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Comparative analysis of multifaceted neural effects
associated with varying endogenous cognitive load
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Contemporary neuroscience has firmly established that mental state variation concurs with

changes in neural dynamic activity in a complex way that a one-to-one mapping cannot

describe. To explore the scenario of the multifaceted changes in neural dynamics associated

with simple mental state variation, we took cognitive load – a common cognitive manipulation

in psychology – as a venue to characterize how multiple neural dynamic features are

simultaneously altered by the manipulation and how their sensitivity differs. Electro-

encephalogram was collected from 152 participants performing stimulus-free tasks with

different demands. The results show that task demand alters wide-ranging neural dynamic

features, including band-specific oscillations across broad frequency bands, scale-free

dynamics, and cross-frequency phase-amplitude coupling. The scale-free dynamics out-

performed others in indexing cognitive load variation. This study demonstrates a complex

relationship between cognitive dynamics and neural dynamics, which points to a necessity to

integrate multifaceted neural dynamic features when studying mind-brain relationship in the

future.
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Cognitive neuroscience research has firmly established that
variations in mental state concur with changes in neural
dynamics1–7. This has led to a surge of research work that

aims to identify specific neural dynamic features (e.g., band-specific
power) associated with complex cognitive variables, such as cog-
nitive load and emotional states8,9. However, it is not a trivial task
to pinpoint an isolated change in the neural dynamics responsible
for a specific mental state variation due to the complexity of neural
dynamic systems. For one, the variation of a specific mental state
likely involves multiple sub-processes, each of which may change
the neural dynamics in a different aspect. For another, the neural
dynamic system is an active system with multiple interplaying
functional modules that are constantly interacting with each
other10. Change in one facet may lead to changes in others.

To demonstrate the multitude of neural dynamic changes
engendered by mental state variations and comparatively analyze
them, we adopted the concept of cognitive load in the present
experimental investigation. Cognitive load has been a major
venue via which applied neuroscience researchers have attempted
to exploit neural dynamic signals for real-life use, e.g., improving
teaching and learning, and enhancing work safety8,11. Despite
variations in its definition across different fields12–14, its asso-
ciated cognitive effect has been fairly agreed upon: increased
cognitive load is associated with a subjective feeling of intensified
mental activity and effort. From a neural computational point of
view, increased cognitive load is associated with increased
demand for neural resources and energy related to the informa-
tion processing and computation for solving a task15,16. Imple-
mentation-wise, manipulation of the cognitive load has been
mainly based on task difficulty. However, the construct of cog-
nitive load defined by perceived mental intensity may not always
be compatible with cognitive science approaches that are oriented
to decoding fundamental and elementary cognitive processes:
variation of cognitive load can be very heterogeneous such that it
could implicate sensory processes, task modality, attention,
emotion, and others. As such, it may not be meaningful to set
cognitive load as the primary research object due to its high
heterogeneity nature. There have been theories from the
instructional design that taxonomize cognitive load into different
sub-types, such as intrinsic, extraneous, and germane cognitive
load14. However, such taxonomy is more oriented to learning
outcomes and thus has inherent conceptual unclarity in terms of
the underlying cognitive processes or activities it refers to17–19.

The present work is not positioned to clarify different types of
cognitive load but rather aims to present the characteristics of
various neural dynamic changes associated with a generic sense of
cognitive load variation associated with task difficulty or com-
plexity. To best avoid heterogeneity issues, we adopted tasks that
are free of sensory processing, i.e., the tasks will be exclusively
tapping into internally generated task processing activities asso-
ciated with different task difficulties, thus different cognitive
loads. Such cognitive load may be described as intrinsic cognitive
load, but its meaning in the current context is fundamentally
different from the intrinsic cognitive load in Sweller’s cognitive
load theory14. To avoid this confusion, we will term it endo-
genous cognitive load in the present article, which refers to the
workload required for performing a task that only requires pro-
cessing internally generated information (e.g., silent counting).
And we will comparatively characterize the multifaceted neural
dynamics changes associated with this cognitive variable.

In terms of neural effects, the changes in neural dynamic fea-
tures associated with cognitive load variation have been exten-
sively demonstrated, but the vast majority of them only reported
changes in a specific feature. Band-specific oscillation change is
the most frequently reported one20–27. Briefly, theta oscillation
(3–7 Hz) is enhanced with increasing cognitive load28–30, which

has been attributed to the unique role of theta (especially the
frontal midline theta) in general cognitive control and working
memory operations31–34. Conversely, alpha oscillation (8–12 Hz)
is attenuated with increasing cognitive load8,30,35. This may be
linked to a broader phenomenon that alpha oscillation is sup-
pressed during nearly all kinds of task states and is rebounded
during idle (mentally unengaged) state36,37. The association
between beta oscillation (13–30 Hz) and cognitive load variation
remains nebulous – some studies reported increased beta oscil-
lation with increasing cognitive load38,39 while others reported
decreased beta oscillation40–43. Gamma oscillation has also been
extensively found to be increased in general task engagement44,45

in a way that is correlated with cognitive load26,46,47 but see the
opposite effect in default mode network48, A common neural
account of this effect is that neural firing activity is intensified
during task processing, which is mainly manifested in the gamma
band49–51. Finally, in addition to separate oscillations, the effects
of cognitive load have also been extended to the interaction
between oscillations in different frequency bands, i.e., cross-
frequency coupling52 with phase-amplitude coupling (PAC)
being the predominant type. A common pattern is that the
strength of PAC is enhanced by cognitive load53,54. This rela-
tionship can be understood from the proposed role that PAC
plays in cross-region communication in large-scale brain
networks52, which makes PAC an important neural dynamic
metric to examine in cognitive load research.

In addition to the band-specific oscillations, the scale-free
dynamics is another important facet of the temporal dynamics of
neurophysiological activity55,56 that has also been found to be
associated with cognitive load. The general pattern is that both
task engagement and load increase modulate the scale-free pat-
tern by rotating the frequency spectrum of brain activity
counterclockwise57–59. This pattern is in rough agreement with
decreased alpha and increased gamma power reviewed above.
Such overlapping of effects implies the need to disentangle them
when studying the mind-brain relationship58,60, which will also
be studied in this work through the variable of cognitive load.

Together, our brief literature review above shows a considerable
number of studies that have reported associations between cogni-
tive load and neural dynamic features. However, they mostly
reported on a specific facet of dynamic features (which differs
across studies). According to our hypothesis, we aim to show the
wide-ranging effects of cognitive load variation that permeate dif-
ferent frequency bands and henceforth, various facets of neural
dynamics. This aim may be better achieved by a large sample size.
In this study, we conducted a systematic investigation of the
changes in multifaceted neural dynamics associated with variation
of endogenous cognitive load based on a large sample (n= 152). To
exclude confounding of sensorimotor processes, we administered
tasks that engendered long periods of stimulus-free task states with
different levels of internally imposed cognitive load. Specifically, the
participants were instructed to perform three stimulus-free tasks,
(1) sitting still and resting, (2) backward counting in an easy mode,
(3) backward counting in a hard mode. We then analyzed the
effects of the endogenous cognitive load variation on multiple
neural dynamic features, including canonical band-specific oscil-
lations, scale-free dynamics, cross-frequency phase-amplitude
coupling, and their correlation with behavioral performance. These
large sample size-based neural dynamics analyses revealed an
informative picture of the relationships between the neurophysio-
logical system and the mental system.

