| Neuroanatomy and neurophysiology of | Anterior cingulate (Badgaiyan), Orbitofrontal cortex (de Oliveira-Souza et al.), Parietal cortex (Bearden & Monterosso), Negative motor areas (Marshall et al.), GABA and inhibition Barantal Assaultable in the cortex (Bearden & Monterosso). | |-------------------------------------|--| | catatonia | hibition Bogerts), Amygdala-hippocampus (Bogerts , Miu & Olteanu , Savodnik), Thalamus and hypersynchronous activity (Kamal & Schiff , Fricchione), Subcortical GABA- | | | ergic mechanisms (Fricchione), Striatal dopamine-glutamate interaction (Horvitz), | | | Multiple regions (Bearden & Monterosso, Bogerts, Carroll) | | Cognitive-motor | Supervisory system and lateral inhibition (Badgaiyan), Cognitive deficits in catatonia | | deficits in catatonia | (Aleman & Kahn), Relation between initiation and termination (Bearden & | | | Monterosso), Motor neglect (Marshall et al.), Role of inhibition (Badgaiyan, Bogerts, | | | Marshall et al.) | | Conceptual issues | Distinction between vertical and horizontal modulation (Horvitz), as well as between | | | "top-down" and "bottom-up modulation" (Shaw), Definition and level of "top-down | | | modulation" (Aleman & Kahn), Linkage between top-down and bottom-up modulation | | | (Fricehione), Anatomical structures vs. functional modulation (Kamal & Schiff), | | | Definition of "lesion" (Savodnik), Distinction between cause and symptoms of disease | | | (Bogerts, Shaw), "Biological" vs. "psychological" (Hardcastle, Marshall et al., Miu & | | | Olteanu, Savodnik) | | General | Cognitive models as a starting point (Badgaiyan), Description and phenomenology of | | methodology in | symptoms (Marshall et al.), State vs. trait (Bearden & Monterosso), Distinction | | neuropsychiatric | between cause, compensation, cooccurrence and consequences (Savodnik, Shaw), | | research | Definition of "disease" and "syndrome" (Savodnik, de Oliveira-Souza et al.), Too prema- | | | ture for hypothesis (Bearden & Monterosso , Bogerts, Marshall et al. , Miu & Olteanu) | | Neurophilosophical | "Psychological" vs. "biological" (Hardcastle), Role of consciousness (Hardcastle), | | implications | Neurobiology of self and relation to body (Platek & Gallup), Neurobiology of will | | | (de Oliveira-Souza et al.), Monism vs. dualism (Hardcastle, Marshall et al.) | ### Author's Response # Neurophysiology, neuropsychiatry and neurophilosophy of catatonia #### Georg Northoff Harvard Medical School, Beth Israel Deacones Medical Center, Department of Neurology, Section for Behavioral Neurology, Boston, MA 02215. gnorthof@bidmc.harvard.edu **Abstract:** The excellent and highly interesting commentaries address the following concerns: (1) neuroanatomy and neurophysiology of catatonia; (2) cognitive-motor deficits in catatonia; (3) conceptual issues; (4) general methodology in neuropsychiatric research; and (5) neurophilosophical implications. The specific problems, issues, and aspects raised by the different commentators are grouped under these categories in Table R1 presented below. These five areas of concern are then discussed in the order listed in the five sections of the Response. ## R1. Neuroanatomy and neurophysiology of catatonia **Badgaiyan** suggests the involvement of the anterior cingulate, including its distinct motor, affective, and cognitive parts, in catatonia. Involvement of the anterior cingulate is strongly supported by our imaging results acquired during emotional stimulation (Northoff et al. 2002a). Post-acute catatonic patients showed altered, that is, decreased signal intensity in medial orbitofrontal and ventromedial prefrontal cortex; the latter includes the subgenual and pregenual, that is, the affective part of the anterior cingulate. Moreover, abnormalities in medial prefrontal cortex, including the supragenual anterior cingulate (i.e., its motor and cognitive part) were observed. The exact functional mechanisms and the interregulation between the different parts of the anterior cingulate, however, remain unclear. **Badgaiyan** offers an interesting explanation by hypothesizing that the motor part may be inhibited, and thus, suppressed by overactivity in the affective part. Such a hypothesis seems to be of particular interest considering the fact that akinetic mutism, which shows similar motor features, may be caused by lesions in the motor part of the anterior cingulate. However, to my knowledge, there is, so far, no direct empirical evidence for his hypothesis. The excellent case descriptions from **de Oliveira-Souza et al.** suggest involvement of the orbitofrontal cortex especially the medial and right part. They nicely describe the behavioral anomalies which are so prominent and bizarre in these patients. They unfortunately do not describe the affective status of their patients. The medial orbitofrontal cortex might play a crucial role in catatonia as based on imaging findings and deficits in the Gambling task. These deficits might deregulate the functional balance between medial and lateral orbitofrontal cortex, which, psychologically, might be reflected in an abnormal emotional control of behavior. This remains purely speculative, however, and awaits further empirical confirmation. **Bearden & Monterosso** point out the crucial role of the right parietal cortex in my hypothesis, and argue that, if this is indeed the case, catatonic patients should show similar symptoms (apraxia, hemineglect, tactile impairment) to those with lesions in this region. This is a question that occurred to me, as well. However, it should be noted that they refer to patients with exclusive lesions in the right parietal cortex, which, unlike catatonia, do not show deficits in the orbitofrontal cortex. It may therefore be hypothesized that the co-occurrent involvement of right parietal and orbitofrontal cortex may lead to a different pattern of symptoms than isolated lesions in the right parietal cortex. Moreover, a recent study demonstrated that patients with hemineglect showed lesions in the right superior temporal cortex, rather than the right posterior parietal cortex (Karnath et al. 2001). Accordingly, exact localization of lesions may differ between catatonia and hemineglect. Marshall, Gurd & Fink (Marshall et al.) suggest the involvement of so-called negative motor areas, like the orbitofrontal cortex and the anterior cingulate. As already pointed out in both the target article and these commentaries, there is strong evidence for involvement of these regions in catatonia. Because of overlap in symptoms, it may well be imaginable that these regions could be involved in both hysterical paralysis and catatonia – although, in contrast, there is no direct evidence for alterations in active inhibition. However, there may be some indirect evidence. Behavioral inhibition may be reflected in posturing and its release by external stimuli, as, for example, when catching a ball (see Northoff et al. 1995). Physiological inhibition may be reflected in the good therapeutic efficacy of lorazepam, a GABA-A potentiator, which enhances neuronal inhibition. This is supported by abnormal (i.e., paradoxical) clinical responses to lorazepam (Northoff et al. 1999a), as well as abnormal changes in readiness potential (Northoff et al. 2000a) and orbitofrontal cortical fMRI signals (unpublished observation) after application of lorazepam in catatonic patients **Bogerts** refers to the process of neuronal inhibition and potentially GABAergic mechanisms by assuming that there may be a principal deficit in neuronal inhibition underlying both schizophrenia and catatonia. His hypothesis, that deficits in neuronal inhibition are basic to the principal disease process in both schizophrenia and catatonia though manifest in different regions, is appealing, especially from a clinical point of view. As he points out, catatonia occurs often as the most severe and extreme manifestation of paranoid schizophrenia – the same underlying pathophysiological mechanisms (i.e., altered neuronal inhibition) may account for this co-occurrence. Bogerts, Miu & Olteanu, and Savodnik argue for the potential involvement of the amygdala-hippocampal complex in the pathophysiology of catatonia. Bogerts (see also Savodnik) points out the similarity between catatonia and anxiety disorder with regard to strong and uncontrollable emotional symptoms (i.e., anxieties). Since the amygdala may be crucially involved in anxiety disorder, it should play a role in catatonia, as well. This is certainly right, and strongly supported by the existence of strong and reciprocal connections between the amygdala and the orbitofrontal cortex. Although the latter is altered in catatonia, one may assume that the former (i.e., the amygdala) is also involved. Miu & Olteanu point out the potential relevance of the hippocampus by drawing on the occurrence of catatonia in Alzheimer's disease. It is true, indeed, that many of the catatonic features, and catatonia as a whole, can be observed in dementia, Alzheimer's, and frontal lobe dementia in particular. Moreover, there is reciprocal and strong connectivity between the medial orbitofrontal cortex and the hippocampus (Barbas 2000), which makes involvement of both regions in catatonia rather likely. Finally, both schizophrenia and depression, the diseases in which catatonia most often occurs, can be characterized by abnormalities in the hippocampus (Bogerts 1997; Liotti & Mayberg 2001). Accordingly, there is some, albeit rather indirect,
evidence for potential involvement of the hippocampus in catatonia. Kamal & Schiff shift the attention to the thalamic nuclei and hypersynchronous neural activity. Rather than considering this as contradictory to my hypothesis, I would regard their comments as complementary. The cortico-subcortical loops described certainly involve the thalamic nuclei, which, in turn, may alter the neuronal pattern, consecutively leading to hypersynchronization. Hypersynchronous neural activity may account for the "deadlock" that can be observed in catatonia. However, this remains purely speculative, because there are no data at all to support such an assumption. The same remains true with regard to Fricchione's suggestion of impaired desynchronization in the basal ganglia. There are no EEG data so far which have been shown any abnormalities in catatonic patients. The problem remains, to establish a solid animal model that really mirrors catatonia as observed in humans. Although DeJong (see Northoff 1997a) claimed to have established an animal model of bulbocapnine-induced catatonia, application of the same agent led, rather, to a kind of neuroleptic-induced catalepsy, which did not react at all to GABAergic agents like lorazepam (my own unpublished observations). **Fricchione** points out the animal model by Stevens where a GABA-A antagonist was injected into the ventral tegmentum of cats and induced a catatonic-like state in cats. This may point out the relevance of subcortical GABA-ergic mechanisms which, on account of methodological reasons, have not been investigated in human catatonia so far. The same problem arises if one wants to investigate the exact interaction between cortical glutamatergic projections and dopaminergic nigrostriatal neurons in the striatums. As claimed by **Horvitz**, the interaction between both kinds of neurons may be altered in Parkinson's disease, which consecutively may account for muscle rigidity accompanying akinesia. It is one of the most distinguished features of akinesia in catatonia, in that it is not accompanied by an increase in muscle tone, which, in contrast, may be either on a normal or even lower (i.e., decreased) level. One may subsequently assume that the glutamatergic-dopaminergic interaction in the striatum may be different in catatonia from Parkinson's disease. Finally, it should be pointed out that several authors (**Bearden & Monterosso**, **Bogerts**, **Carroll**) support the assumption of diffuse and multiple lesions in catatonia. This was the reason why I put the emphasis on a network model, involving several regions and circuits, rather than on a single and particular anatomical location. #### R2. Cognitive-motor deficits in catatonia **Badgaiyan** makes the interesting assumption that the supervisory system and lateral inhibition may be disturbed in catatonia. The selection of action from among competing action sequences may be disturbed. Clinically, the inability to select appropriate action from among different kinds of actions may be reflected in both hypokinetic and hyperkinetic symptoms. In hypokinetic symptoms, no further action can be selected, whereas in hyperkinesias the switch between different actions is disturbed. Accordingly, there is clinical evidence for a deficit in the selection of action. Whether this is caused by alteration in lateral inhibition, however, remains unclear. Nevertheless, as already pointed out, assumption of altered inhibition (i.e., lateral inhibition) seems rather likely. Neuroanatomically, this is supported by potential involvement of the ventrolateral prefrontal cortex, which may be related to inhibitory functions. Neuropsychological results show a cognitive deficit in decision-making in catatonia as