abnormal and normal behavioral states, we con-

lude that the spontaneous activity’s intrinsic neural timescales are rel-

vant primarily for sensory rather than motor information processing. 
.1. Sensory vs motor information processing 

We observed significant modulation (i.e., longer duration) of the

CW in sleep, anesthesia, and UWS, whereas no change in the ACW

as observed in ALS and LIS. These data are well in line with re-

ent findings of dynamic changes in the brain’s spontaneous activity

n sleep, anesthesia, and UWS ( Casali et al., 2013 ; Demertzi et al., 2019 ;

uang et al., 2018c , 2016 , 2014 ; Piarulli et al., 2016 ; Sarasso et al.,

015 ; Siclari et al., 2018 , 2017 ; Sitt et al., 2014 ; Tagliazucchi et al.,

016 , 2013a ; Thiery et al., 2018 ; Zhang et al., 2018 ). Our results ex-

end these findings to show a prolongation of the brain’s spontaneous

ntrinsic neural timescales. 

Specifically, our results show that the intrinsic neural timescales of

he brain’s spontaneous activity are abnormally extended in all con-

itions examined where sensory information processing is impaired.

his included behavioral conditions in different settings, e.g., normal,
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ealthy physiologic (sleep), pharmacologic (anesthesia), and patholog-

cal (UWS). Despite the remarkable differences between these condi-

ions, all these states showed prolongation in their ACW. Thus, the ev-

dence suggests that changes in the brain’s intrinsic neural timescales

re related to one specific feature that is shared by all these conditions,

.e., reduced or absent sensory function, independent of their underly-

ng cause. Consequently, we propose that the prolonged ACW in these

onditions reflects the loss of the capacity of the brain’s spontaneous ac-

ivity to process sensory information due to alterations of the intrinsic

eural timescale. 

In contrast, we did not observe ACW prolongation in conditions such

s ALS and LIS where, despite motor deficits, sensory-based interaction

ith the environment (and consciousness) remain intact. Albeit indi-

ectly inferred through converging evidence using a comparative ap-

roach in a collection of abnormal behavioral states, we therefore sug-

est that the intrinsic neural timescales of the brain’s spontaneous ac-

ivity are associated with the capacity to support sensory rather than

otor information processing. The focus of the study is not the actual

ufficient neural conditions for the state of consciousness in a specific

oment, i.e., the neural correlates of consciousness. Instead, we are

ather targeting more those neural capacities (or ‘neural predisposition’:

orthoff and Huang, 2017 ; Northoff and Lamme, 2020 ) that make pos-

ible consciousness, i.e., the intrinsic structure of the brain that permits

he possible realization of consciousness itself (even if it is not actu-

lly realized). In this sense, the spontaneous activity of the brain is

nterpreted as providing the capacity or neural predisposition for the

timulus-induced activity. This is not a clear-cut, white-or-black phe-

omenon, since we can see a slight change in the PLE during REM to-

ards the awake condition, despite the sensory deprivation that this

leep phase entails. The same applies to the case of brief sensory iso-

ation produced, for example, by Multimodal Ganzfeld ( Miskovic et al.,

019a ). In these cases, although the information coming from the ex-

ernal or outside is diminished or almost suppressed, it does not mean

hat the capacity or predisposition of sensory information processing

lso remains absent: the actual sensory processing and its neural corre-

ates are almost absent in these cases whereas their capacity or neural

redisposition for sensory information may yet be still preserved. For in-

tance, the capacity for sensory information processing is still preserved

n REM sleep even though external visual inputs are no longer processed

which does not yet exclude the processing of imagery visual input from

he own spontaneous activity). Hence, the PLE/ACW data reflect the ca-

acity, i.e., the neural predisposition, of sensory information processing

ather than the actual sensory processing itself. 