Results
Behavioral data related to task state difference. The average
counting frequency (number of counting per second) is 1.16
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(SD 0.41) Hz for the easy counting task and 0.23 (SD 0.10) Hz for
the hard counting task. They are significantly different (paired t-
test: t(151)= 27.95, p < 0.001). In the hard counting task, 96
(63.16%) participants arrived at a correct result, and 56 (36.84%)
participants arrived at an incorrect result, which reflects the dif-
ficulty of the hard counting task. Concerning the possibility that
the participants reporting an incorrect answer may not genuinely
perform the task, in the subsequent neural results analysis, we
also examined the robustness of the key results across these two
groups of participants.

Descriptive spectrum features across task states. To obtain a
straightforward description of the cognitive load-related differ-
ences in the EEG pattern, we first examined the spectrum fea-
tures. The frequency amplitude spectrum is visualized for each
task state in both linear and log-log spaces (Fig. 1a). Visually,
there appears to be a systematic variation in the spectrum pattern
as a function of the four task states. The two most conspicuous
effects are: task states with higher cognitive load show lower
amplitude in alpha but higher amplitude in gamma.

We further calculated the spectral amplitudes separately for the
four canonical frequency bands, theta (4–7 Hz), alpha (8–12 Hz),
beta (13–30 Hz), and gamma (31–90 Hz), for different electrodes.
The spatial patterns of the average spectral difference between
task states are shown in Fig. 1b. The results exhibit some
functionally and anatomically sensible features in line with
previous literature: the theta effects are mainly located in the
frontal region61, and the alpha and gamma effects are mainly
located in the posterior region62,63. Noticeably, the effect in alpha
derived from easy counting and hard counting tasks is

distinctively located in the parietal region (Fig. 1b, first row,
alpha), implying distinct functional engagement between them.

Descriptive scale-free dynamics feature across task states. The
spatial distributions of the average 1/f parameters (exponent and
offset) are shown in Fig. 1c, d. Clearly structured patterns are
shown in both parameters: overall, the temporal areas have lower
values in both offset and exponent (thus, flatter spectrum).
Clearly distinguishable patterns can be seen between high-band
and low-band 1/f parameters, implying their differential neural
substrates and the non-straightness of the 1/f pattern throughout
the whole band. Regarding the variation of 1/f parameters across
task states, the high-band parameters fitted from 26–90 Hz
appear to be more variable across task states when compared to
low-band parameters fitted from 1–25 Hz (see Fig. 1c, d, and
Supplementary Fig. 1). The statistical analysis will be presented in
subsequent sections.

Variation of cross-frequency phase-amplitude coupling across
task states. Next, we examined the high-order neural activity
pattern “cross-frequency phase-amplitude coupling (PAC)” and
how it varies across task states. The visualization of the PAC
time-frequency pattern is shown in Fig. 2a–c, from which we can
observe that the strength of PAC is the strongest in the hard
counting task. Specifically, the amplitude of gamma band
(31–90 Hz) fluctuates along with the phase of 9 Hz oscillation
(strongest over electrode Oz, see Fig. 2e, f). Quantitatively, the
strength of PAC estimated using the modulation index method
(Fig. 2d) showed significant difference between easy counting and
hard counting tasks: t(124)=−3.60, p < 0.001, resting open and

Fig. 1 Variations in EEG dynamics across task states. a Grand average spectra for the four task states in both linear (left) and log-log (right) scales
(averaged across all electrodes). Theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), and gamma (31–90Hz) bands were indicated in gray shades. b Grand
average spatial distribution of the between-state difference in oscillation amplitude for the four canonical frequency bands. c, d Grand average spatial
distribution of the 1/f exponent (noted as exp) and offset parameters fitted from 1–25 Hz (c) and from 26–90 Hz (d) for each task state. Note: a.u. refers to
arbitrary unit.
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hard counting task: t(132)=−3.35, p= 0.001, resting close and
resting open: t(128)=−3.27, p= 0.001, but not between resting
open and easy counting: t(126)= 0.24, p= 0.807. Note that the
difference in the degree of freedom is due to the different num-
bers of outliers (see definition in Methods) excluded before
conducting paired t-test analyses.

Scale-free dynamics outperforms other neural features in
indexing cognitive load. The results above demonstrate that the
effects of cognitive load variation on neural dynamics are mul-
tifaceted, covering band-specific neural oscillations, scale-free
dynamics, and cross-frequency coupling. However, an important
theoretical concern is that the measurement of each neural
dynamic feature is not free from the influence of others (see an
in-depth elucidation of this issue from ref. 60). In other words, the
effect revealed by one feature could be a spurious effect caused by
others. For instance, variation in 1/f exponent causes a structural

rotation effect on the spectrum56, which will inevitably change
the result of any band-specific measurement.

To explore this issue, we proceeded to identify the dynamic
feature that most strongly indicates cognitive load variation. The
most essential dynamic feature underpinning an effect (here,
cognitive load variation) is more likely to show the strongest
statistical associations as compared to secondary dynamic
features (albeit this does not rule out the functional uniqueness
of the dynamic features displaying weaker associations). The
strengths of the associations with cognitive load variation
(represented by t statistics) are shown in Fig. 3a with colors
denoting the magnitude and symbols denoting the significance
levels. Here, the first row (easy – hard) serves to show neural
effects primarily associated with cognitive load variation. For
reader’s information, we also showed the differences between
other pairs (2nd row: open – easy; 3rd row: open – hard; 4th row:
close – open). For band-specific oscillations, most of them are

Fig. 2 Change in phase-amplitude coupling (PAC) across task states. a The time-frequency representation of PAC showing that the phase of alpha (9 Hz)
modulates the amplitude of gamma (31–90 Hz). This average PAC was obtained from the Oz electrode, and it appears to be modulated by cognitive load.
b Average PAC curves calculated from Oz electrode based on the phase of low-frequency oscillation at different frequencies (4–20 Hz, with a step of 1 Hz)
and the amplitude of gamma (31–90 Hz). A relatively consistent maximum strength of PAC was shown at the phase of 9 Hz oscillation. c The amplitude of
gamma as a function of the phase of the 9 Hz oscillation represented in a polar coordinate system. This is a visualization of the result in (B) at 9 Hz. d The
average modulation index of the PAC calculated based on the phase of different frequencies (1–20 Hz, with a step of 0.1 Hz). The amplitude for calculating
PAC was always based on the gamma band (31–90Hz). e, f The distributions of the average modulation index obtained using the phase of 9 Hz oscillation
and the amplitude of gamma (31–90 Hz) from each electrode in each task state. It shows that the average modulation index was the strongest in the
occipital area. Note: a.u. refers to arbitrary unit.
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significantly associated with cognitive load variation. Among the
various features, the 1/f parameters (both exponent and offset
fitted from 26–90 Hz) stand out and show the strongest
association with cognitive load variation (see the first row in
Fig. 3a).