investigated with the Gambling task (own data, not published yet). This answers the question for cognitive deficits raised by **Aleman & Kahn**. However, the exact relationship of these cognitive deficits to catatonic symptoms remains unclear. One may speculate that the behavioral symptoms in particular may be related with these deficits in decision-making. **Bearden & Monterosso** raise the issue of the relation between initiation and termination of movements in catatonia. There is, apparently, a deficit in the termination of movements, because otherwise, patients would be able to complete their movements. However, initiation and termination are closely linked with each other. For example, terminating a movement presupposes an initiation for termination. Accordingly, initiation and termination cannot really be separated from each other. Because of their close linkage, catatonic patients show deficits in the internal initiation of movements, as observed in my ball experiments (Northoff et al. 1995). However, unlike patients with Parkinson's disease, catatonic patients also show deficits in the termination of movements, resulting in posturing. These deficits were also observed in the ball study and were described as a deficit in the "voluntary generation of movements." Accordingly, the present assumption of alteration in termination is not contradictory to my earlier statement of deficits in the initiation of movements. Marshall et al. raise the comparison between motor anosognosia in catatonia and motor neglect. They are certainly right in doing so, and support their claim by neuroanatomical evidence. I fully agree with them. However, as also pointed out by them, motor neglect does not lead to posturing. Accordingly, motor neglect may account for the lack of awareness of posturing, rather than for posturing itself. Instead of equating catatonic symptoms with motor neglect, I would suggest that catatonia might reflect a higher (i.e., cognitive) form of motor neglect. However, at present, this claim remains purely speculative. It is certainly true, as they state, that further phenomenological and psychological information is necessary in order to elucidate the exact nature of the motor deficits. Badgaiyan, Bogerts, and Marshall et al. point out the crucial role of inhibition in catatonia. It should be noted, however, that the exact meaning and level of inhibition should be defined: Do they mean behavioral inhibition? Psychological inhibition? Physiological inhibition, as it might be reflected in GABA-ergic mechanisms? All of these different levels of inhibition might dissociate from each other. For example, behavioral inhibition might be subserved by physiological (i.e., neuronal) excitation. Accord- ingly, the meaning of the term "inhibition" should be specified and discussed in full detail. With regard to catatonia, the exact relationship between the different kinds of inhibition remains unclear and can only be speculated about. ### R3. Conceptual issues The first conceptual issue concerns the distinction between vertical and horizontal modulation. Horvitz raises two questions: first, the exact relation between a particular kind of modulation (i.e., vertical or horizontal) and symptoms; and second, the relationship between anatomical structures and functional modulation. There is certainly no exclusive relationship between particular symptoms and a specific kind of modulation (i.e., horizontal and vertical). Catatonia, for example, may eventually involve vertical modulation as well, with top-down modulation of subcortical nuclei involved in affective regulation (locus coeruleus, raphe nuclei). Parkinson's disease, on the other hand, may involve horizontal modulation, as, for example, dysregulation of prefrontal cortical areas, accounting for emotional processing by motor/premotor cortical areas. Accordingly, it is not a matter of "All-or-Nothing," but rather a matter of "More or less," with regard to the kind of modulation involved. The same remains true for the distinction between "bottom-up" and "top-down" modulation, which, rather than being absolute, must be considered as "relative," as pointed out by **Shaw**. Because of the widespread, and often strong and reciprocal, cortical-subcortical and cortico-cortical connectivity, a sharp and exclusive distinction between the distinct kinds of modulation remains impossible. This is probably reflected in relative, rather than absolute, differences between clinical symptoms, like, for example, akinesia. Catatonia seems to be dominated by alterations in horizontal modulation, whereas Parkinson's disease may rather be characterized by predominant changes in vertical modula- **Aleman & Kahn** raise the question for the definition of "top-down modulation." They contrast the anatomo-connectional cortico-subcortical definition with a rather psychological definition by cognitive-sensory interaction. They are right in emphasizing the distinction, since both cases do not necessarily fall together. This, for example, is the case in visual attention, where prefrontal cortical areas top-down modulate sensory cortical regions. This corticocortical modulation might be subsumed under the term "horizontal modulation" in the anatomo-connectional sense. There is apparently some confusion and rather unclear definition of the various kinds of modulation. To clarify these issues must be considered an important task which might contribute substantially to a better understanding of the pathophysiological mechanisms in psychiatric disorders. Aleman & Kahn have pointed out hallucinations and affective-behavioral alteration as other examples where altered top-down modulation may be crucial. As they describe, cortico-cortical and cortico-subcortical modulation might go together, resulting, neuropsychologically, in topdown modulation. Consequently, top-down modulation and horizontal modulation might be regarded as equally important and should be seen to be complementary rather than exclusive, because they describe different levels of operation – that is, anatomo-connectional as well as neuropsychological. My emphasis was on pointing out these distinct kinds of modulations and the different levels they were operating
on. It is not that I forgot the loops and circuitry by Alexander et al., as is suggested by **Fricchione**. Rather, my concept of the distinct kinds of modulation, which point out the functional level rather than the structural anatomy, must be regarded as complementary. Fricchione is certainly right in noting the neglect of subcortical regions – the basal ganglia, in particular – which resulted in a lack of discussion of the neuromedical origin of catatonia. My focus was concentrated on the cortical-cortical interactions and the distinct kinds of modulations as these are questioned in the consideration of psychogenic catatonia. However, these kinds of modulation do not necessarily exclude subcortical-cortical modulation, that is, bottom-up modulation. Fricchione's suggestion, for linking top-down and bottom-up modulation in order to account for both psychogenic and organic catatonia, might therefore be considered as a good model for further investigation. This leads us to the second question, the relation between functional modulation and anatomical structures. I would claim that the clinical symptoms themselves, in both disorders, cannot be directly related to particular deficits in specific anatomical structures, but rather, are related to particular alterations in functional modulations (i.e., circuits and loops). For example, the nigrostriatal dopaminergic deficit is the cause of the dysregulation in the "motor loop" in Parkinson's disease, which then accounts for the motor symptoms. Accordingly, anatomical structures can be regarded as a necessary, but not sufficient, condition for generation of clinical symptoms. For example, a particular anatomo-structural lesion may predispose and increase vulnerability to a certain dysregulation in functional modulation, as pointed out by Kamal & Schiff. However, there may also be anatomo-structural lesions without dysregulation in functional modulation, which may be reflected in an absence of clinical symptoms. Functional modulation, which operates on and across different anatomical structures, may therefore be regarded as a sufficient condition. This is, for example, reflected in psychogenic disorders. Despite the absence of a particular anatomo-structural lesion, psychogenic disorders show alterations in functional modulation, whereas their clinical symptoms resemble the diseases having lesions in those anatomical structures on which the loops and circuits operate. Accordingly, the relations between anatomical structures and functional modulation can be manifold. Different constellations can be possible and may account for major and minor differences in clinical symptoms. Closely related to the difference between structure and function, is the concern raised by **Savodnik**, regarding the definition of a "lesion." He argues that catatonia cannot be characterized by lesions in the Virchowian sense, because no anatomo-cellular correlate has been detected so far. However, within the present framework, the concept and definition of a "lesion" should be extended to include not only anatomo-structural lesions, but also alterations in functional modulation (i.e., loops and circuits). These may, for example, concern alterations in vertical and horizontal modulation, as is the case in catatonia. Moreover, this extended definition of "lesion" could then also account for psychogenic disorders, and would therefore bridge the "old" gap between the structural and functional level, and thus between "organic" and "psychogenic" disorders. Pre- supposing this definition of a "lesion," catatonia, too, can be regarded as a "disease," which makes its characterization as a "social construct," as suggested by Savodnik, superfluous. Moreover, the distinction between the cause of a disease and the symptoms of a disease should be considered. The present hypothesis aims at pointing out the pathophysiological correlates underlying the different kinds of symptoms in catatonia. Although, in contrast, it does not say much about the pathophysiology related to the cause of these changes. Because the hypothesis focuses predominantly on the pathophysiological correlates of symptoms, it rather neglects the dynamic nature and course of catatonia, as has been noted by **Bogerts** and **Shaw**. Both these commentators are certainly right that, in order to obtain a full and complete pathophysiological account of catatonia, its dynamic nature and course should be taken into account. However, focus on the symptoms themselves, with neglect of the dynamic course, does not make the comparison with Parkinson's disease worthless (see Shaw's commentary in this regard), as long as it does not claim to be a comparison between both diseases (but rather, between their symptoms). Shaw is certainly right, however, in pointing out the necessity of giving the exact stage of the disease (early or late) to which the motor symptoms in Parkinson's refer. The difference between pathophysiological correlates of the disease cause and the disease symptoms is nicely reflected in Parkinson's. The nigrostriatal dopaminergic deficit may somehow be regarded as the correlate of the disease cause (although the cause for the degeneration of these neurons remains unclear), whereas the changes in the "motor loop" are instead the correlate of the motor symptoms. As pointed out by **Bogerts**, the disease cause remains unclear in catatonia, and it may be of anatomo-structural nature. Accordingly, the distinction between disease cause and disease symptoms may reflect the distinction between the anatomo-structural and functional level. Although — as, for example, in psychogenic disorders — this is not necessarily the case. The term "cause" of particular symptoms may be further specified and may refer either to a particular disease or a syndrome. Bogerts remarks that there is a lack of clear specification as to whether catatonia is a syndrome, or a disease by itself. As pointed out in my studies, I regard catatonia as being a syndrome (see also **Carroll**). As a result, catatonia can be associated with a variety of different diseases, from which it may turn out to be a "common functional final pathway." For example, fever can be associated with a variety of different diseases. Nevertheless, there is a specific pathophysiological correlate of fever that remains absent in patients with the same disease, but without fever. Fever may therefore be regarded as an analogous model syndrome for catatonia. Considering fever, which is the extreme manifestation of an underlying disease, catatonia may indeed be regarded as the "extreme end" of certain neuropsychiatric diseases, such as, for example, affective and schizophrenic disorders. In contrast to Bogerts' implicit assumption, the syndrome character of catatonia and its characterization as an "extreme end" are not mutually ex- As pointed out by **Bogerts**, **Miu & Olteanu**, **Carroll**, and **Bearden & Monterosso**, catatonia can apparently be related, not to one particular