Our findings complement the observation that the brain’s intrin-

ic neural timescales are crucially important for the processing of ex-

ernal sensory stimuli during task-evoked activity; this has been de-

cribed by temporal receptive window (TRW) ( Chen et al., 2017 ,

015 ; Hasson et al., 2015 ) and the temporal receptive field (TRF)

 Cavanagh et al., 2016 ). Given that the magnitude of task-evoked ac-

ivity is dependent upon an ongoing spontaneous activity ( He, 2013 ;

uang et al., 2017 ; Northoff et al., 2011 ), one would assume that the

ntrinsic timescale of the brain’s spontaneous activity also shapes sen-

ory processing during task-evoked activity. This possibility, however,

emains to be directly investigated. 

.2. Temporal segregation and integration of sensory information 

Given that the ACW measures the degree of correlation of neural ac-

ivity patterns between different time points, accordingly, a short ACW

llows for increased temporal precision as it makes it possible to sep-

rate different stimuli at distinct time points ( Himberger et al., 2018 ;

urray et al., 2014 ). That is especially relevant for sensory informa-

ion processing as high temporal precision is required to distinguish be-

ween different sensory-mediated objects and events in the environment

n time (i.e., temporal segregation) ( Himberger et al., 2018 ). 
External stimuli in all sensory modalities require fast responses as

hey are brief and change rapidly, which may facilitate behavioral adap-

iveness required during healthy, alert wakefulness. This is also reflected

n the shorter duration of the intrinsic timescales in sensory cortex in

he healthy brain that exhibits short ACW in both rest and task states

 Chaudhuri et al., 2015 ; Gollo et al., 2017 , 2015 ; Hasson et al., 2015 ;

oney et al., 2012 ; Stephens et al., 2013 ). In contrast, increased ACW

ndicates a stronger correlation across more distant time points. Such

emporal autocorrelation is central for temporal integration (e.g., tem-

oral summing and pooling) of different inputs at a particular point in

ime ( Himberger et al., 2018 , p. 163). 

Our findings indicate that such temporal pooling and summing are

bnormal in those behavioral conditions exhibiting impairment in sen-

ory information processing. The abnormal prolongation of the ACW

bserved here signifies an increased capacity of the brain’s spontaneous

ctivity for temporal summing and pooling. Different sensory inputs at

ifferent points are thus lumped and integrated into the same neuronal

vent. This would have the consequence of impairing temporal preci-

ion and segregation of sensory information processing over time such

hat different sensory stimuli at different time points are no longer dis-

inguishable from one another. That, in turn, may lead to the loss of

emporally-specific and -precise sensory-based responsiveness to the ex-

ernal environment that is shared by all three states, e.g., sleep, anes-

hesia, and UWS (but not the motor-deficient states like ALS and LIS). 

In addition to the ACW, we also measured the PLE and the PSD.

ogether, as expected ( Casali et al., 2013 ; Colombo et al., 2019 ;

emertzi et al., 2019 ; Huang et al., 2017 , 2016 , 2014 ; Lehembre et al.,

012 ; Miskovic et al., 2019b ; Schiff et al., 2014 ; Siclari et al., 2018 ;

itt et al., 2014 ; Tagliazucchi et al., 2016 , 2013a ; Tagliazucchi and van

omeren, 2017 ; Zhang et al., 2018 ), our results show decreases in fast

requency power with a shift towards relatively stronger slow frequency

ower in both the PLE and the PSD in sleep, anesthesia, and UWS. In

ontrast, such a shift towards slower frequencies was not observed in

LS and LIS. 

Slow frequencies can be characterized by long cycle duration which

istinguishes them from the shorter cycle duration of faster frequen-

ies ( Buzsáki, 2006 ). The long cycle duration renders the slow frequen-

ies ideal for integrating or lumping together different stimuli ( He and

aichle, 2009 ; Northoff, 2017 , 2014a , 2014b ). We therefore tentatively

ssume that the shift in power towards slower frequencies with their

ong cycle durations, as measured with PLE and PSD, in sleep, anes-

hesia, and UWS, increases the capacity for temporal integration. Due

o the concurrent decrease in the power of the faster frequencies, this

ould decrease temporal precision and segregation of sensory informa-

ion processing. This would, in turn, result in a lack of sensory-based

esponsiveness including conditions such as N1-3 sleep, anesthesia, and

WS. However, to conclusively support these hypotheses, future studies

ay be needed. 