The effects on the canonical oscillations shown in Fig. 3a were
calculated based on the raw spectrum, which is confounded by
the 1/f component58,60. To show the purer effect on oscillatory
activity, we also calculated the effects on the canonical bands
from the version of the spectrum that has subtracted the 1/f
component (see Methods). The distribution of the effect size as
well as the amplitude difference are shown in Fig. 3c, d. Note the
slight difference between the amplitude map (Fig. 3c) and the
effect size map (Fig. 3d). This is because the effect size is
determined both by the amplitude difference and the data
variance. The effects on the “1/f-free” canonical oscillations also
show to be less strong than the 1/f parameters (Fig. 3a). In
general, the “1/f-existent” version of effects on oscillations (Fig. 3a,
especially gamma) is stronger than the “1/f-free” version (Fig. 3d),
which confirms that the 1/f component has confounded the
effects on oscillations obtained from the raw spectrum.

To quantitatively compare the associations with cognitive load
for different dynamic features, we tabulated the effect sizes of
pairwise t-tests from all features (see Table 1, top panel). The
effect size was taken from the maximum value from all electrodes

(excluding the electrodes on the very outer rim that barely
covered the scalp: Fp1/2, F7/8, FT9/10, TP9/10, T7/8) to
represent the greatest potential of each neural feature in
indicating cognitive load variation. The modulation index (MI)
was simply from the Oz electrode, as this electrode shows the
strongest cross-frequency coupling (see Fig. 2e). Table 1 shows
that the high-band 1/f exponent parameter (fitted from 26 to
90 Hz) displays the strongest effect size in the statistical
association with cognitive load variations (see particularly the
difference between easy and hard, i.e., first row; other pairs of task
state are shown for reference). This means that this parameter is
the strongest neural indicator in indexing cognitive load variation
amongst all neural features examined in this study. To validate
that the participants with incorrect answers in the hard counting
tasks actually performed the task rather than giving arbitrary
answers, we also presented the results above separately for
participants reporting correct and incorrect answers in the hard
counting task (see Table 1, middle and bottom panels). The
results showed high consistency across the two subsets of
participants, especially for the high-band 1/f parameters (Table 1).
Furthermore, we did the same split analysis for males and
females, which again showed consistency across genders (see
Supplementary Tables 1, 2).

We next conducted an LMM analysis (see Methods) to examine
how the various neural features uniquely predict cognitive load

Fig. 3 Comparison of the association strength with cognitive load across different neural dynamic features and behavioral association of 1/f exponent.
a Topographies of t statistics indicating the statistical difference of the various neural dynamic features between different task states with clusters of
markers indicating p < 0.05 (only significant clusters with p < 0.05 tested by the cluster-based non-parametric testing were shown). b Relationship
between the behavioral performance in hard counting task and the difference in high-band 1/f exponent (fitted from 26–90 Hz, averaged across all
electrodes) between resting open and hard counting task (r=−0.22, p= 0.006). The topography of the correlations calculated on each electrode is shown
in the bottom-right corner. The 95% confidence interval of the regression line was indicated in red shade. c, d Topographies of between-task state
amplitude difference (c) and t statistics (d) on the oscillations derived from the “1/f-free” spectrum. Note: a.u. refers to arbitrary unit.
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variation between easy and hard counting tasks. Here, the neural
features that display strong collinearity were excluded (see
Methods), and all the independent variables (IV) have been
transformed to achieve normality. The final variance inflation
factor and transformation used for each IV are shown in the table.
In line with the result in Table 1, the LMM results shown in
Table 2 confirm the unique effects of high-band 1/f exponent,
theta, and alpha, i.e., they are not epiphenomena of each other.

Prediction of cognitive load by neural dynamic features based
on machine learning. We used a support vector machine (SVM)-
based classifier to demonstrate that different features contain
complementary information about cognitive load (see Methods
for the machine learning details). The basic rationale is that if

different features contain non-redundant information, a combi-
nation of them will achieve a higher prediction accuracy than any
single feature. As described in Methods, the feature data used
were the difference between the second and the first counting
task, and the variable to be predicted was the temporal order of
two (easy and hard) counting tasks. This approach was used to
avoid the overwhelming variance of baseline neural features
across participants. Figure 4 shows the results of prediction
accuracy (based on test data) for the key individual neural
dynamic features (1st to 6th column) and for the composite
feature that shows the highest performance (last column).

Scale-free dynamics predicts behavioral performance. Given the
close associations between the neural dynamics features and

Table 1 Maximum effect sizes (Cohen’s d) of paired t-tests between task states for different dynamic features.

1/f parameters
1–25 Hz

1/f parameters
26–90Hz

theta
4–7 Hz

alpha
8–12 Hz

beta 13–30 Hz gamma 31–90Hz MI

exp offset exp offset

All participants (N= 152)
Easy vs. Hard 0.26 0.19 0.65 0.62 −0.35

−0.41
0.47
0.46

0.42
0.45

−0.57
−0.25

−0.25

Open vs. Easy −0.35 −0.20 0.21 0.30 0.37
0.28

0.27
0.28

0.39
−0.20

0.34
−0.15

−0.15

Open vs. Hard −0.44 −0.26 0.74 0.77 −0.35
−0.49

0.58
0.65

0.60
0.33

−0.58
−0.26

−0.36

Close vs. Open −1.12 0.43 1.35 1.30 0.84
0.39

1.50
1.49

1.25
0.69

−0.83
−0.80

−0.12

Participants reporting correct answers in the hard counting task (N= 96)
Easy vs. Hard −0.29 0.21 0.63 0.63 −0.36

−0.39
0.43
0.41

0.43
0.41

−0.60
−0.26

−0.32

Open vs. Easy −0.44 −0.32 0.28 0.30 0.36
0.37

0.27
−0.25

0.39
−0.25

0.36
−0.22

−0.02

Open vs. Hard −0.55 −0.42 0.70 0.76 −0.39
−0.40

0.54
0.32

0.58
0.32

−0.50
−0.27

−0.35

Close vs. Open −0.96 0.47 1.47 1.39 0.86
0.43

1.40
0.68

1.15
0.68

−0.86
−1.00

−0.27

Participants reporting incorrect answers in the hard counting task (N= 56)
Easy vs. Hard 0.34 0.23 0.80 0.74 −0.35

−0.53
0.50
0.55

0.40
0.49

−0.81
−0.43

−0.34

Open vs. Easy −0.36 0.32 0.32 0.39 0.37
−0.25

0.31
−0.34

0.41
−0.37

0.42
0.18

0.10

Open vs. Hard −0.44 0.31 0.81 0.83 0.30
−0.63

0.65
0.69

0.66
0.41

−0.68
−0.46

−0.21

Close vs. Open −1.49 0.47 1.37 1.31 0.86
0.32

1.71
1.71

1.49
0.88

−0.85
−0.72

−0.26

Here, d = t/
ffiffiffi
n

p
where n is the number of participants. The two values for the canonical bands correspond to the result obtained from the raw spectrum (top) and the 1/f-removed spectrum (bottom).