anatomical structure, but rather, to multiple and different ones. It therefore defies strict localizationism. However, this does not mean that catatonia can be related to the whole brain, as presupposed in holism. The present concept of description of loops and circuits, which operate across several but specific anatomical structures, defies and undermines the exclusive and opposite distinction between localizationism and holism. The term "up- and down regulation" does, therefore, refer primarily to specific circuits, rather than to transmitters as suggested by **Shaw**. However, transmitters should not be neglected entirely, because the functional output of the circuits may essentially depend on the kinds of transmitters. Instead, the present hypothesis can be regarded as an attempt to provide the groundwork for a more dynamic approach and to move beyond or undermine the classical distinction between localizationist and holistic approaches, which are still quite prevalent in neuropsychiatry, either explicitly or implicitly. Finally, the distinction between "biological" and "psychological," which reflects the distinction between "psychogenic" and "organic" catatonia, is raised by several commentators, either implicitly or explicitly (Hardcastle, Marshall et al., Miu & Olteanu, Savodnik). I do not intend to say that "psychogenic" disorders are cortical and "organic" disorders are subcortical. Instead of making an "absolute" difference, I would rather call for a "relative" distinction with matters of degree. The loops and circuits cross the boundary between cortical and subcortical regions and, therefore, "relativize" this distinction. Hardcastle is subsequently right in claiming that this "division" is "too simple." However, it may reappear in a "relativized" form within the terms "top-down" and "bottom-up" modulation, and thus in the direction of the modulation within one particular cortical-subcortical loop/circuit. It is this characterization of the different directions of the modulation within the same loops/circuits that may account for the subtle and minor differences in otherwise almost similar clinical symptoms of organic and psychogenic disorders. For example, detailed and exact clinical observation reveals subtle differences between hysterical paralysis and organic paralysis. The regions, pointed out by **Marshall et al.** (orbitofrontal, anterior cingulate) in hysterical paralysis, are usually not affected in the case of organic paralysis. However, they may lead to abnormal top-down modulation of those regions usually affected and lesioned in organic paralysis. Hysterical paralysis can thus neither be "localized" in cortical regions nor in subcortical areas, whereas the direction of modulation may be specified in this regard. ### R4. General methodology in neuropsychiatric research **Badgaiyan** emphasizes the need for consideration of cognitive models as a starting point for psychiatric research by "delineating
the underlying deficits of cognitive information processing," which should replace the focus on symptoms. The commentator replaces symptoms with cognitive models, because the same symptoms, as for example akinesia, may show different underlying neurocognitive disturbances. Drawing parallels between symptoms may therefore be problematic. However, in addition to similarities, we pointed out subtle differences between catatonic and Parkinsonic akinesia, which concerned not only subtle motor features (muscle tone), but also the predominantly subjective experience of akinesia. Total replacement of symp- toms by cognitive models as a starting point, as implicitly suggested by Badgaiyan, should therefore be rejected, because then the subjective experience would be neglected. Especially in psychiatric disturbances, the role of subjective experience (i.e., phenomenology) is often neglected and regarded as superfluous in the search for a neurobiological substrate. The present hypothesis of catatonia, in contrast, aims to demonstrate the necessity of considering subjective experience as a starting point for the generation of a neurobiological hypothesis (see Northoff et al. 1998; 2002b). Differences and/or special features of subjective experience must have a specific underlying physiological substrate. Accordingly, subjective experience and phenomenology may serve as a starting point for the generation of a neurobiological hypothesis. Cognitive models may thereby serve as an intermediate step, which may bridge the gap between subjective experience and symptoms, on the one hand, and physiological and anatomical substrates, on the other. In the present case of akinesia in catatonia, this intermediate position is supposed to be filled by reference to the model of Miall and Wolpert (1996). In addition to their subjective experience in the first-person perspective, the symptoms themselves should be described objectively as accurately as possible from a thirdperson perspective. This point is raised by Marshall et al. Their question of recognition of other postures in other persons by catatonic patients is an interesting one and probably aims at the function of the observation system. Is there a specific dissociation between observation and awareness of one's own and other's movements in catatonia? Unfortunately, no data have been reported yet. Are catatonic patients "living statues," holding strange postures like the artists in Paris? Yes, they are "living statues," but they are not like these artists. These artists probably do show increased muscle tone and muscle strength to hold their postures. This is not the case in catatonic patients, who often show either normal or even decreased muscle tone. Moreover, they do not show abnormal muscle strength. Finally, moreover, unlike those artists in Paris, catatonic patients are not able to deliberately and voluntarily start and stop their postures, because they remain unaware of them. Accordingly, it seems rather unlikely that the artists in Paris, as observed by Marshall et al., may be "hidden and nondetected" catatonic patients that need lorazepam. Moreover, complementing subjective experience and objective symptoms, the exact characterization of their occurrence should be considered. Are the symptoms state or trait markers? This point is raised by **Bearden & Monterosso**, and they are completely right in emphasizing it. As a result of the fact that imaging of patients in an acute catatonic state remains (practically and ethically) almost impossible, most pathophysiological findings concern the post-acute state, and therefore may be considered to be "trait markers" rather than "state markers." One may therefore concede that dysfunction in the reported regions may predispose a person for the development of catatonic symptoms, whereas they may not be considered as the anatomofunctional substrate of the symptoms themselves. Total dissociation between "state- and trait markers" with regard to their respective pathophysiological substrates subsequently cannot be excluded. The best way to generate a pathopysiological hypothesis about the symptoms themselves (i.e., "state markers") probably would be the development of an animal model. This also would allow for a distinction between the cause, compensatory mechanisms, co-occurrence, and consequences of the disease, as emphasized by **Savodnik** and **Shaw**, which, due to lack of available knowledge, is rather underemphasized or neglected in my hypothesis. Moreover, the meaning of the term "syndrome," as raised by **de Oliveira-Souza et al.** should be considered. I fully agree with their definition of catatonia as a syndrome as analogous to other syndromes in medicine such as fever or coma. Catatonia as a psychomotor syndrome may consequently be regarded as the "common final functional pathway" of various different causes which reflect the different (psychogenic and organic) origins of catatonia. These considerations lead us to two more basic questions, the first one regarding the definition of a disease, and the second one regarding the time point, or timing, of a neuropsychiatric hypothesis. The question regarding the definition of disease is raised by **Savodnik** and has long been debated in psychiatry. Can behavioral symptoms, as observed in psychiatry, be defined as a disease in the absence of a pathophysiological substrate providing the unifying umbrella? Or are they mere social constructs, as suggested by Savodnik? How shall the search for pathophysiological substrates proceed methodologically? Or does a neurobiology of psychiatry remain impossible altogether? Considering the recent advances in our understanding of higher brain function, the last question can almost certainly be denied. My own position on this issue is that an accurate and detailed account of both subjective experience and objective symptoms may serve as the starting point for the development of a pathophysiological hypothesis as intermediated by cognitive models (see also above). Such an approach presupposes a so-called first-person neuroscience (see Lutz et al. 2002; Northoff 2003), where first-person perspective data from subjective experience are directly included in analysis of third-person perspective data about physiological processes. Instead of being considered as a "unified theory," the present hypothesis about catatonia rather may be regarded from a heuristic point of view, which may guide and focus neurobiological investigation. One may subsequently start with an often observed and preliminarily defined constellation and co-occurrence of specific symptoms and subjective experiences. Although the definition of a disease can be put on hold, this, however, does not prevent neurobiological research. Once pathophysiological data are obtained, the definition of these symptoms as a disease entity may ultimately be decided. The question of the timing of the present hypothesis about catatonia has been raised by several authors: Isn't it too premature to develop a hypothesis about catatonia? **Bearden & Monterosso** mention the complexity of catatonia; **Bogerts** raises the problem of the lacking pathohistological correlate; **Marshall et al.** bring up the lack of detailed clinico-phenomenological knowledge; and **Miu & Olteanu** note the possibility of too many alternative explanations as obstacles to a hypothesis or theory of catatonia. Therefore, they argue, it is premature to develop such a hypothesis. I agree with all commentators with regard to the points they raise, as already discussed above. However, I think that they may potentially presuppose a different and much stronger meaning of the term "hypothesis" than I originally intended. "Hypothesis" in the present sense points out a preliminary character, rather than a fixed and definitive character as, for example, in a "unified theory." Moreover, hypothesis in the present sense remains very much open to modification in the process of acquisition of further data. The hypothesis in the present sense can subsequently be regarded only as a starting point rather than an end point. As such, it serves as a coherent conceptualization of present and available data, which then may guide, focus, and restrict further neurophenomenological and neurobiological investigation, the results of which, in turn, may make modification of the initial hypothesis necessary. Accordingly, the present hypothesis may not be regarded as a "unified theory," which can be either verified or falsified. Instead, it may rather be modified, specified, and complemented in the course of further investigation. The complexity of catatonia, as demonstrated nicely by **Bearden & Monterosso**, makes the development of a hypothesis, in this sense, necessary, because otherwise, the lack of any kind of conceptualization of the complexity of catatonia could make any further neurobiological approach doomed to failure. Moreover, the hypothesis may serve as a guide for restricting and limiting the focus of the search for a pathohistological correlate, as emphasised by **Bogerts**. In addition, the hypothesis may serve to raise novel clinico-phenomenological questions, as pointed out by **Marshall et al.**, which may provide us with a "new look" on "old and well known" clinical symptoms. Finally, the hypothesis attempts to reduce the number of alternative explanations, although, because of its preliminary character (being a starting point rather than an end point, see above), it remains unable to reduce them down to the possibility of either verification or falsification, as implicitly suggested by Miu & Olteanu. Accordingly, it may be too early and premature to formulate a "unified theory" of catatonia with consecutive verification and falsification. However, it may not be premature or too early to generate a hypothesis for focusing and guiding further and future neurobiological research into catatonia. #### R5. Neurophilosophical implications