.3. Limitations 

The brain’s intrinsic neural timescale is supposed to exhibit an intri-

ate hierarchy with sensory regions showing shorter ACW and higher-

rder prefrontal regions revealing longer ACW ( Gollo et al., 2017 ,

015 ; Honey et al., 2012 ; Kiebel et al., 2008 ; Murray et al., 2014 ;

tephens et al., 2013 ). However, our topographical maps did not re-

eal the specific location of the ACW changes, thus, it was not possible

o explore the spatial topography of the intrinsic neural timescale. 

We only included participants suffering from reduced or loss of con-

ciousness. This leaves open the possibility that future studies might as-

ess ACW in participants with so-called ‘expanded consciousness’, e.g.,

uring drug-induced psychosis with LSD, psilocybin, mescaline or oth-

rs ( Atasoy et al., 2018 ; Carhart-Harris, 2018 ; Muthukumaraswamy and

iley, 2018 ). Moreover, the findings show that the power of faster EEG

requencies is relatively increased in these states while, at the same time,

low frequency power (in absolute terms) is preserved ( Atasoy et al.,
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018 ). One would consequently expect shorter duration of ACW (as its

ength is then driven mainly by the faster than the slower frequencies)

nd lower PLE (as the increased power in the faster frequencies lowers

he PLE) in extended consciousness conditions. In addition, the robust-

ess of these findings would be enhanced by extending the analysis with

ynamic approaches, which would reinforce the findings of the current

tudy. This possibility remains to be investigated. 

It is important to note that our different groups are characterized by

ifferences other than sensory vs. motor loss, which was the focus of the

urrent investigation. Therefore, we cannot exclude the possibility that

he observed differences between anesthesia/UWS/sleep and ALS/LIS

n terms of the ACW, PLE and PSD are due to factors other than the

ifference between loss of sensory or motor function. However, it is

orth mentioning that the converging evidence from these independent

roups and conditions suggest that the intrinsic neural timescale varies

n a meaningful way, despite the underlying cause of the conditions, and

ow they present themselves. To the best of our knowledge, the different

atasets analyzed here do not vary systematically in some other way that

ight easily explain the pattern of results. 

Due to the diversity of participants and conditions in this study, EEG

ecordings were acquired using different equipment, which involves

 different spatial resolution or sampling frequency depending on the

ataset. For that reason, different pre-processing procedures were ap-

lied according to the necessities of each condition. Although one can

onsider it a drawback, the fact of obtaining consistent findings in all the

atabases increase the robustness, and generalizability of our results. 

Finally, we did not go into details about the results in REM-sleep

here differences in ACW and PLE were less pronounced and more

ake-like. This is consistent with the neurophysiology the neurochem-

stry and cognitive state of REM sleep, which is paradoxically wake-

ike ( Houldin et al., 2019 ) in the sense that the EEG resembles that

f wake (e.g., high frequency, desynchronized, low amplitude EEG),

cetylcholine is high, and, as in wake states vivid mentation charac-

erizes dream content ( Siegel, 2011 ). This suggests that indeed, even

ithin healthy and normal diurnal variations in behavioral states, the

emporal dynamics, e.g., ACW, PLE, and PSD, of the brain at rest can

e modulated in different degrees on a continuum including a variety

f different dynamic states (see also Northoff et al., 2019 ; Northoff and

umati, 2019 ). 

. Conclusions 

Taken together, extending recent findings on temporal receptive

indows (TRW) during task-evoked activity, we show that the intrin-

ic neural timescales of the brain’s spontaneous activity are associated

ith temporal integration (or segregation) of specifically sensory rather

han motor information processing. How the intrinsic neural timescales

f the brain’s spontaneous activity including how the relationship to

ensory information processing stands in relation to the sensory-based

RW during task-evoked activity remains unclear though. Future stud-

es are thus warranted combining both resting and task states during the

nvestigation of intrinsic neural timescales. 
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