MI is based on the phase of 9 Hz.
Bold values denote effect sizes larger than 0.5 (medium effect size); exp refers to exponent; MI refers to Modulation Index.

Table 2 Fixed effects estimated using linear mixed model (LMM).

b SE CI (95%) t VIF Method used for normality
transformation

Low High

(Intercept) 3.70 0.29 3.14 4.26 12.97 -
gender 0.00 0.06 −0.13 0.13 −0.03 1.11 -
high-band 1/f exponent −0.54 0.21 −0.95 −0.12 −2.54* 1.39 -
theta 0.54 0.19 0.17 0.90 2.88** 2.13 -
alpha −0.28 0.09 −0.46 −0.10 −3.02** 2.38 log(x)
gamma 0.35 0.15 0.05 0.65 2.30* 1.92 log(x)
MI 0.00 0.00 0.00 0.00 0.31 1.25 (log(x))2

b Co-efficient in the linear mixed model, SE Standard error, CI Confidence interval, VIF Variance inflation factor, t t statistics, ***p < 0.001; **p < 0.01; *p < 0.05. Bold values denote statistical significance at
the p < 0.05 level.
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cognitive load, it is possible that these neural dynamic features are
able to predict individuals’ behavioral performance64. To explore
this relationship, we calculated the correlation between the
behavioral performance in the hard counting task and the var-
iation of neural dynamic features between task states with dif-
ferent cognitive loads. For the neural dynamic feature, we
examined the strongest neural indicator of cognitive load shown
in Fig. 3 and Table 1: high-band 1/f exponent. We found that the
difference in high-band 1/f exponent (electrodes-averaged)
between resting open and hard counting task states significantly
predicts the behavioral performance in the hard counting task
(r=−0.22, p < 0.01; see Fig. 3b; results based on 1–30 Hz and
30–90 Hz can be found in Supplementary Fig. 5b): individuals
with better counting performance have their high-band 1/f
exponent less altered by the hard counting task. Furthermore, the
correlation values appear to be consistently high across the whole
scalp (see Fig. 3b and Supplementary Fig. 5b). The association is
robust across gender (Supplementary Fig. 2a, b). However, the
association exists only when the difference in high-band 1/f
exponent between resting open and hard counting was used, but
not when the difference between easy counting and hard counting
was used (See Supplementary Fig. 2c, d).

Discussion
The present study comparatively analyzed multiple facets of
neural dynamics associated with variation of tasks aimed to
simply change the internal workload of cognitive activities
(termed endogenous cognitive load here). It was found that
variation in endogenous cognitive load alters the brain’s dynamics
across a wide range of characteristics covering the aspects of
band-specific oscillations, scale-free dynamics, and cross-
frequency phase-amplitude coupling. Amongst them, the scale-
free dynamics appears to be the predominant effect target of
cognitive load variation. And the scale-free dynamics is shown to
be indicative of individual differences in behavioral performance
in mental calculation.

The relationship between neural signals and cognitive load has
been a well-attended topic in applied cognitive neuroscience
fields, such as educational neuroscience and neuroergonomics.
Earlier explorations in this line have focused on specific and

simplistic neural indicators such as band-specific oscillation
power or amplitude of event-related potentials8,11. These
explorations follow a traditional assumption that there is a one-
to-one mapping between cognitive activities and neural dynamic
features; that is, a specific cognitive activity engenders a specia-
lized neural dynamic activity that plays as a neural representation
of it65. A large body of research has, explicitly or implicitly,
adopted this view as the foundation for studying specific neuro-
cognitive questions, for instance, identification of the specific
cognitive signature of band-specific oscillations or event-related
brain response components37,61,66.

However, from the neural system perspective, it has been
firmly established that the brain is a highly complex, self-sus-
taining, and active dynamical system with constantly interacting
sub-functional modules that simultaneously maintain a repertoire
of cognitive functions67. Due to the cohesiveness of the complex
dynamical system, an external event driving a change of cognitive
states may lead to widespread alternation of the internal spon-
taneous dynamic state rather than separately affecting a clearly
segregated sub-process or engendering an additional activity that
is independent of the ongoing activity68. In line with this notion,
our current work demonstrates that cognitive load variation alters
multiple neural dynamic features, including narrow-band and
broad-band oscillation power, aperiodic neural dynamics, and
cross-frequency coupling. The major implication is that applica-
tion of neural dynamics-based cognitive load monitoring should
consider an integrative algorithm that involves and exploits
multifaceted neural dynamic features.

Upon the confirmation of the multifaceted effects of cognitive
load variation on neural dynamics, we now discuss the potential
functional correlates of those dynamic changes incorporating the
existing theories and findings in the literature. The subjective
perception of certain mental state changes commonly described
as magnitude variation in a single dimension (e.g., cognitive load,
pain) is most likely not resulted from a single cognitive process.
Instead, it is more likely to be composed of an amalgam of
multiple processes (both task-general and task-specific) associated
with multiple neural dynamic characteristics. First, the effect on
theta band was exclusively located in the frontal region (Figs. 1b,
3a). This is fully in line with the established feature of the frontal
theta that reflects top-down cognitive control61. The continuous

Fig. 4 Prediction accuracies based on different neural dynamic features. The boxplot of the prediction accuracies from 100 permutations. The line
splitting the box represents the median. The top edge of the box represents the upper quartile value and the bottom edge represents the lower quartile
value. The upper and lower whiskers represent the maximum and minimum values of the data, respectively. The red crosses outside the boundary of
whiskers represent the outliers. The composite indicator (last column) combines high-band 1/f exponent, alpha, theta, and beta. Note: exp refers to
exponent, MI refers to modulation index.
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mental calculation task requires prolonged concentration on the
task–in other words, constant active cognitive control. This may
explain the presence of stronger frontal theta in the hard
counting task.

Second, the effect on alpha is shown to be in posterior areas.
The alpha oscillation is the most prominent neural dynamic
indicator that indexes universal task engagement in a way that
task demand is correlated with alpha power reduction37,69–72.
That said, cognitive load variation will certainly be associated
with the alpha variation. As a fundamental component of neural
functional dynamics, alpha is likely a thread that is functionally
separate from (but could interact with) other neural dynamic
effects.

We will skip the discussion on the beta band effect as the effect
(although significant) did not show a highly structured pattern,
and it is hard to link the existing literature about the relationship
between beta and cognitive load. Moreover, the beta band
appeared to be the axial point of the rotation of the 1/f compo-
nent and also the point that separates the 1/f line into two dis-
continuous segments.

Third, the effect in gamma is strong and widespread (Fig. 3a).
Functionally, this may be linked to the process of increased
intensity of neuronal firing activity that contributes to the high-
frequency band73–76, which is a neural representation of com-
putations engaged in generic task processing. It is thus another
form of indicator of task engagement with different functional
roles from alpha and theta bands. To sum up, the potential neural
and cognitive processes involved in the load variation may
include cognitive control (theta), general maintenance process
(alpha), and increased neuronal firing (gamma).