Hardcastle points out the importance of consciousness in the distinction between "psychological" and "biological," which, according to her, cannot be related to the distinction between cortical/top-down and subcortical/bottom-up. I certainly agree that consciousness (i.e., conscious experience) may be crucial to the distinction between "biological" and "psychological," at least at present. However, she neglects two other factors. First, conscious experience changes with dependence on the respective environment, and thus, on our state of knowledge. For example, diseases nowadays classified as "biological" (e.g., epilepsy) were regarded as "psychological" before their underlying neurobiological substrate had been revealed. Accordingly, the distinction between "biological" and "psychological" does not depend only on our conscious experience, but also on our environment. Second, "experience" includes not only conscious experiences but also unconscious ones. There may be much more unconscious experience than conscious experience, that is, the latter may be only the "tip of the iceberg" (see also Northoff 2003). This is reflected in the relevance of psychodynamics as a method for the description and reve- lation of these unconscious experiences, which may be manifest in a variety of different clinical symptoms like, for example, hysterical paralysis. If these unconscious processes are so abundant and may even determine conscious experience, the search for their underlying neurobiological substrate may be at least as important as the one for conscious experience. One may consequently speak of an attribution of "overimportance" to consciousness as compared to unconsciousness (Northoff 2003). This "overimportance" may be reflected in the focus of both neuroscience and philosophy on consciousness, which, in part, may be a result of the methodological difficulty of getting access to unconsciousness. Any "theory of consciousness" should consequently be accompanied by a "theory of unconsciousness" with respect to both the underlying neurobiological substrate and the philosophical implications. **Platek & Gallup** point out the implications of the present hypothesis for the neurobiology of the self. There are indeed disturbances of the self in catatonic patients, which we investigated in a separate study. We used the Repertory-Grid test, which asks for characterization and description of the person (i.e., self) and then allows for semiquantitative analysis (see Northoff et al. 2002b). The catatonic patients indeed showed severe alterations in their "self-constructs" as compared to noncatatonic depressive, manic, and schizoaffective patients, which, in addition, correlated significantly with alterations in orbitofrontal cortical signal intensity during emotional stimulation. These results, therefore, lend strong support to the assumption of alterations of the "self" in catatonic patients. Moreover, they point out the relevance of both the body and the right orbitofrontal cortex for the self. Platek and Gallup cite additional support for involvement of the right orbitofrontal cortex in the self by referring to studies of self-face recognition by Keenan et al. (2000). Moreover, they emphasize the role of the body and a kinaesthetic model and relate this to an orbitofrontalparietal loop. There is further strong support for involvement of the body in the generation of the self. Disturbances in the body image may also lead to disturbances in the self (see Northoff 2001b; 2003). The body may consequently be regarded as a constitutive and necessary (though not sufficient) condition for the self of a person. It is this crucial role of the body for the self that may shed new perspectives on both the neurobiology and the philosophy of the self. Neurobiologically, it may guide further studies in the search for a correlate of the self. Catatonia, with its apparent alteration in the orbitofrontal-parietal connections, may serve here as a paradigmatic example for the close linkage between body and self. Although, philosophically, it may counter-argue models of the self, which, as derived from Descartes, are purely mental and consequently non-bodily. As a result, empirically more realistic and plausible models of the self may be developed in philosophy. de Oliveira-Souza et al. suggest that the behavioral anomalies in catatonia reflect disturbance of the will in these patients – the symptoms of passivity and negativism oscillating between the two extremes of free or nonfree will. This is a very interesting suggestion and might shed some light on the neurobiological mechanisms underlying the will. Considering the findings in catatonia, the orbitofrontal cortex might play a crucial role in generating behavioral choices and alternatives which, on a phenomenal level, may be related with the will. One may distinguish the possibility of behavioral choices from the subjective experience or feeling of having a choice. The possibility of the latter is raised by the findings from Libet. Both components may not necessarily be subserved by the same neural correlates. Oliveira-Souza et al.'s suggestion might concern the behavioral choices rather than the subjective experience itself, but it might nevertheless be regarded as a good starting point into the neurobiological exploration of our will. I consequently fully agree with them that "catatonia opens a window into this as yet obscure landscape of the human mind." Finally, the old issue of monism versus dualism is raised by **Marshall et al.** and **Hardcastle**. Marshall et al. speak of a "rejection of two-substance dualism," with the consequence being that all diseases display both physical and psychological symptoms; while Hardcastle rejects the distinction between "biological" and "psychological," because in the end, everything will be "housing in the brain" and thus be "biological" anyway. Aren't these two positions rather contradictory? Before arguing in further detail, I would like to introduce a distinction that is often rather neglected in the current discussion. One should distinguish between the ontological, the epistemic, and the empirical level, which do not necessarily have to be in full accordance with each other; that is, they may dissociate from each other (see also Northoff 1999c; 2003). For example, **Marshall et al.** reject ontological dualism, though on an empirical level they still maintain some sort of dualism by claiming the co-occurrence of physical and psychological symptoms. In contrast, **Hardcastle** refers exclusively to the ontological level when she speaks of "biological" versus "psychological." Accordingly, both positions are not incompatible, because they both refer to different levels (i.e., ontological and empirical) while ostensibly rejecting any form of ontological dualism. I agree with the rejection of ontological dualism, but I also accept empirical dualism. This empirical dualism may potentially be traced back to some sort of epistemic dualism. I already mentioned above that both first- and third-person perspective accounts should be considered in the exploration of neuropsychiatric diseases. At this point, I want to go even one step further by claiming that first- and third-person perspectives may have distinct (although potentially overlapping) neurobiological substrates (see Northoff 2003, for further details). Epistemic dualism leads subsequently to empirical dualism. However, since both perspectives may be related to the anatomo-functional (and nonmental) substrates of the brain, both epistemic and empirical dualism remain compatible with ontological monism (see Northoff 2000b; 2001a; 2003). The conjunction between ontological monism, on the one hand, and epistemic and empirical dualism, on the other, may be well reflected in catatonia as a psychomotor syndrome (see also Northoff 1999). The most strange and bizarre forms of objective behavior in the third-person perspective can be related to the brain, and to the corresponding subjective experience in the first-person perspective which also may be related to the brain, but through different loops and circuits (i.e., lateral orbitofrontal-parietal circuit, medial orbitofrontal-striatal-pallidal circuit). Epistemic dualism between first- and third-person perspectives may thus be reflected in empirical dualism. However, both behavior and experience can be related principally to the same underlying ontological substrate (i.e., the physical stuff of the brain), which implies ontological monism. Catatonia may consequently be regarded as a paradigmatic example of the mind-brain relation, empirically, epistemically, and ontologically (see Northoff 1997b; 1999c). ### References ### Letters "a" and "r" appearing before authors' initials refer to target article and response, respectively. - Abi-Saab, W., Souza, D., Moghaddam, B. & Krystal, J. H. (1998) The NMDA antagonist model for schizophrenia: Promise and pitfalls. *Pharmacopsychiatry* 31(S):104–109. [aGN] - Aditanjee, M. T. & Aderibigbe, Y. A. (1999) Proposed research diagnostic criteria for neuroleptic malignant syndrome. *International Journal of Neuropsychopharmacology* 2:129–44. [BTC] - Aleman, A., De Haan, E. H. F., Böcker, K. B. E., Hijman, R. & Kahn, R. S. (2002) Hallucinations in schizophrenia: Imbalance between imagery and perception? Schizophrenia Research 57:315–16. [AA] - Alexander, G. E., Crutcher, M. D. & DeLong, M. R. (1990) Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions. *Progress in Brain Research* 85:119–46. [GF] - Alexander, G. E., Delong, M. R. & Strick, P. L. (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. *Annual Review of Neuroscience* 9:357–81. [GF, ARK] - Amaral, D. C., Price, J. L., Pitkänen, A. & Carmichael, S. T. (1992) Anatomical organization of the primate amygdaloid complex. In: The amygdala:
Neurobiological aspects of emotion, memory, and mental dysfunction, ed. J. P. Aggleton. Wiley-Liss. [ACM] - American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, IV. American Psychiatric Association. [BTC] - Anderson, R. (1999) Multimodal integration for the representation of space in the posterior parietal cortex. In: *The hippocampal and parietal foundations of* spatial cognition, ed. N. Burgess, K. J. Jeffery & Keefe. Oxford University Press. [aGN] - Athwal B. S., Cole, J., Wolpert, D., Frith, C. D. & Frackowiak, R. (1999) The role of proprioceptive feedback during movement: A PET study of a deafferentiated subject. *Neuroimage* 9:S509. [aGN] - Baars, B. J. (1997) Some essential differences between consciousness and attention, perception, and working memory. Consciousness and Cognition 6:363-71. [aGN] - (1998) Metaphors of consciousness and attention in the brain. Trends in Neuroscience 21(2):58–62. [aGN] - Badgaiyan, R. D. (2000a) Executive control, willed actions, and nonconscious processing. Human Brain Mapping 9(1):38–41. [RDB] - (2000b) Neuroanatomical organization of perceptual memory: An fMRI study of picture priming. *Human Brain Mapping* 10(4):197–203. [RDB] - Badgaiyan, R. D. & Posner, M. I. (1997) Time course of cortical activations in implicit and explicit recall. *Journal of Neuroscience* 17(12):4904–13. [RDB] - (1998) Mapping the cingulate cortex in response selection and monitoring. Neuroimage 7(3):255–60. [RDB] - Badgaiyan, R. D., Schacter, D. L. & Alpert, N. M. (1999) Auditory priming within and across modalities: Evidence from positron emission tomography. *Journal* of Cognitive Neuroscience 11(4):337–48. [RDB] - Baillarger, J. G. (1843) Recherche sur les maladies mentales. Masson. [JCM] Banks, G., Short, P., Martínez, J., Latchaw, R., Ratcliff, G. & Boller, F. (1989) The alien hand syndrome. Clinical and postmortem findings. Archives of Neurology 46:456–59. [ROS] - Barbas H. (1995) Anatomic basis of cognitive-emotional interactions in the primate prefrontal cortex. Neuroscience Biobehavioral Review 19(3):499–510. [aGN] - (2000) Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. *Brain Research Bulletin* 15:319–30. [rGN] - Barnes, M. P., Saunders, M., Walls, T. J., Saunders, I. & Kirk, C. A. (1986) The syndrome of Karl Ludwig Kahlbaum. *Journal of Neurology, Neurosurgery,* and Psychiatry 49:991–96. [BTC, JCM, RdO-S] - Baron-Cohen, S., Leslie, A. M. & Frith, U. (1985) Does the autistic child have a theory of mind? *Cognition* 21:37–46. [SMP] - Baron-Cohen, S., Ring, H. A., Bullmore, E. T., Wheelwright, S., Ashwin, C. & Williams, S. C. (2000) The amygdala theory of autism. Neuroscience and Biobehavioral Review 24:355–64. [SMP] - Baron-Cohen, S., Ring, H., Moriarty, J., Schmitz, B., Costa, D. & Ell, P. (1994) Recognition of mental state terms. Clinical findings in children with autism and a functional neuroimaging study of normal adults. *British Journal of Psychiatry* 165:640–49. [SMP] - Bechara, A., Damasio, H., Tranel, D. & Damasio, A. R. (1997) Deciding advantageously before knowing the advantageous strategy. Science 275: 1293–95. [aGN] - Behrendt, R-P. (1998) Underconstrained perception: A theoretical approach to the nature and function of verbal hallucinations. *Comprehensive Psychiatry* 39:236–48. [AA] - Benes F. M., Vincent S. L., Marie, A. & Khan, Y. (1996) Up-regulation of GABA-A receptor binding on neurons of the prefrontal cortex in schizophrenic subjects. *Neuroscience* 75:1021–31. [aGN] - Berns, G. S., Cohen, J. D. & Mintun, M. A. (1997) Brain regions responsive to novelty in the absence of awareness. *Science* 276:1272–75. [RDB] - Berrios, G. E. & Gili, M. (1995) Abulia and impulsiveness revisited: A conceptual history. Acta Psychiatrica Scandinavica 92:161–67. [RdO-S] - Beversdorf, D. Q. & Heilman, K. H. (1998) Facilitory paratonia and frontal lobe functioning. Neurology 51:968–71. [RdO-S] - Binkowski, F., Buccino, G., Fink, G., Shah, N. J., Taylor, J. G. & Seitz, R. (1999) Differential hemispheric activation due to visually and motor directed attention. *Neuroimage* 9:S769. [aGN, SMP] - Block, N. (1995) How can we find the neural correlate of consciousness? Trends in Neuroscience 19(11).456-59. [aGN] - Bogerts, B. (1997) The temporo-limbic system theory of positive symptoms in schizophrenia. Schizophrenia Bulletin 23(3):423–35. [rGN] - Bogerts, B. Meerts, E., Schönfeld-Bausch, R. (1985) Basal ganglia and limbic system pathology in schizophrenia. Archives of General Psychiatry 42:784–91. [aGN] - Bötzel, K., Ecker, C. & Schulze, S. (1997) Topography and dipole analysis of reafferent electrical brain activity following Bereitschaftspotential. *Experimental Brain Research* 114:352–61. [aGN] - Breen, N., Caine, D. & Coltheart, M. (2001) Mirrored-self misidentification: Two case studies of focal onset dementia. Neurocase~7:239-54.~[SMP] - Brown, J. (1989) The nature of voluntary action. Brain and Cognition 10:105–20. [RdO-S] - Brown, P. & Marsden, C. D. (1999) What do the basal ganglia do? *Lancet* 351:1801–804. [GF] - Brown, R. G. & Pluck, G. (2000) Negative symptoms: The "pathology" of motivation and goal-directed behaviour. Trends in Neuroscience 23:412–17. [BdO-S] - Büchel, C. & Friston K. J. (1997) Modulation of connectivity in visual pathways by attention: Cortical interactions evaluated with structural equation modeling and fMRI. Cerebral Cortex 7(8):768–78. [aGN] - Burgess, N., Jeffery, K. J. & Keefe, J. O. (1999) The hippocampal and parietal foundations of spatial cognition. Oxford University Press. [aGN] - Burruss, J. W. & Chacko, R. C. (1999) Episodically remitting akinetic mutism following subarachnoid hemorrhage. Journal of Neuropsychiatry and Clinical Neurosciences 11(1):100–102. [ARK] - Bush, G., Fink, M., Petrides, G., Dowling, F. & Francis, A. (1996a) Catatonia: Rating scale and standardized examination. Acta Psychiatrica Scandinavica 93:129–43. [BTC, aGN] - (1996b) Catatonia II. Treatment with lorazepam and electroconvulsive therapy. **Acta Psychiatrica Scandinavica 93:137–43. [BTC] - Bush, G., Luu, P. & Posner, M. I. (2000) Cognitive and emotional influences in anterior cingulate cortex. *Trends in Cognitive Science* 4(6):215–22. [RDB, aGN] - Calne, D. B. & Eisen, A. (1989) The relationship between Alzheimer's disease, Parkinson's disease, and motor neuron disease. The Canadian Journal of Neurological Sciences 16:547–50. [CAS] - Carlsson, M. & Carlsson, A. (1990) Interactions between glutamatergic and neuroaminergic systems within the basal ganglia – implications for schizophrenia and Parkinson's disease. Trends in Neurosciences 13:272–76 [GF] - Carmichael, S. T. & Price, J. L. (1994) Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey. *Journal of Comparative* Neurology 346:366–602. [aGN] - Carroll, B. T. (2000) The universal field hypothesis of catatonia and neuroleptic malignant syndrome. CNS Spectrums 5(7):26–33. [BTC, aGN] - Carroll, B. T., Anfinson, T. J., Kennedy, J. C., Yendrek, R., Doutros, M. & Bilon, A. (1994) Catatonic disorder due to general medical conditions. *Journal of Neuropsychiatry and Clinical Neurosciences* 6:122–33. [BTC, JCM] - Carroll, B. T., Kennedy, J. C. & Goforth, H. W. (1996) Approach to the differential diagnosis of catatonia. *Medscape Mental Health* 1(11). [BTC] (2000) Catatonic signs in medical and psychiatric catatonias. *CNS Spectrums* - 5:66-69. [BTC] Castaigne, P., Lhermitte, F., Buge, A., Escourolle, R., Hauw, J. J. & Lyon-Caen, O. - neuropathological study. Annals of Neurology 10(2):127–48. [ARK] Castelli, F., Happe, F., Frith, U. & Frith C (2000) Movement and mind: A functional imaging study of perception and interpretation of complex intentional movement patterns. Neuroimage 12:314–25. [aGN] (1981) Paramedian thalamic and midbrain infarct: Clinical and ### References/Northoff: What catatonia can tell us about "top-down modulation": A neuropsychiatric hypothesis - Castiello, U. (1999) Mechanisms of selection for the control of hand action. *Trends in Cognitive Sciences* 3:264–71. [aGN] - Cavada, C. & Goldman-Rakic, P. (1989) Posterior parietal cortex in Rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. The Journal of Comparative Neurology 287:422–45. [aGN] - Colby, C. L. (1999) Parietal constructs action-oriented spatial representations. In: The hippocampal and parietal foundations of spatial cognition, ed. N. Burgess, K. J. Jeffrey & J. O. Keefe. Oxford University Press. [aGN] - Colby, C. L. & Duhamel, J. R (1996) Spatial representation for action in human cortex. Cognitive Brain Research 5:105–15. [aGN] - Coplan, J. D. & Lydiard, B. (1998) Brain circuits in panic disorder. Biological Psychiatry 44:1264–76. [aGN] - Corbetta, M., Shulman, G. L., Miezin, F. M. & Petersen, S. E. (1993) A PET study of visuospatial attention. *Journal of Neuroscience* 13:1202–26. [aGN] - Crabtree, J. W. & Issac, J. T. (2001) Somatosensory and sensorimotor integration in the dorsal thalamus mediated by the thalamic reticular and intralaminar nuclei. Society for Neuroscience Annual Meeting 2001, Abstract 511–27. [ARK] - Craik, I. M., Moroz, T., Moscovitch, M., Stuss, D. T., Wincour, G., Tulving, E. & Kapur, S. (1999) In search of the self: A positron emission tomography study. *Psychological Science* 10:26–34. [SMP] - Crick, F. (1994) The astonishing hypothesis. Scribner's. [aGN] - Crick, F. & Koch, C. (1998) Consciousness and neuroscience. Cerebral Cortex 8:97–107. [aGN] - Damasio A. R. (1997) Towards a neuropathology of emotion and mood. Nature $386:769-70. \quad [aGN]$ - Daprati, E., Franck, N., Georgieff, N., Proust, J., Pacherie, E., Dalery, J. & Jeannerod, M. (1997) Looking for the agent: An investigation into consciousness of action and self-consciousness in schizophrenic patients. Cognition 65:71–86. [aGN] - Dawson, G. & McKissick,
F. C. (1984) Self-recognition in autistic children. Journal of Autism and Developmental Disorders 17:383–94. [SMP] - Deecke, L. (1996) Planning, preparation, execution, and imagery of volitional action. Cognitive Brain Research 3:59-64. [aGN] - DeJong, H. & Baruk, H. (1930) La catatonie experimentale par la bulbocapnine. University Press. [aGN] - Denny-Brown, D. (1952) The biological tropisms of the cerebral cortex. Arquivos de Neuropsiquiatria 10:399–404. [RdO-S] - Desmurget, M., Epstein, C. M., Turner, R. S., Prablanc, C., Alexander, G. E. & Grafton, S. T. (1999) Role of posterior parietal cortex in updating reaching movements to a visual target. *Nature Neuroscience* 2:563–67. [aGN] - Dettmers, C., Fink, G., Lemon, R., Stephan, K. M., Passingham, R. E., Silberzweig, D., Ridding, M., Brooks, D. & Frackowiak R. J. (1995) Relation between cerebral activity and force in the motor areas of the human brain. *Journal of Neurophysiology* 74(2):802–15. [aGN] - Devinsky, O. (1997) Neurological aspects of the conscious and unconscious mind. Annals of the New York Academy of Sciences 835:321–29. [aGN, RDB] - Dias, R., Robbins, T. & Roberts, A. C. (1996) Dissociation in prefrontal cortex of affective and attentional shifts. *Nature* 380:69–72. [aGN] - (1997) Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sorting Test: Restriction to novel situations and independence from "on-line" processing. *Journal of Neuroscience* 17(23):9285–97. [aGN] - Dick, J., Cantello, R., Benecke, R., Rothwell, J. & Marsden, C. D. (1987) The Beretischaftspotential, L-Dopa, and Parkinson's disease. ElectroClinical Neurophysiology 66(3):263–74. [aGN] - Dick, J., Rothwell, J., Benecke, R., Thompson, P., Day, B. L. & Marsden, C. D. (1989) The Bereitschaftspotential is abnormal in Parkinson's disease. Brain 112:233–44. [aGN] - Dom, R., de Saedeler, J., Bogerts, B. & Hopf, A. (1981) Quantitative cytometric analysis of basal ganglia in catatonic schizophrenics. In: *Biological psychiatry*, ed. Perris et al. Elsevier. [BB] - Drevets, W. C. & Raichle, M. E. (1998) Reciprocal suppression of regional cerebral blood flow during emotional versus higher cognitive processes: Implication for interactions between emotion and cognition. *Cognition and Emotion* 12(3):353–85. [aGN] - Driver, J. & Mattingley, J. B. (1998) Parietal neglect and visual awareness. *Nature Neuroscience* 1(1):17–22. [aGN] - Ebert, D., Feistel, H. & Kaschka, W. (1992) Left temporal hypoperfusion in catatonic syndromes: A SPECT study. *Psychiatry Research* 45(4):239–41. [CEB, aGN] - Edelman, G. (1989) The remembered present: A biological theory of consciousness. Basic Books. [aGN] - Edelman. G. & Tononi, G. (2000) A universe of consciousness. Basic Books. [aGN] - Eisen, A. & Calne, D. (1992) Amyotrophic lateral sclerosis, Parkinson's disease and Alzheimer's disease: Phylogenetic disorders of the human neocortex sharing - many characteristics. The Canadian Journal of Neurological Sciences 19(1):117–23. [CAS] - Eslinger, P. J. (2002) The anatomical basis of utilization behaviour: A shift from frontal-parietal to intrafrontal mechanisms. Cortex 38:273-76. [RdO-S] - Farmer, S. (2002) Neural rhythms in Parkinson's disease. Brain 125:1175–76. [ARK] - Feinberg, T. (1997) The irreducible perspectives of consciousness. Seminars in Neurology 17(2):85–95. [aGN] - Feinberg, T. E. (2001) Altered egos: How the brain creates the self. Oxford University Press. [SMP] - Fendt, M. & Fanselow. M. S. (1999) The neuroanatomical and neurochemical basis of conditioned fear. Neuroscience and Biobehavioral Reviews 23:743– 60. [aGN] - Ferrara, S., Zancaner, S., Orlando, R. & Palatini, P. (1999) Effects of a single dose of GABA-acid and lorazepam on psychomotor performance and subjective feelings in healthy volunteers. *European Journal of Clinical Pharmacology* 54:821–27. [aGN] - Fink, G. R., Marshall, J. C., Halligan, P. W., Frith, C. D., Driver, J., Frackowiak, R. S. J. & Dolan, R. J. (1999) The neural consequences of conflict between intention and the senses. *Brain* 122:497–512. [JCM, aGN] - Fink, M., Bush, G. & Francis, A. (1993) Catatonia: A treatable disorder occasionally recognized. *Directions in Psychiatry* 13:1–7. [aGN] - Fisher, C. M. (1989) "Catatonia" due to disulfiram toxicity. Archives of Neurology 46:798–804. [RdO-S] - Fleet, W. S., Valenstein, E. & Watson, R. T. (1987) Dopamine agonist the rapy for neglect in humans. Neurology~37(11):1765-70. [ARK] - Fletcher, P. C., Happe, F., Frith, U., Baker, S. C., Dolan, R. J., Frackowiak, R. S. & Frith, C. D. (1995) Other minds in the brain: A functional imaging study of "theory of mind" in story comprehension. *Cognition* 57:109–28. [SMP] - Flohr, H. (1995) Sensations and brain processes. *Behavioral Brain Research* 71:157–61. [aGN] - Forman, S., Silva, A. & Koretsky, A. (1998) Simultaneous glutamate and perfusion fMRI responses to regional brain stimulation. *Journal of Cerebral Blood Flow* and Metabolism 18:1064–70. [aGN] - Fricchione, G. (1985) Neuroleptic catatonia and its relationship to psychogenic catatonia. *Biological Psychiatry* 20:304–13. [aGN] - Fricchione, G., Mann, S. & Caroff, S. (2000) Catatonia, lethal catatonia, and neuroleptic malignant syndrome. *Psychiatric Annals* 30(5):347–55. [aGN] - Frith, C. D. (1992) The cognitive neuropsychology of schizophrenia. Erlbaum. [aGN] - Frith, C. D. & Corcoran, R. (1996) Exploring "theory of mind" in people with schizophrenia. *Psychological Medicine* 26:521–30. [SMP] - Frith, C. D. & Friston, K. J. (1996) The role of the thalamus in "top down" modulation of attention to sound. *NeuroImage* 4:210–15. [AA] - Frith, C. D., Perry, R. & Lumer, E. (1999) The neural correlates of conscious experience: An experimental framework. *Trends in Cognitive Sciences* 3(3):105–14. [aGN] - Fukutake, T., Hirayama, K. & Komatsu, T. (1993) Transient unilateral catalepsy and right parietal damage. *Japanese Journal of Psychiatry and Neurology* 47(3):647–50. [CEB, aGN] - Galati, G., Lobel, E., Berthoz, A., Pizzamiglio, L., Bihan, D. & Vallar, G. (1999) Egocentric and allocentric coding of space in the human brain. *NeuroImage* 9(6):S745. [aGN] - Gallup, G. G., Jr. (1982) Self-awareness and the emergence of mind in primates. American Journal of Primatology 2:237–48. [SMP] - Gallup, G. G., Jr. & Platek, S. M. (2002) Cognitive empathy presupposes self-awareness: Evidence from phylogeny, ontogeny, neuropsychology, and mental illness. (Commentary on Preston de Waal 2002). Behavioral and Brain Sciences 25(1):36–37. [SMP] - Galynker, I., Weiss, J., Ongseng, F. & Finestone, H. (1997) ECT treatment and cerebral perfusion in catatonia. *Journal of Nuclear Medicine* 38(2):251–54. [CEB, aGN] - Garcia, C., Philpott, P., Rime, B. & Blin, O. (1997) Effects of lorazepam on film-induced differentiated emotions in healthy controls. Fundamentals of Clinical Pharmacology 11:466–75. [aGN] - Gelenberg, A. J. (1976) The catatonic syndrome. Lancet 2:1339-41. [aGN, RdO-S] - Gitelmann, D., Alpert, N., Kosslyn, S., Daffner, K., Scinto, L., Thompson, W. & Mesulam, M. (1996) Functional imaging of human right hemispheric activation for exploratory movements. *Annals of Neurology* 39:174–79. [aGN] - Gjessing, R. (1974) A review of periodic catatonia. Biological Psychiatry 8:23–45. [aGN] - Gómez-Isla, T., Price, J. L., McKeel, D. W., Jr., Morris, J. C., Growdon, J. H. & Hyman, B. T. (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. *The Journal of Neuroscience* 16:4491– 500. [ACM] - Gorman, J., Kent, J. & Coplan, J. (2000) Neuroanatomical hypothesis and panic disorder. American Journal of Psychiatry 157:493–505. [aGN] - Grafton, S., Hazeltine, E. & Ivry, R. (1995) Functional mapping of sequence learning in normal humans. *Journal of Cognitive Neuroscience* 7(4):497–510. [aGN] - Gray, J. L. (1995) The contents of consciousness: A neuropsychological conjecture. Behavioral and Brain Sciences. [aGN] - Groenewegen, H. & Berendse, H. (1994a) The specificity of the "nonspecific" midline and intralaminar thalamic nuclei. Trends in Neuroscience 17:52–66. [ARK] - (1994b) Anatomical relationships between prefrontal cortex and basal ganglia in rat. In: Motor and cognitive functions of the prefrontal cortex. (Research and Perspectives in Neurosciences), ed. A.