Finally, there is the scale-free dynamics of which the functional
signature needs to be interpreted. It is worth reiterating that the
scale-free dynamics is found to be the dominant neural indicator
(Table 1) of the cognitive load variation in the present study.
Below we attempt to incorporate the existing theories about
neural scale-free dynamics for the functional interpretation. In
complex system theories, scale-free dynamics has been commonly
proposed to be a functionally optimal state in multiple domains77.
Prior to a task, the neural system is ‘resting’ in a functionally
optimal state preparing for the task. During the task, the scale-
free state is disrupted, and the dynamics is absorbed into a state
that is functionally specific or task-related4,57. This mechanism is
at a fundamentally different level from other specific dynamic
features as listed above and appears to be domain-general (similar
to the alpha band effect). The surprising result here is that this
fundamental effect turned out to be the strongest change amongst
the neural dynamic features associated with cognitive load
variation.

When examining the dynamic effects in multiple aspects, it is
pivotal to investigate the interdependence of different aspects
(features). An obvious reason is that an observed effect can be an
epiphenomenon of another more essential effect. In the present
work, a concrete example is that the rotation of the 1/f spectral
pattern, which is a key feature of the scale-free dynamics, will
result in variation of band-specific oscillation power measured
across the whole band (except for the fulcrum point)56. Our main
hypothesis about the multifaceted effects of cognitive load var-
iation on neural dynamics will be critically challenged if the
observed multifaceted features originate from the same under-
lying factor.

Regarding this point, we provided the following arguments that
support the independence of the dynamic effects examined. First,
the spatial features of different effects are distinct from each
other. The difference between easy and hard counting should be
of primary interest here. The effect on the theta band shows a
very clear frontal distribution (Figs. 1b, 3a), which is consistent

with the classic frontal theta component28,78 and is not shown in
other dynamic features. For alpha, the effect shows a posterior (in
the amplitude, Fig. 1b) and a parietal (in the effect size, Fig. 3a)
distribution, making it substantially different from the theta
effect. The effects on the gamma band, on the contrary, appear to
be more similar to the effects on the scale-free dynamics. This is
likely due to the broadband feature of gamma, which is closely
entangled with the scale-free component. Their strong entangle-
ment is also reflected by the result that the removal of 1/f com-
ponent from the raw spectrum considerably changes the effect
size of gamma but less others (Fig. 3a, d). It remains an open issue
here as to how to properly differentiate the broad gamma band
component and the scale-free component. Second, the LMM
results (Table 2) also showed that multiple features contribute
unique variance to cognitive load variation. Finally, the machine
learning approach clearly showed that the integration of multi-
faceted neural dynamic features reaches a higher performance in
predicting cognitive load variation, which is one of the key points
aimed to be conveyed in the present work. In sum, the data
support that the cognitive load variation engenders wide-ranging
effects on multiple facets of neural dynamics that are not likely to
be epiphenomena of a single common origin. Further support
from neuroanatomical studies can help to solidify this claim.

Cross-frequency phase-amplitude coupling (PAC) is a unique
and functionally relevant neural phenomenon in the brain79–81.
This is a high-order dynamic feature that concerns the relation
between different dynamic activities or processes. In line with
previous findings54,81, we also found that cognitive load is asso-
ciated with PAC. Specifically, the PAC is the strongest in the task
state of hard counting, i.e., the phase of the low frequency of 9 Hz
increasingly modulates the amplitude of high frequency
(31–90 Hz) when the cognitive system is more intensely loaded.
According to the proposed theory of the functional roles of
PAC52, this result may be interpreted as an enhanced coordina-
tion between different neural processes during high-load states.
This adds an additional layer to the pool of dynamics effect
imposed by cognitive load variation, further revealing that the
effect of mental state changes on neural dynamics traverses
multiple orders and dimensions of the dynamic brain activity.

Here, we proposed that the cross-frequency coupling could be
an interface between scale-specific neural dynamics (oscillation)
and scale-free dynamics, thus forming a candidate mechanism
that integrates simple and complex dynamics see also55,82. The
major rationale is that the gamma band activity is a broadband
activity and has substantial overlap with the scale-free
dynamics76. It has been previously proposed that, technically,
the gamma band neural effect could be a spurious effect of
broadband activity83. Besides, the commonly referred 1/f feature
in the spectrum actually only applies to the frequency segments
above a low cutoff, i.e., in the medium-to-high frequency band82.
Therefore, it is possible that the low-frequency oscillation actually
modulates the scale-free dynamics, not high-frequency oscilla-
tions like gamma. Mechanistically, the coexistence and interac-
tion of oscillations and scale-free dynamics have been
demonstrated in computational models84,85, which provides the
foundation for the biological plausibility of our proposal. How-
ever, the current result is not able to answer the functional sig-
nature of the potential coupling between neural oscillations and
scale-free dynamics, which is an important question to be
addressed in the future.

Despite numerous studies on the cognitive association of scale-
free dynamics, there remains an open issue in the very definition
of scale-freeness. The concept of “scale-free” originates from
simplistic physical models86,87 and serves as a landmark for cri-
tical dynamics. Although it has since been widely proposed that
the brain functions optimally at critical dynamic states4, a strictly-
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defined power-law pattern does not exist in brain activity
patterns58,88–90. Instead, the power-law pattern only exists within
confined frequency ranges, and different ranges may contain
power-law patterns with different exponents55,58,89,91. Therefore,
the estimation of 1/f spectral pattern is usually selected ad hoc,
which differs across studies, e.g., 1–40 Hz60,92, 1–20 Hz92,
2–24 Hz93, 4–30 Hz69, 1–30 Hz94, 20–40 Hz92, 30–45 Hz89, and
1–50 Hz95. This also highlights a fundamental issue in the use of
the term ‘scale-free’ throughout the article. The terminology of
‘scale-free’ actually goes against the idea of estimating relevant
parameters in a band-confined (thus, scale-not-free) manner.
This issue exists in all similar studies in the literature. One
argument for this issue is that researchers can use reality-
restricted data features to estimate a theoretical construct. A
specific frequency band needs to be specified for estimating the
theoretical construct of scale-freeness owing to the fact that the
low end and high end of the spectrum are shaped by biological or
technical constraints88.

In this study, we fitted the 1/f pattern separately over two
frequency ranges split at 25 Hz. As mentioned in Methods, this
choice was made after observing the discontinuity of the 1/f
profile in our data at somewhere within the beta range between 20
and 30 Hz (see Fig. 1a). The point of 25 Hz was also approxi-
mately at the rightmost bound of the beta hump in the spectrum
(Fig. 1a), so FOOOF does not need to split a hump which may
cause more technical error88. We have conducted additional
analyses to show that the main results of this study are not
sensitively dependent on the specific cutoff value: replacing it
with 30 Hz did not change the major pattern and conclusion (see
Supplementary Figs. 3–5 and Supplementary Table 3).

Further to the discontinuity issue in the 1/f pattern, we
expected that the 1/f components in the two segments (1–25 Hz
and 26–90 Hz) should possess certain fundamental differences at
the functional level. First, the scalp distributions of their asso-
ciations with cognitive load variation are quite different (Figs. 1c,
d, 3a), indicating different anatomical bases. Second, high-band 1/
f parameters are more associated with cognitive load. The
direction of the association, i.e., lower exponent associated with
higher load, is consistent with previous studies55–59,69. This band-
related difference is also in line with one of our recent studies
with a large sample (n= 102), demonstrating that high-band 1/f
parameters exhibited a stronger association with controlled cog-
nitive processing96. These results solidly reveal that the 1/f
dynamic feature from the two different bands is clearly not a
unitary dynamic feature, echoing previous claims that scale-free
dynamics in different frequency ranges might result from dif-
ferent generative mechanisms76,82,89. It has to be noted that such
dependence of scale-free dynamics on frequency band is in
conflict with the intrinsic nature of scale-freeness. This issue
remains to be addressed in the future.

The discontinuity issue may be due to a mixture of different
mechanisms that may generate the 1/f feature, such as low-pass
filtering of tissues97,98, brain network properties90, and emergent
critical dynamic properties99,100. In addition, the tonic neuronal
spiking activity could also significantly contribute to the broad-
band high-frequency spectrum with a 1/f pattern101,102. This
heterogeneity issue poses an additional requirement in data
analysis: it is not just that the scale-free component has to be
isolated from the band-specific oscillations58,60,103,104, but also
that the scale-free component itself may be composed of multiple
dynamic processes that need to be disentangled. Our results
firmly showed the functional and anatomical dichotomy of the
scale-free dynamics between low and high bands.

Several limitations remain in the current study. The first one is
that the high-frequency data (e.g., gamma band) could be con-
taminated by muscle and eye-movement-related artifacts105–109.

As such, neural effects found from the gamma band could be
generated by non-neural factors, such as different saccade
frequencies106. To address this issue, more advanced methods
such as co-registration of EEG, eye-tracking, or EMG would need
to be adopted in order to thoroughly remove the artifacts. While
the current study is not able to fully address this limitation, the
data did support that the gamma-related effect is not totally
originated from artifacts: the PAC between gamma and low-alpha
band clearly exists, indicating that the gamma power is clearly
modulated by low-frequency oscillations. There is no theoretical
foundation for the link of such PAC to muscle artifacts.

Second, there remain some inherent limitations in the task
design. In the context of applied research, the cognitive load has
been commonly treated as a homogeneous mental variable asso-
ciated with a scalar magnitude. However, from a basic cognitive
process point of view, it can be a highly composite variable that
contains many sub-processes. In our design, we assumed that the
three tasks, eye-open resting, easy counting, and hard counting,
exert monotonically increasing cognitive load. However, this cog-
nitive load refers to the intensity of neurocognitive activity in a
generic sense, not to a specific cognitive process that determines the
load (e.g., more information chunks in working memory). The
composition of cognitive activity in the three tasks can be highly
heterogeneous. In the eye-open resting state, the cognitive process
can be anything due to free mind wandering. Still, we believe the
resting state was not a high-load state because the participants were
instructed to relax. For the two counting tasks, although it is rea-
sonable to assume that the intensity of cognitive activity is higher in
the hard counting mode, the specific cognitive process is not a
homogeneous one that simply varies its intensity: in the easy
counting mode, the participant may just go through a rhythmic
automatic action without any arithmetic process; in the hard
counting mode, arithmetic processes (complicated per se) are
involved. To sum up, it would be more desirable to manipulate a
single cognitive process in its intensity to achieve different levels of
cognitive load while making other processes under control to make
the results more interpretable in a cognitive sense. That said, the
current result of the multifaceted neural effect reflects a variation of
cognitive load in a generic sense of activity intensity, not a specific
identifiable cognitive process.

Third, the current design did not introduce a component to
monitor or assess the genuineness of the task performance, par-
ticularly in the hard counting task. While we can assume that the
erroneous answer from the hard counting task was mainly due to
task difficulty, it is equally probable that the participant did not
genuinely perform the task. Related to this issue, we have sepa-
rately analyzed the neural effects and showed consistency in them
across participant groups with correct and incorrect answers.
Specifically, effect sizes of the nine neural indicators calculated for
the same condition were comparable between the two participant
groups; more importantly, the high-band 1/f parameters turned
out to be the most robust and effective neural indicator of cog-
nitive load variation between different task states for both the two
participant groups (Table 1). This validation analysis demon-
strated that the two groups went through similar cognitive
activities. However, in future studies, the task should be intro-
duced with mechanisms to ensure performance genuineness.

In conclusion, the present work presents a detailed demon-
stration that different degrees of cognitive load are associated
with wide-ranging effects on neural dynamics in many facets with
a key role in scale-free dynamics. The complexity in the rela-
tionship between neural dynamics and cognitive dynamics reveals
the intricate linkage between the neural dynamic system and the
mental system. In other words, it also clearly reveals the issue in
attempting to identify a simplistic neural indicator to indicate
complex cognitive variables such as cognitive load. One
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implication is that the study of cognitive effects on neural activ-
ities should adopt a more holistic view of the neural dynamics
incorporating multifaceted (rather than single) dynamic features
embedded in the spontaneous neural activity.

Methods
Participants. A total of 156 healthy young adults in Hong Kong completed the
experimental tasks in this study. Four participants were excluded due to non-
cooperative behaviors or technical problems during the experiment. All included
participants (42 men and 110 women; age 24.20 ± 3.93 years) reported normal or
corrected-to-normal vision and no history of mental disease and gave informed
consent. Note that the unbalanced gender may create gender bias, so we also
present the major results separately for different genders to show consistency. The
study was approved by the Human Research Ethics Committee (HREC) of the
University of Hong Kong. The experiment was conducted in a sound-attenuated
room in which the participants performed a series of cognitive tasks during EEG
recording. The EEG signals were recorded by a 32-channel BrainAmp DC amplifier
(Brain Products, Germany) referenced to the GND electrode located at the mid-
point between Fp1 and Fp2 at a sampling rate of 1000 Hz and were stored using
BrainVision PyCorder. The electrodes were mounted on an elastic cap (Easycap,
Brain Products, Germany) in accordance with the 10–20 system110.

Task. Three experimental tasks were used in the present study, and the order of
administering these three tasks was counterbalanced across participants. The first task
was a resting state task during which the participants were instructed to stay relaxed
with eyes open for 60 s (natural eye blink allowed) and then closed for another 60 s.
The second and third tasks were two backward counting tasks in easy and hard
modes, respectively. In the easy counting task, the participants were instructed to
silently (without mouth movements) count down from 100 by deducting 1 each time
for 60 s. In the hard counting task, the count-down was from 300 and the deduction
number was 7, and the duration was also 60 s. Like the eyes-open resting state task,
the two backward counting tasks were also stimulus-free and performed with open
eyes. After completing each backward counting task, the participants were asked to
type the final number they arrived at into the computer. The two counting tasks used
in this study were adapted from a classic task paradigm of serial subtraction that has
been widely used for mental status examination111,112 and for imposing different
levels of cognitive load for cognitive research112,113.