-M. Thierry, J. Glowinski, P. S. Goldman-Rakic & Y. Christen. Springer Verlag. [ARK] - Groenewegen, H. J. & Uylings, H. B. (2000) The prefrontal cortex and the integration of sensory, limbic and autonomic information. *Progress in Brain Research* 126:3–28. [RdO-S] - Grossberg, S. (2000) How hallucinations may arise from brain mechanisms of learning, attention, and volition. *Journal of the International Neuropsychological Society* 6:583–92. [AA] - Hassler, R. (1980) Brain mechanisms of intention and attention with introductory remarks on other volitional processes. *Progress in Brain Research* 54:585–614. [IS] - Hawkins, J. M., Archer, K. J., Strakowski, S. M. et al. (1995) Somatic treatment of catatonia. *International Journal of Medicine* 25:345–69. [BTC] - Henderson, J. M., Carpenter, K., Cartwright, H. & Halliday, G. M. (2000) Loss of thalamic intralaminar nuclei in progressive supranuclear palsy and Parkinson's disease: Clinical and therapeutic implications. *Brain* 123:1410–21. [ARK] - Hernandez-Lopez, S., Bargas, J., Surmeier, D. J., Reyes, A. & Galarraga, E. (1997) D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance. *Journal of Neuroscience* 17:3334–42. [JCH] - Herzog, A. G. & Kemper, T. L. (1980) Amygdaloid changes in ageing and dementia. Archives of Neurology 37:625–29. [ACM] - Hikosaka, O., Tanaka, M. & Iwamura, Y. (1985) Deficits in manipulative behavior induced by local injections of muscimol in the first somatosensory cortex of the conscious monkey. *Brain Research* 325:375–80. [aGN] - Hilgard, E. R. (1980) The trilogy of
mind: Cognition, affection, and conation. Journal of the History of Behavioral Sciences 16:107–17. [RdO-S] - Homburger, A. (1932) Motorik. In: Handbuch der Geisteskrankheiten, vol. 9, ed. O. Bumke. [aGN] - Hommel, B., Muessler, J, Aschersleben, G. & Prinz, W. (2001) The theory of event coding. *Behavioral and Brain Sciences* 24(5):849–78. [aGN] - Hopf, A. (1954) Orientierende Untersuchung zur Frage pathoanatomischer Veränderungen im Pallidum und Striatum bei Schizophrenie. Zeitschrift für Hirnforschung 1:97–145. [BB] - Horvitz, J. C. (2002) Dopamine gating of glutamatergic sensorimotor and incentive motivational input signals to the striatum. *Behavioral Brain Research* 137: 65–74. [ICH] - Horvitz, J. C. & Eyny, Y. S. (2000) Dopamine D2 receptor blockade reduces response likelihood but does not affect latency to emit a learned sensorymotor response: Implications for Parkinson's disease. *Behavioral Neuroscience* 114:934–39. [JCH] - Horwitz, B., Tagamets, M. A. & McIntosh, A. R. (1999) Neural modeling, functional brain imaging, and cognition. *Trends in Cognitive Sciences* 3(3): 91–98. [aGN] - Hurley, S. L. (1998) Consciousness in action. Harvard University Press. [aGN] Jahanshahi, M. & Frith, C. D. (1998) Willed action and its impairments. Cognitive Neuropsychology 15(6/7/8):483–533. [JCH, aGN] - Jahanshahi, M., Jenkins, I. C. H., Brown, R. G, Marsden, C, D., Passingham, R. E. & Brooks, D. J. (1995) Self-initiated versus externally triggered movements. Brain 118:913–33. [aGN] - Jasper, H., Descarries, L., Castelluci, V. & Rossignol, S. (1998) Consciousness at the frontiers of neurosciences. In: Advances in neurology, vol. 77, ed. H. Jasper, L. Descarries, V. Castelluci & S. Rossignol. Lippincott. [aGN] - Jeannerod, M. (1997) The cognitive neuroscience of action. Basil Blackwell. [aGN] - Joseph, R. (1996) Neuropsychiatry, neuropsychology, and clinical neuroscience. Williams and Wilkins. [IS] - Jueptner, M., Stephan, K. M., Frith, C. D., Brooks, D., Frackowiak, R. & Passingham, R. E. (1997) Anatomy of motor learning. Frontal cortex and attention to action. *Journal of Neurophysiology* 77:1313–24. [aGN] - Kahlbaum, K. L. (1874) Die Katatonie oder das Spannungsirresein. Hirschwald. [JCM] - (1874/1973) Catatonia, trans. T. Pridon & Y. Levij. Johns Hopkins University Press. [BTC, RdO-S] - Kalaska, J. (1996) Parietal cortex area 5 and visuo-motor behavior. Canadian Journal of Physiology and Pharmacology 74:483–98. [aGN] - Kandel, E. R. & Jessell, T. M., eds. (2000) Principles of neural science. McGraw-Hill. [IS] - Kapur, S. & Seeman, P. (2001) Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics?: A new hypothesis. American Journal of Psychiatry 158:360–69. [BTC] - Karnath, O. (1999) Spatial orientation and the representation of space with parietal lobe lesion. In: The hippocampal and parietal foundations of spatial cognition, ed. N. Burgess, K. J. Jeffery & J. O. Keefe. Oxford University Press. [aGN] - Karnath, H. O., Ferber, S. & Himmelbach, M. (2001) Spatial awareness is a function of the temporal not the posterior parietal lobe. *Nature* 411:950–53. [rGN] - Katz, D. I., Alexander, M. P. & Mandell, A. M. (1987) Dementia following strokes in the mesencephalon and diencephalon. Archives of Neurology 44(11):1127– 33. [ARK] - Keenan, J. P., McCutcheon, B., Freund, S., Gallup, G. G., Jr., Sanders, G. & Pascual-Leone, A. (1999) Left hand advantage in a self-face recognition task. Neuropsychologia 37:1421–25. [SMP] - Keenan, J. P., Nelson, A., O'Conner, M. & Pascual-Leone, A. (2001) Selfrecognition and the right hemsiphere. *Nature* 409:304. [SMP] - Keenan, J. P., Wheeler, M. A., Gallup, G. G., Jr. & Pascual-Leone, A. (2000) Self-recognition and the right prefrontal cortex. Trends in Cognitive Science 4:338–44. [rGN, SMP] - Kertesz, A. (2000) Alien hand, free will and Arnold Pick. Canadian Journal of Neurological Sciences 27:183. [RdO-S] - Kiefer, M., Marzinzik, F., Weisbrod, M., Scherg, M., Spitzer, M. (1998) The time course of brain activation during response inhibition: Evidence from eventrelated potentials in a go/no-go task. NeuroReport 9:765-70. [aGN] - Kirby, G. H. (1913) The catatonic syndrome and its relation to manic-depressive insanity. *Journal of Nervous and Mental Disease* 40:694–704. [RdO-S] - Kiyatkin, E. A. & Rebec, G. V. (1996) Dopaminergic modulation of glutamateinduced excitations of neurons in the neostriatum and nucleus accumbens of awake, unrestrained rats. *Journal of Neurophysiology* 75:142–53. [JCH] - Kosslyn, S M. (1994) Image and brain. MIT Press. [AA] - Kotter, R., Bozkurt, A., Stephan, K. E. & Hilgetag, C. C. (2001) Contextdependent organization of cerebral cortex. Society for Neuroscience Annual Meeting 2001, Abstract 641.5. [ARK] - Kötter, R. & Northoff, G. (2001) Medial and lateral networks in prefrontal cortex characterized by functional magnetic resonance imaging and network indices. (in preparation). [aGN] - Kraepelin, E. (1896/1971) Dementia praecox and paraphrenia, trans. R. M. Barclay. Robert E. Krieger. (Originally published in 1896; first English translation, 1919). [RdO-S] - (1920) Die Erscheinungsformen des Irreseins. Zeitschrift für des gesamte Neurologie und Psychiatrie 62:1–30. [JCM] - (1927) Compendium der Psychiatrie, 9th edition. Barth. [aGN] - Kubota, K. (1996) Motor cortical muscimol injection disrupts forelimb movement in freely moving monkeys. NeuroReport 7:2379-84. [aGN] - Kurata. K. & Hoffmann, D. (1994) Differential effects of muscimol microinjection into dorsal and ventral aspects of the premotor cortex of monkeys. *Journal of Neurophysiology* 71:1151–64. [aGN] - Kurland, L. T. (1988) Amyotrophic lateral sclerosis and Parkinson's disease complex on Guam linked to an environmental neurotoxin. Trends in Neuroscience 11(2):51–54. [CAS] - Lamme, V. (2001) Blindsight: The role of feedforward and feedback corticocortical connections. Acta Psychologia 107:209–28. [aGN] - Lane, R. D, Ahern, G. L, Schwartz, G. E. & Kaszniak, A. W. (1997a) Is alexithymia the emotional equivalent of blindsight? *Biological Psychiatry* 42:834–44. - Lane, R. D, Reiman, E. M., Ahern, G., Schwartz, G. E., Davidson, R. J. (1997b) Neuroanatomical correlates of happiness, sadness, and disgust. *American Journal Psychiatry* 154:926–33. [aGN] - Lane, R. D. & Schwartz, G. E. (1987) Levels of emotional awareness: A cognitivedevelopmental theory and its application to psychopathology. *American Journal of Psychiatry* 144:133–43. [aGN] - Langdon, R. & Coltheart, M. (1999) Mentalizing, schizotypy and schizophrenia. Cognition 71:43–71. [SMP] - (2000) Visual perspective-taking and schizotypy: Evidence for a simulation-based account of mentalizing in normal adults. *Cognition* 82:1–26. [SMP] - Laplane, D. & Degos, J. D. (1983) Motor neglect. Journal of Neurology, Neurosurgery and Psychiatry 46:152–58. [JCM] - Laplane, D. & Dubois, B. (2001) Auto-activation deficit: A basal ganglia related syndrome. Movement Disorders 16:810–14. [RdO-S] - Laplane, D., Talairach, J. & Meininger, V. (1977) Clinical consequences of cortisectomies involving the supplemental motor area in man. *Journal of. Neurological Science* 34:301–14. [IS] - Leary D. O., Andreasen, N., Luck, S., Watkins, G. & Hichwa, R. (1999) The components of spatial working memory. *Neuroimage* 9:S961. [aGN] LeDoux (1996) *The emotional brain*. Touchstone. [aGN] - Lent, R. (2002) Cem bilhões de neurônios. Conceitos fundamentais de neurociências. Atheneu. [RdO-S] - Leschinger, A., Baumgart, F., Bürger, E., Richter, A., Scheich, H., Bogerts, B. & Northoff, G. (2001) Orbitofrontal cortical dysfunction and behavioral anomalies in catatonia: Auditory working memory in fMRI. Psychiatry Research Neuroimaging. (in revision). [aGN] - Levy, R., Ashby, P., Hutchison, W. D., Lang, A. E., Lozano, A. M. & Dostrovsky, J. O. (2002) Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson's disease. *Brain* 125(6):1196–209. [ARK] - Levy, R. & Goldman-Rakic, P. (1999) Association of storage and processing function in the dorsolateral prefrontal cortex of the nonhuman primate. *Journal of Neuroscience* 19:5149–58. [aGN] - Lhermitte, F. (1986) Human autonomy and the frontal lobes. Part II, Patient behavior in complex and social situations: The "Environmental Dependency Syndrome." Annals of Neurology 19:335–43. [RdO-S] - Lhermitte, F., Pillon, B. & Serdaru, M. (1986) Human autonomy and the frontal lobes. Part I, Imitation and utilization behavior: A neuropsychological study of 75 patients. Annals of Neurology 19:326–34. [ROS] - Libet, B. (1985) Unconscious cerebral initiative and the role of conscious will in voluntary action. Behavioral and Brain Sciences 8:529–66. [aGN] - (1993) The neural time factor in conscious and unconscious events. In: Ciba Foundation Symposium: Experimental and theoretical studies of consciousness. Wiley. [aGN] - Libet, B., Wright, E., Gleason, C. A. & Pearl, D. K. (1983) Time of conscious intention to act in relation to onset of cerebral activities (readiness potential): The unconscious initiation of a freely voluntary act. *Brain* 106:623–42. [aGN] - Liddle, P. F. (1994) Volition and schizophrenia. In: Neuropsychology of schizophrenia. Brain, Behaviour and Cognition Series, ed. A. S. David & J. C. Cutting. Erlbaum. [CEB, aGN] - Liotti, M. & Mayberg, H. (2001) The role of functional neuroimaging in the neuropsychology of depression. *Journal of Clinical Experimental* Neuropsychology 23(1):121–36. [rGN] - Litvan, I., MacIntyre, A., Goetz, C. G., Wenning, G. K., Jellinger, K., Verny, M., Bartko, J. J., Jankovic, J., McKee, A., Brandel, J. P., Chaudhuri, K. R., Lai, E. C., D'Olhaberriague, L., Pearce, R. K. & Agid, Y. (1998) Accuracy of the clinical diagnoses of Lewy Body disease, Parkinson's disease and Dementia with Lewy Bodies. A clinicopathologic study. Archives of Neurology 55:969-78. [GF] - Lohr, J. B. & Wisniewski, A. A (1987) Catatonia. In: The neuropsychiatric basis of