The three tasks generated four mental states, three of which were assumed to
represent different levels of endogenous cognitive load. Specifically, the eyes-open
resting state is supposed to impose a low cognitive load because no explicit task
processing was involved. The two counting tasks were assumed to create two
different levels of cognitive load. For the eyes-closed state, we did not intend to use
this state to represent any variation of the cognitive load because the action of eye-
closing drastically changes the neural dynamics. Instead, this state mainly serves for
sanity-checking the EEG data in the present study ("Berger effect"114). We will still
present the difference between the eyes-closed state and others for readers’
information, but not for addressing the main research questions. In sum, the tasks
were assumed to generate three different levels of cognitive load without
interferences with major sensorimotor processes: (1) eyes-open resting state
(minimal cognitive load), (2) easy counting (low cognitive load), and (3) hard
counting (high cognitive load).

EEG data preprocessing. EEG signals were preprocessed and analyzed using
MATLAB and EEGLAB plugin115. Each participant’s EEG data encompassed by
each of the three tasks were cut out and down-sampled to 250 Hz, high-pass
filtered above 1 Hz (zero-phase, non-causal, filter order: 827 data points, corre-
sponding to 3.3 s, cutoff frequency at −6 dB: 0.5 Hz). High-pass filtering at 1 Hz or
above is a common pre-processing practice and has been demonstrated to be a
prerequisite for good ICA decomposition116–118 (also see EEGLAB tutorial).
Electrodes identified as outliers (with variance larger than 4 median absolute
deviations (MAD) across all electrodes) were interpolated in EEGLAB. Afterward,
the data were referenced to the common average offline. The processed data for the
three tasks were then concatenated and decomposed using Independence Com-
ponent Analysis (ICA). Next, the artifacts were identified and removed auto-
matically using MARA with a default cut-off probability of 50%119.

Behavioral performance. The behavioral performance in the two backward
counting tasks was evaluated as the total number of subtractions performed within
the task duration (i.e., 60 s). For instance, if a participant arrives at 31 in the easy
counting task, his/her performance in this task will be (100-31)= 69; if a participant
arrives at 237 in the hard counting task, his/her performance in this task will be (300-
237)/7= 9. It is possible to have non-integer numbers in the performance of the hard
counting task because of errors made in between. The counting frequency was cal-
culated as the total number of subtractions divided by 60 (total seconds), which
represents howmany times the participant counted in every single second on average.

Amplitude spectrum across frequencies. The amplitude spectrum was calculated
using discrete Fast Fourier Transform (fft in MATLAB) using Bartlett’s method on

each electrode, task, and participant. The 60-second EEG segment was divided into
60 1-second epochs, and the amplitude spectrum from each epoch was calculated
and the average spectrum (1–100 Hz) across the 60 epochs was obtained. The AC
artifact at 50 Hz was notched out by replacing the amplitude at 50 Hz with the
average of amplitudes at 49 Hz and 51 Hz.

Based on the amplitude spectra obtained above, the amplitudes of the four
canonical oscillations, i.e., theta (4–8 Hz), alpha (9–12 Hz), beta (13–30 Hz), and
gamma (31–90Hz), were calculated using the average amplitude across their
corresponding frequency ranges. We did not include delta because the cut-off
frequency filtering at 1 Hz significantly diminished the power of the low-frequency
end and Bartlett’s method based on relatively short time windows also lost significant
low-frequency information. The oscillation amplitude calculated in this way —
although commonly used in the field — does not take into consideration the
contribution of the 1/f component underneath the assumed oscillations and thus has
been increasingly considered problematic58,60,88. We conducted this conventional
calculation in order to make our results comparable to the previous studies; we also
calculated a 1/f-free version of canonical oscillation amplitudes later (see below).

Parameterization of 1/f dynamics. The parameterization of the 1/f spectral
pattern was conducted using the FOOOF method58 to fit the spectral curve with a
linear component (in the log-log scale) representing the 1/f trend and several
Gaussian humps representing the band-specific oscillations. FOOOF was separately
applied on the low frequency (1–25 Hz) and high-frequency range (26–90 Hz).
Accordingly, two sets of 1/f parameters (exponent and offset) were obtained. This is
a heuristic decision based on the following considerations: (1) there is a visually
discernable discontinuity of the linear trend in our average spectra (in log-log scale)
at around 25 Hz (see Fig. 1a); (2) it is not recommended to fit 1/f component on a
frequency range that splits an oscillation hump88, and the beta hump in our data
ended at around 25 Hz (see Fig. 1a). For convenience, the 1/f parameters estimated
from 1 to 25 Hz are referred to as low-band 1/f parameters, and the ones estimated
from 26 to 90 Hz are referred to as high-band 1/f parameters throughout the article.
For the fitting, the maximum number of oscillation peaks allowed was specified as
2 and 0 for the low and high bands, respectively. The reason is that normally no
oscillation hump exists in the high band, and the humps in the low band were
commonly seen in alpha and beta bands. The method of split fitting has also been
performed in previous research to obtain a better local fit92.

Considering the short duration (60 s) of EEG data for each task state, we also
estimated the reliability of the 1/f parameters. In doing so, we obtained the 1/f
parameters from the first and second halves of the data (30 s each) on each electrode
and calculated the reliability as the cross-session Pearson correlation120, which shows
to be high (see Supplementary Table 4). The goodness-of-fit of the 1/f fit estimated by
R2 (percentage of variance explained by themodel) was also high: 0.94 (resting, close),
0.96 (resting, open), 0.95 (counting, easy) and 0.95 (counting, hard) for the low band
and 0.86 (resting, close), 0.80 (resting, open), 0.80 (counting, easy), 0.75 (counting,
hard) for the high band (averaged across electrodes and participants).

After fitting the spectra with the FOOOF method, the 1/f components fitted
from the two bands were subtracted from the original spectra, and the resultant
spectra were used to calculate the amplitude of canonical oscillations as described
above, thus generating a 1/f-free version of the oscillation amplitudes. It has to be
noted that this 1/f-free version may have negative values of oscillation amplitude in
individual participants due to the nature of the fitting methodology, but it can still
serve as a valid indicator of individual differences.

Phase-amplitude coupling. The phase-amplitude coupling (PAC) between low-
and high-frequency bands in this study was characterized in both qualitative and
quantitative ways described as follows.

The first way of characterization focused on qualitative visualization rather than
quantification of the PAC. First, the time-frequency representation (TFR) was
calculated from each 1-second epoch by applying wavelet transformation based on
Morse wavelet with the symmetry parameter (gamma) equal to 3 and the time-
bandwidth product equal to 60. The moduli of the complex values from wavelet
transformation were obtained as the TFR. The 60 TFRs from the 60 1 s segments
were then averaged after synchronizing to their phases at a specific low frequency
(one from 4Hz to 20 Hz) as follows: the TFR from epochs with earlier phases will
be moved rightward, and the TFR from epochs with later phases will be moved
leftward, according to their phase values. In this way, the modulation of high-
frequency amplitude by the low-frequency phase can be revealed after averaging
the synchronized TFRs81. This analysis was done on each electrode and low
frequency (from 4Hz to 20 Hz) separately. We further characterized the
relationship between the amplitude of gamma (31–90 Hz) and the phase of the low
frequency by folding the average TFR with f folds (f is the value of the low
frequency in hertz) and averaging the folded TFR. The final average TFR was
averaged over the gamma band (31–90 Hz) to obtain the gamma amplitude-low
frequency phase relationships. The analysis was done at different low frequencies in
order to examine the systematic dependence of PAC on the low frequencies.