movement disorders, ed. J. B. Lohr & A. A. Wisniewski. Guilford Press. [BTC] - Loizzo, A., Scotti, C. & Longo, V. (1971) Studies on the central effects of bulbocapnine. Psychopharmacologia 22:234–49. [aGN] - Luchins, D. J., Metz, J. T., Marks, R. C. & Cooper, M. D. (1989) Basal ganglia regional glucose metabolism asymmetry during a catatonic episode. *Biological Psychiatry* 26(7):725–28. [CEB, aGN] - Luria, A. (1966) Higher cortical functions in man. Tavistock. [aGN] - Lutz, A., Laucheaux, J., Martinerie, J. & Varela, F. (2002) Guiding the study of brain dynamics by using first-person data: Synchrony patterns correlate with ongoing conscious states during a simple visual task. *Proceedings of the National Academy of Sciences USA* 99930:1586–91. [rGN] - Macchi, G. & Bentivoglio, M. (1985) The thalamic intralaminar nuclei and the cerebral cortex. In: Cerebral cortex, vol. 5, ed. E. G. Jones & A. Peters. Plenum Press. [ARK] - MacDonald, A. W., Cohen, J. D., Stenger, V. A. & Carter, C. S. (2000) Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. *Science* 288(5472):1835–38. [RDB] - $\label{eq:MacIntosh} \mbox{ A., Rajah, N. \& Lobaugh, N. (1999) Interactions of prefrontal cortex in relation to awareness in sensory learning. \mbox{\it Science } 284:1531-33. \quad [aGN]$ - Magrinat, G., Danzinger, J. A., Lorenzo, I. C. & Flemembaum, A. (1983) A reassessment of catatonia. *Comprehensive Psychiatry* 24:218–28. [RdO-5] - Mann, S. A., Caroff, S. & Frichione, G. (2000) Central dopamine hypoactivity and the pathogenesis of neuroleptic malignant syndrome. *Psychiatric Annals* 30(5):363–74. [BTC, aGN] - Marshall, J. C. (2000) Dysfunction in right orbitofrontal cortex and anterior cingulate in hysterical paralysis. Cognition 64:B1–8 [aGN] - Marshall, J. C., Halligan, P. W., Fink, G. R., Wade, D. T. & Frackowiak, R. S. J. (1997) The functional anatomy of a hysterical paralysis. *Cognition* 64:B1–B8. [JCM] - Martin, J. P. (1967) The basal ganglia and posture. Pitman Medical. [JCH] Mastermann, D. & Cummings, J. (1997) Frontal-subcortical circuits. Journal of Psychopharmacology 11:107–114. [aGN] - Mathew, E., Andreason, P., Pettigrww, K., Carson, R., King, C. & Paul, S. (1995) Benzodiazepine receptors mediate r-CBF changes in the living human brain. Proceedings of the National Academy of Sciences USA 92:2775–79. [aGN] - Mattingley, J., Husain, M., Rorden, C., Kennard, C. & Driver, J. (1998) Motor role of human inferior parietal lobe revealed in unilateral neglect patients. *Nature* 392:179–182. [aGN] - Mayberg, H., Liotti, M., Brannan, S., McGinnis, S., Mahurin, R., Jerabek, P., Silva, J., Tekell, J., Martin, C., Lancaster, J. & Fox, P. T. (1999) Reciprocal limbic- - cortical function and negative mood: Converging PET findings in depression and normal sadness. *American Journal of Psychiatry* 156(5):675–82. [aGN] - Mayberg, H. S., Silva, J. A., Brannan, S. K, Tekell, J. L., Mahurin, R. K., McGinnis, S. & Jerabek, P. A. (2002) The functional neuroanatomy of the placebo effect. American Journal of Psychiatry 159:728–37. [GF] - Mentis, M. J., McIntosh, A. R., Perrine, K., Dhawan, V., Berlin, B., Feigin, A., Edwards, C., Mattis, P. & Eidelberg, D. (2002) Relationships among the metabolic patterns that correlate with mnemonic, visuospatial, and mood symptoms in Parkinson's disease. American Journal of Psychiatry 159(5): 746–54. [ARK] - Merello, M., Nouzeilles M. & Cammarota, A. (1999) Effect of memantine (NMDA-antagonist) in Parkinson's disease. *Clinical Neuropharmacology* 22:273–76. [aGN] - Metcalfe, J. & Mischel, W. (1999) A hot/cool-system analysis of delay of gratification: Dynamics of willpower. *Psychological Reviews* 106:3–19. [RdO-S] - Metzinger, T., ed. (1995) Conscious experience. Imprint Academic/Schöningh Press. [aGN] - Meyer-Lindenberg, A., Ellmore, T., Brown, T., Mattay, V., Weinberger, D. & Berman, K. (1999) The neurophysiological substrate of volition: An eventrelated fMRI study. *Neuroimage* 9:S364. [aGN] - Miall, R. C. & Wolpert, D. M. (1996) Forward models for physiological motor control. Neural Networks 9(8):1265–79. [arGN] - Miu, A. C., Andreescu, C. E., Vasiu, R. & Olteanu, A. I. (2003) A behavioral and histological study of the effects of long-term exposure of adult rats to aluminum. *International Journal of Neuroscience*. (submitted) [ACM] - Morecraft, R. J., Geula, C. & Mesulam, M. (1992) Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey. *Journal of Comparative Neurology* 323:341–58. [aGN] - Morecraft, R. J. & Hoesens, G. (1998) Convergence of limbic input to the cingulate motor cortex in the rhesus monkey. *Brain Research Bulletin* 45:209–32. [aGN] - Mori, E. & Yamadori, A. (1989) Rejection behaviour: A human homologue of the abnormal behaviour of Denny-Brown and Chambers' monkey with bilateral parietal ablation. *Journal of Neurology, Neurosurgery, and Psychiatry* 52:1260–66. [RdO-S] - Mortimer, A. M. & McKenna, P. J. (1994) Levels of explanation symptoms, neuropsychological deficit and morphological abnormalities in schizophrenia. *Psychological Medicine* 24:541–45. [AA] - Nagel, T. (1974) What it is like to be a bat? Philosophical Review 4:435–50. [aGN] Nobre, A., Coull, J., Frith, C. & Mesulam, M. M. (1999) Orbitofrontal cortex is activated during breaches of expectation in tasks of visual attention. Nature Neuroscience 2(1):11–12. [aGN] - Nobre, A. C., Sebestyen, G. N., Gitelman, D., Mesulam, M., Frackowiak, R. & Frith, C. D. (1997) Functional localization of the system for visuo-spatial attention using PET. Brain 120:515-33. [aGN] - Norman, W. & Shallice, T. (1986) Attention to action. In: Consciousness and self- regulation: Advances in research and theory, vol. 4, ed. R. J. Davidson, G. E. Schwartz & D. Shapiro. Plenum. [RDB] - Northoff, G. (1997a) Katatonie. Einführung in die Phänomenologie, Klinik und Pathophysiologie eines psychomotorischen Syndroms. Enke Verlag. [arGN] - (1999) Psychomotor phenomena as paradigmatic examples of functional brain organisation and the mind-brain relationship: Do we need a "philosophy of the brain"? *Philosophy, Psychology, and Psychiatry* 6(3):199–236. [arGN] - (2000a) Brain imaging in catatonia: Current findings and a pathophysiological model. CNS Spectrums 5:34–46. [BTC] - (2000b) Das Gehirn: Eine neurophilosophische Bestandsaufnahme. Mentis Verlag. [rGN] - (2001a) "Brain-Paradox" and "Embedment" Do we need a philosophy of the brain? Brain and Mind 2:195–211. [rGN] - (2001b) Personale Identität und das Gehirn. Schöningh. Mentis Verlag. [rGN] (2001c) Philosophy of the brain. Hypothesis of "embedment." (in press). [aGN] (2003) "Philosophy of the brain" the "brain problem." John Benjamin. [rGN] - Northoff, G., ed. (1997b) Neuropsychiatrie und Neurophilosophie. Schöningh Verlag. [rGN] - Northoff, G., Baumgart, F., Richter, A., Tempelmann, C., Danos, P., Leschinger, A., Kaulisch, T., Bargel, B., Witzel, T., Hinrichs, H., Bogerts, B., Scheich, H. & Heinze, H. J. (2002a) Alterations in orbitofrontal spatiotemporal activation pattern in catatonia during negative emotional stimulation: A combined fMRI/MEG study. Schizophrenia Bulletin. [rGN] - Northoff, G., Böker, H., Richter, A., Baumgart, F., Leschinger, A., Lempa, G., Scheich, H., Heinze, H. J. & Bogerts, B. (2001c) Psychological constructs of personality and orbitofrontal cortical dysfunction in catatonia: A combined study of personal constructs and fMRI. (in press). [aGN] - Northoff, G., Böker, H., Richter, A., Tempelmann, C., Bogerts, B. & Heinze, H. (2002b) Emotional-behavioral disturbances in catatonia: A combined study of psychological self-evaluation and fMRI. Neuropsychoanalysis. [rGN] - Northoff, G., Braus, D., Russ, M., Eckert, J., Khoram-Sefat, K., Leschinger, A., Pflug, B. & Henn, F. A. (1999b) Alterations in laterality during motor activation in fMRI in catatonia. *Psychological Medicine* 29:997–1002. [aGN] - Northoff, G., Eckert, J. & Fritze, J. (1997) Glutamatergic dysfunction in catatonia? Successful treatment of three acute akinetic catatonic patients with the NMDA antagonist amantadine. Journal of Neurology, Neurosurgery, and Psychiatry 62:404–406. [aGN] - Northoff, G., Heinzel, A., Steinke, R., Otto, H. & Bogerts, B. (2001e) Interaction between GABA-A and NMDA receptors in sensorimotor cortex: A iomazenil SPECT study under challenge with ketamine. (submitted). [aGN] - Northoff, G., Krill, W., Wenke, J., Gille, B., Eckert, J., Russ, M., Pester, U., Diekmann, S., Pflug, B. & Bogerts, B. (1998) Major differences in subjective experience of akinesia in catatonic and Parkinsonic patients. *Cognitive Neuropsychiatry* 3(3):161–78. [arGN] - Northoff, G. H., Lins, Boeker, H., Danos, P. & Bogerts, B. (1999c) Therapeutic efficacy of NMDA-antagonist amantadine in febrile catatonia. *Journal of Clinical Psychopharmacology* 19(5):484–86. [aGN] - Northoff, G., Nagel, D., Danos, P., Leschinger, A., Lerche, J. & Bogerts, B. (1999a) Impairment in visual-spatial function in catatonia: A neuropsychological investigation. Schizophrenia Research 37(2):133–47. [CEB, aGN] - Northoff, G., Pfennig, A., Krug, M., Bargel, B., Leschinger, A. & Bogerts, B. (2001b) Termination of movements and right parietal cortical function: A MRCP study. (submitted). [aGN] - Northoff, G., Pfennig, A., Krug, M., Danos, P., Schwarz, A. & Bogerts, B. (2000a) Delayed onset and abnormal GABA-ergic modulation of late movementrelated cortical potentials in catatonia. Schizophrenia Research 44:193–211. [rGN] - Northoff, G., Pfennig, A., Krug, M., Schwartz, A., Danos, P. & Bogerts, B. (2000a) Delayed onset of late movement-related cortical potentials and abnormal response to lorazepam in catatonia. Schizophrenia Research 44(3):193–211. [CEB. aGN] - Northoff, G., Richter, A., Gessner, M., Baumgart, F., Leschinger, A., Danos, P., Tempelmann, C., Kötter, R., Stepan, K., Hagner, T., Bogerts, B., Scheich, H. & Heinze, H. J. (2001a) Alteration in orbitofrontal and
prefrontal cortical spatiotemporal activation pattern in catatonia during negative emotional stimulation: A combined fMRI/MEG study. (in press). [aGN] - Northoff, G., Richter, A., Gessner, M., Baumgart, F., Leschinger, A., Danos, P., Tempelmann, C., Kötter, R., Stephan, K., Hagner, T., Bogerts, B., Scheich, H. & Heinze, H. J. (2001d) GABA-ergic regulation of orbitofrontal spatiotemporal activation pattern during emotional stimulation: A combined fMRI/MEG study with placebo and lorazepam. Journal of Cognitive Neuroscience. (in press). [aGN] - Northoff, G., Richter, A., Gessner, M., Baumgart, F., Leschinger, A., Danos, P., Tempelmann, C., Kötter, R., Stephan, K., Hagner, T., Bogerts, B., Scheich, H. & Heinze H. J. (2000b) Functional dissociation between medial and lateral orbitofrontal cortical activation pattern during negative and positive emotional stimulation: A combined fMRI/MEG study. *Cerebral Cortex* 10:93–107. [aGN] - Northoff, G., Steinke, R., Czcerwenka, C., Kropf, D., Danos, P., Otto, H. & Bogerts, B. (1999a) Decreased density of GABA-A receptors in left sensorimnotor cortex in akinetic catatonia. *Journal of Neurology, Neurosurgery and Psychiatry* 67:445–50. [arGN] - Northoff, G., Steinke, R., Nagel, D., Czerwenka, C., Danos, P, Krause, P., Kropf, S., Otto, H. J. & Bogerts, B. (2000c) Right parietal cortical dysfunction in akinetic catatonia: A combined study of neuropsychology and regional cerebral blood flow. Psychological Medicine 30:583–96. [aGN] - Northoff, G., Steinke, R., Nagel, D. C., Grosser, O., Danos, P., Genz, A., Krause, R., Boker, H., Otto, H. J. & Bogerts, B. (2000b) Right lower prefrontoparietal cortical dysfunction in akinetic catatonia: A combined study of neuropsychology and regional cerebral blood flow. *Psychological Medicine* 30(3):583–96. [CEB] - Northoff, G., Waters, H., Mooren, I., Schluter, U., Diekmann, S., Falkai, P. & Bogerts, B. (1999b) Cortical sulcal enlargement in catatonic schizophrenia: A planimetric CT study. *Psychiatry Research* 91(1):45–54. [BB, CEB, rGN] - Northoff, G., Waters, H., Schlueter, U., Dieckmann, S., Falkai, P. & Bogerts, B. (1999d) Left fronto-temporal cortical sulcal enlargement in catatonic schizophrenia. A planimetric study. *Psychiatry Research Neuroimaging* 91:45–54. [aGN] - Northoff, G., Wenke, J., Demisch, L. & Pflug, B. (1995b) Catatonia: Short-term response to lorazepam and dopaminergic metabolism. *Psychopharmacology* 122:82–186. [aGN] - Northoff G, Wenke, J, Krill W. & Pflug, B. (1995a) Ball-experiments in 32 acute akinetic catatonic patients: Deficits of internal initiation and generation of movements. *Movement Disorders* 10:589–95. [CEB, arGN] - Nyberg, L., Tulving, E., Habib, R., Nilsson, L. G., Kapur, S., Houle, S., Cabeza, R. & McIntosh, A. R. (1995) Functional brain maps of retrieval mode and recovery of episodic memory. *Neuroreport* 7:249–52. [SMP] - O'Connor, D. H., Fukui, M. M., Pinsk, M. A. & Kastner, S. (2002) Attention - modulates responses in the human lateral geniculate nucleus. Nature Neuroscience 5:1203-1209. [AA] - Olney, J. W. & Farber, N. B. (1995) Glutamate receptor dysfunction and schizophrenia. Archives General Psychiatry 52:998-1007. [aGN] - Orbach, J., Traub, A. C. & Olson, R. (1966) Psychological studies of body-image II: Normative data on the adjustable body-distorting mirror. Archives of General Psychiatry 14:41–47. [SMP] - Panksepp, J. (1998) Affective neuroscience. Oxford University Press. [ARK] Pardo, J. V., Pardo, P. J., Janer, K. W. & Raichle, M. E. (1990) The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences USA 87(1):256–59. [RDB] - Pessoa, L., Kastner, S. & Ungerleider, L. G. (2002) Attentional control of the processing of neutral and emotional stimuli. *Cognitive Brain Research* 15: 31–45. [AA] - Petrides, M. (1995) Functional organization of the human frontal cortex for mnemonic processing. Ann New York Acad Science 769:85–96. [aGN] - Petrides, G., Divadeenam, K., Bush, G. & Francis, A. (1997) Synergism of lorazepam and electroconvulsive therapy in the treatment of catatonia. Biological Psychiatry 42:375–81. [aGN] - Pfennig, A (2001) Bereitschaftspotential bei Initiation und Termination von Bewegungen bei der Katatonie. PhD thesis. University of Magdeburg. [aGN, SMP] - Pfennig, A., Krug, M., Schwartz, A., Leschinger, A., Danos, P., Bogerts, B. & Northoff, G. (2001) Termination of movements and GABA-ergic modulation by lorazepam in right parietal cortex in catatonia: A MRCP study. (submitted). [aGN] - Platek, S. M. & Gallup, G. G., Jr. (2002) Self-face recognition is affected by schizotypal personality traits. *Schizophrenia Research*. 57:311–15. [SMP] (under review) An integrated and intermodal self: Self-odors and names prime self-face recognition. [SMP] - Platek, S. M., Myers, T. E., Critton, S. R. & Gallup, G. G., Jr. (in press) Left-hand advantage for self-description: The impact of schizotypal personality traits. Schizophrenia Research [SMP] - Plum, F. (1991) Coma and related global disturbances of the human conscious state. In: Cerebral cortex: Normal and altered states of function, vol. 9, ed. A. Peters. Plenum. [RdO-S] - Portnoff, L. A., Gustavson, J. L. & Golden, C. J. (1983) Diagnostic validity of a short neurobehavioral test for screening of parietal lobe lesions. *International Journal of Neuroscience* 21(1–2):39–50. [CEB] - Posner, M. (1994) Attention: The mechanisms of consciousness. *Proceedings of the National Academy of Sciences USA* 91:7398–7403. [aGN] - Preilowski, B. (1977) Self-recognition as a test of consciousness in left and right hemisphere of "split-brain" patients. *Activitas Nervosa Superior (Praha)* 19(2):343–44. [SMP] - Quintana, J. & Fuster, J. (1999) From perception to action: Temporal integrative functions of prefrontal and parietal neuirons. Cerebral Cortex 9:213–21. [aGN] - Quintana J, Fuster J. & Yajeya, J. (1989) Effects of cooling parietal cortex on prefrontal units in delay tasks. Brain Research 503:100–10. [aGN] - Raichle, M., McLeod, A. M., Snyder, A., Powers, W., Gusnard, D. & Shulman, G. L. (2001) A default mode of brain function. Proceedings of the National Academy of Sciences USA 98:676–82. [aGN] - Realmuto, G. M. & August, G. J. (1991) Catatonia in autistic disorder: A sign of comorbidity or variable expression? *Journal of Autism and Developmental Disorders* 21(4):517–28. [CEB] - Richter, A., Baumgart, F., Leschinger, A., Bogerts, B., Scheich, H. & Northoff, G. (2001) Abnormal response to lorazepam in orbitofrontal cortex during emotional stimulation in catatonia: A fMRI study. (submitted) [aGN] - Rogers, D. (1985) The motor disorders of severe psychiatric illness: A conflict of paradigms. British Journal of Psychiatry 147:221–31. [aGN] (1992) Motor disorders in psychiatry. Wiley. [aGN] - Roland, P., Skinhoj, E. & Larsen, B. (1980) Different coritcal areas in man in organization of voluntary movements in extrapersonal space. *Journal of Neurophysiology* 43(1):137–50. [aGN] - Rolls, E. (1998) The orbitofrontal cortex. In: The prefrontal cortex, ed. A. C. Roberts, T. Robbins & L. Weiskrantz. Oxford University Press. [aGN] - Rosebush, P. I., Hildebrand, A. M., Furlong, B. G. & Mazurek, M. F. (1990) Catatonic syndrome in a general psychiatric inpatient population: Frequency, clinical presentation, and response to lorazepam. *Journal of Clinical Psychiatry* 51:357–62. [CEB, BTC, aGN] - Sacks, O. (1989) Neuropsychiatry and Tourette's. In: Neurology and Psychiatry: A meeting of minds, ed. J. Müller. Karger. [aGN] - Salam, S. A. & Kilzieh, N. (1988) Lorazepam treatment of psychogenic catatonia. Journal of Clinical Psychiatry 49(S12):16–21. [BTC] - Salamone, J. D., Cousins, M. S. & Snyder, B. J. (1997) Behavioral functions of nucleus accumbens dopamine: Empirical and conceptual problems with the anhedonia hypothesis. *Neuroscience and Biobehavioral Reviews* 3:341–59. [JCH] - Saposnik, G., Bueri, J. A., Rey, R. C. & Sica, R. E. P. (1999) Catalepsy after stroke. Neurology 53:1132–35. [RdO-S] - Sarfati, Y. & Hardy-Bayle, M. C. (1999) How do people with schizophrenia explain the behaviors of others? A study of theory mind and its relationship to thought and speech disorganization in schizophrenia. *Psychological Medicine* 29:613–20. [SMP] - Satoh, K., Suzuki, T., Narita, M., Ishikura, S., Shibasaki, M., Kato, T., Takahashi, S., Fukuyama, H., Ohnishi, H. & Morita, R. (1993) Regional cerebral blood flow in catatonic schizophrenia. *Psychiatry Research* 50(4):203–16. [CEB, aGN] - Saver, J. L., Greenstein, P., Ronthal, M. & Mesulam, M. M. (1993) Asymmetric catalepsy after right hemisphere stroke. *Movement Disorders* 8(1):69–73. [CEB, JCM, aGN] - Schacter, D. L. & Badgaiyan, R. D. (2001) Neuroimaging of priming: New perspectives on implicit and explicit memory. Current Directions in Psychological Science 10:1–4. [RDB] - Scheepers, B., Rogers, D., Walton, N., Pattison, F., Butler, S., Bird, J. & Preston, M. (1995) Catatonia: A neuropsychiatric disorder. Behavioral Neurology 8:157–61. [JCM] - Schiff, N. D. & Plum, F. (2000) The role of arousal and 'gating' systems in the neurology of impaired consciousness. *Journal of Clinical Neurophysiology* 17(5):438–52. [ARK] - Schilder, P. (1925) Entwurf zu einer Psychiatrie auf psychoanalytischer Grundlage. University Press. [aGN] - Searle, J, R. (1998) How to study consciousness scientifically? Brain Research Reviews 26:379-87. [aGN] - Segarra, J. M. (1970) Cerebral vascular disease and behavior. The syndrome of the mesencephalic artery (basilar artery bifurcation). Archives of Neurology 22:408–18. [ARK] - Seidenbecher, T. & Pape, H. C. (2001) Contribution of intralaminar thalamic nuclei to spike-and-wave-discharges during spontaneous seizures in a genetic rat model of absence epilepsy. *European Journal of Neuroscience* 13(8):1537–46. [ARK] - Selemon L. D. & Goldman-Rakic., P. (1988) Common cortical and subcortical targets of the
dorsolateral prefrontal and posterior parietal cortices in the Rhesus monkey: Evidence for a distributed neural network subserving spatially guided behavior. *Journal of Neuroscience* 8(11):4049–68. [aGN] - Shaw, C. A. & Pasqualotto, B. A. (2000) Introduction. Tuning up the signal: Regulation of postsynaptic receptor properties. Cellular and Molecular Life Sciences 57(11):1495–98. [CAS] - Shergill, S. S., Brammer, M. J., Williams, S. C. R., Murray, R. M. & McGuire, P. K. (2000) Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Archives of General Psychiatry 57:1033–38. [AA] - Shiloh, R., Schwartz, B., Weizman, A. & Radwan, M. (1995) Catatonia as an unusual presentation of posttraumatic stress disorder. *Psychopathology* 28:285–90. [JCM] - Shin, J., Kim. K. & Lee, M. (1998) Inhibitory effects of bulbocapnine on dopamine biosynthesis in PC 12 cells. Neuroscience Letters 244(3):161–64. [aGN] - Shore, A. N. (1996) The experience-dependent maturation of a regulatory system in the orbital prefrontal cortex and the origin of developmental psychopathology. *Development and Psychopathology* 8:59–87. [aGN] - Shulman, G., Corbetta, M., Buckner, R., Raichle, M., Fiez, J., Miezin, F. & Petersen, S. (1997) Top-down modulation of early sensory cortex. *Cerebral Cortex* 7:193–206. [aGN] - Siewert, C. P. (1998) The significance of consciousness: Princeton University Press. [aGN] - Snowdon, J. S., Crauford, D., Griffith, H. L. & Neary, D. (1998) Awareness of involuntary movements in Huntington disease. Archives of Neurology 55:801– 805. [aGN] - Snyder, L. H., Batista, A. P. & Anderson, R. A. (1997) Coding of intention in the posterior parietal cortex. *Nature* 386:167–70. [aGN] - Spanaki, M. V., Siegel, H., Dean, A. & Theodore, W. (1999) The effect of vigabatrin on cerebral blood flow and metabolism. *Neurology* 53:1518–22. [aGN] - Sperry, R., Zaidel, E. & Zaidel, D. (1979) Self recognition and social awareness in the deconnected minor hemisphere. *Neuropsychologia* 17:153–66. [SMP] - Starkstein, S., Petraca, G., Teson, A. & Leiguarda, R. (1996) Catatonia in depression. *Journal of Neurology, Neurosurgery, and Psychiatry* 60:326–32. [aGN] - Stephan, K. M., Thaut, M. H., Wunderlich, G., Schicks, W., Schmitz, T., McIntosh, A., Seitz, R. & Hömberg, V. (1999) Different awareness levels of sensorimotor processing involve distinct anatomical areas within prefrontal cortex. Neuroimage 9:S401. [aGN] - Stevens, J., Wilson, K. & Foote, W. (1974) GABA-blockade, dopamine and schizophrenia: Experimental studies in the cat. *Psychopharmacologia* 39:105– 19. [aGN, GF] - Stevens, J. R. (1986) Clinicopathological correlations in schizophrenia. Archives of General Psychiatry 43:715–16. [BB] - Stille, G. & Sayers, A. (1975) Die Immobilisationsreaktion der Ratte als tierexperimentelles Modell der Katatonie. *Pharmacopsychiatry* 8:105–14. [aGN] - Stoerig, P. (1996) Varieties of vision: From blind responses to conscious recognition. Trends in Neurosciences 19:401–406. [aGN] - Stoerig, P. & Cowey, A. (1997) Blindsight in man and monkey. Brain 120:535–59. [aGN] - Stone, V. E., Baron-Cohen, S. & Knight, R. T. (1998) Frontal lobe contributions to theory of mind. *Journal of Cognitive Neuroscience* 10:640–56. [SMP] - Strik, W. K., Fallgatter, A. J., Brandeis, B. & Pascal-Marqui, R. D. (1999) Three dimensional topography of event-related potentials during response inhibition. Evidence for phasic frontal lobe activation. *Electroencephalography and Clinical Neurophysiology* (in press). [aGN, SMP] - Stuss, D. T., Gallup, G. G., Jr. & Alexander, M. (2001) The frontal lobes are necessary for theory of mind. *Brain* 124:279–86. [SMP] - Suzuki, A., Kondo, T. & Otani, K. (2001) Association of the TaqI A polymorphism of the dopamine D2 receptor gene with predisposition to neuroleptic malignant syndrome. *American Journal of Psychiatry* 158:1714–16. [BTC] - Tanner, C. M., Ottman, R., Goldman, S. M., Ellenberg, J., Chan, P., Mayeux, R. & Langston, J. W. (1999) Parkinson disease in twins. The Journal of the American Medical Association 281:341–46. [CAS] - Taylor, M. A. (1990) Catatonia. A review of the behavioral neurologic syndrome. Neuropsychiatry, Neuropsychology and Behavioral Neurology 3:48–72. [aGN] - Tomlinson, B. E. & Kitchener, D. (1972) Granulovacuolar degeneration of hippocampal pyramidal cells. *Journal of Pathology* 106:165–85. [ACM] - Tononi, G. & Edelman, G. (1998) Consciousness and the integration of information in the brain. In: Advances in neurology, vol. 77, ed. H. Jasper, L. Descarries, V. Castelluci & S. Rossignol. [aGN] - Tononi, G., Sporns, O. & Edelman, G. M. (1994) A measure for brain complexity: Relating functional segregation and integration in nervous system. Proceedings of the National Academy of Sciences USA 91:5033-37. [GF] - Tranel, D., Anderson, S. W. & Benton, A. L. (1994) Development of the concept of "executive behavior" and its relationship to the frontal lobes. In: *Handbook of neuropsychology, vol.* 9, ed. F. Boller & J. Grafman. Elsevier. [RdO-S] - Ungvari, G., Chiu, H., Chow, L., Lau, B. & Tang, W. (1999) Lorazepam for chronic catatonia. *Psychopharmacology* 142:393–98. [aGN] - Vallar, G. (1993) The anatomical basis of spatial hemineglect in humans. In: Unilateral neglect: Clinical and experimental studies, ed. I. H. Robertson & J. C. Marshall. Erlbaum. [JCM] - (1999) Spatial frames of reference and somatosensory processing: A neuropsychological perspective. In: *The hippocampal and parietal foundations of spatial cognition*, ed. N. Burgess, K. J. Jeffery & J. O. Keefe. Oxford University Press. [aGN] - Velmans, M. (1998) The relation of consciousness to the material world. In: *Explaining consciousness the "hard problem", ed. Shear. MIT Press. [aGN] - Vogeley, K., Bussfeld, P., Newen, A., Herrmann, S., Happe, F., Falkai, P., Maier, W., Shah, N. J., Fink, G. R. & Ziles, K. (2001) Mind reading neural mechanisms of theory of mind and self-perspective. *Neuroimage* 4:170–81. [SMP] - Von Domburg, P. H., ten Donkelaar, H. J. & Notermans, S. L. (1996) Akinetic mutism with bithalamic infarction: Neurophysiological correlates. *Journal of the Neurological Sciences* 139(1):58–65. [ARK] - Wang, G., Volkow, N., Overall, J., Pascani, K. & Fowler, J. (1996) Reproducibility of regional brain metabolic response to lorazepam. *Journal of Nuclear Medicine* 37:1609–13. [aGN] - Warrington, E. K. & James, M. (1991) Visual object and space perception battery. Thames Valley Test Company. [CEB] - Watt, D. (2000) The centrencephalon and thalamocortical integration: Neglected contributions of the periaqueductal grey. Consciousness and Emotion 1(1): 91–114. [ARK] - Williams, D. & Parsons-Smith, G. (1951) Thalamic activity in stupor. Brain 74(4):377-98. [ARK] - Yamanaka, K., Fukuyama, H., & Kimura, J. (1996) Abulia from unilateral capsular genu infarction: Report of two cases. *Journal of the Neurological Sciences* 143:181–84. [RdO-S] - Zald, D., Donndelinger, M. & Pardo, J. (1998) Elucidating dynamic brain interactions with across-subjects correlational analysis of PET data: The functional connectivity of the amygdala and orbitofrontal cortex during olfactory tasks. *Journal of Cerebral Blood Flow and Metabolism* 18:896–905. [aGN] - Zubicaray, G., Zelaya, F., Andrew, C., Bullmore, E., Williams, R. & Doddrell, D. (1999) An fMRI study of verbal response initiation, suppression and strategy use. *Neuroimage* 9:S382. [aGN]