The second way of characterizing PAC was based on quantification. In doing so,
the strength of PAC was calculated using the modulation index121,122 based on the
following procedures. (1) The preprocessed EEG signals were first filtered at two
bands: the low-frequency band from which the phase is to be obtained, and the
high-frequency band from which the amplitude is to be obtained. (2) Hilbert
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transform was applied to the two filtered signals to obtain the low-frequency phase
and the high-frequency amplitude, respectively; (3) the obtained high-frequency
amplitudes were discretized into 18 bins according to the low-frequency phases. (4)
the MI was then calculated as the divergence of amplitude distribution (over the 18
bins) from uniform distribution based on the formula below.

MI ¼ DKL P;Uð Þ
log Nð Þ ¼ log Nð Þ �H Pð Þ

log Nð Þ ¼
log Nð Þ �∑N

j¼1P j
� �

log P j
� �� �

log Nð Þ
ð1Þ

P j
� � ¼

<Af A
>
φf p ðjÞ

∑N
k¼1<Af A

>
φf p ðkÞ

ð2Þ

where N is the number of phase bins; DKL P;Uð Þ denotes the Kullback–Leibler (KL)
distance between the observed amplitude distribution (P) and the uniform
distribution (U); H Pð Þ denotes the Shannon entropy (H) of a distribution P; fp and
fA denote the two frequency ranges for obtaining the phase and amplitude
information; φf p ðtÞ denotes the phase time series obtained from the Hilbert

transform; Af A ðtÞ denotes the amplitude time series obtained from the Hilbert
transform; and <Af A

>
φf p ðjÞ

denotes the mean Af A
value at the phase bin j. More

details of the MI calculation can be found in Tort, et al. 121. Here, the frequency
range for obtaining the amplitude value was set as 31–90 Hz (gamma band), and
the frequency range for obtaining the phase value was swept over a range from 1 to
20 Hz with a step of 0.1 Hz.

Effects of cognitive load variation on different neural features. To statistically
test the effects of cognitive load variation on different neural features, two statistical
analyses were conducted: t-test and linear mixed modeling.

(1) Paired t-test and non-parametric cluster-based test. We first conducted two-
tailed paired t-tests between different task states for each of the eight neural fea-
tures on each electrode: (1) low-band 1/f exponent, (2) low-band 1/f offset, (3)
high-band 1/f exponent, (4) high-band 1/f offset, amplitudes of (5) theta (4–7 Hz),
(6) alpha (8–12 Hz), (7) beta (13–30 Hz), (8) gamma (31–90 Hz). The effect size
Cohen’s d= t/

ffiffiffi
n

p
(where t is the t statistic from the paired t-test and n is the

number of samples, i.e., participants) was then calculated from each electrode for
visualization of the scalp map of the effects. Before performing each paired t-test,
we excluded outliers based on the quantile range method123, i.e., the outliers were
defined as more than 2 × inter-quartile range (IQR) above the 3rd quartile or below
the 1st quartile (implemented by isoutlier function in MATLAB).

To address the multiple comparison issues, we performed the non-parametric
cluster-based permutation tests124 according to the following steps. First, the clusters
of significant electrodes were identified from the paired t-test as at least four adjacent
electrodes with p < 0.01. The electrode connectivity map for defining adjacency was
based on Supplementary Fig. 6. The t values from all significant electrodes in the
cluster were summed, denoted as tsum. Second, we created surrogate data by
scrambling the condition label of the data by reversing the condition labels in half of
the participants (randomly selected for each permutation). After reversing the
conditional labels for half of the participants, any conditional effect is expected to
disappear. The same t-test was then conducted on the surrogate data, and the
significant cluster was detected as in the first step. The sum of t values from the
surrogate data was obtained and denoted as t’sum. Any cluster detected from the
surrogate data is due to chance. This procedure was repeated for 2000 permutations,
generating a distribution of t’sum. The tsum obtained from the original data was then
compared against the distribution of t’sum to calculate the corresponding p value of it.
Because this procedure turns the entire data space into a single test, it can avoid the
multiple comparison issues124. In the result, we only show statistically significant
clusters of effects based on this non-parametric test.

(2) Linear mixed model. The effect observed on a dynamic feature may be an epi-
phenomenon of another feature. To better examine the inter-dependence of different
neural features in their association with cognitive load, we built a linear mixed model
(LMM) with the various neural dynamic features concerned serving as independent
variables, task state (categorical variable, easy: 0, hard: 1) serving as the dependent
variable, and participant serving as random effects in the intercept. All major neural
features were involved in the initial model, i.e., low-band 1/f exponent and offset
parameters (1–25Hz), high-band 1/f exponent and offset parameters (26–90Hz),
theta (4–7 Hz), alpha (8–12Hz), beta (13–30 Hz), gamma (31–90 Hz), MI (between
gamma and 9 Hz at Oz), and gender. Except forMI, all neural features were calculated
as averages from electrodes within the corresponding significant clusters obtained
from the non-parametric cluster-based test. The LMM model was specified as below
and was performed using lme4125 and lmerTest126 packages in R127. After running the
LMM model, we checked the multicollinearity issue based on the variance inflation
factor (VIF) method. It was found that the 1/f offset parameters have extremely high
VIF values (due to their high correlation with 1/f exponents) and were thus excluded
from the model (see Supplementary Table 5). The beta power also had a VIF slightly
higher than 5 and thus was also excluded. All the left independent variables had VIF
values lower than 5 (reported in the Results). For the normality test, we applied
Shapiro-Wilk’s method. Except for MI, all independent variables that were not

normally distributed were transformed to be normally distributed (p-values > 0.05
from Shapiro–Wilk test). Although MI still could not pass the normality test after
transformation, the normality of its distribution has been largely improved (W sta-
tistic from Shapiro-Wilk tests was improved from 0.397 to 0.954 for the easy counting
task and was improved from 0.288 to 0.967 for the hard counting task). Specific
transformation formulas were reported in the Result section. The final LMMmodel is
as follows:

task state � 1þ highband exponent þ thetaþ alphaþ gamma

þMI þ gender þ ð1jparticipantÞ ð3Þ

Application of machine learning to examine the performance of predicting
cognitive load level using different sets of neural dynamic features. To further
demonstrate that the integration of different neural dynamic features will show a
better performance in predicting cognitive load than using separate features (thus
demonstrating the non-redundancy of them), we applied a support vector machine
(SVM)-based machine learning approach to classify the data. Because the state data
(hard and easy counting) are repeated measures and the individual difference in
baseline neural feature value is much larger than the between-condition difference,
we applied SVM only to the difference values between the two task states of easy
and hard counting. Each participant generated a set of difference values of the
neural features. The difference values were calculated as the second counting task
minus the first counting task. Because the order was counterbalanced, part of the
participants generated easy-minus-hard data samples (labeled as 0), and the rest
generated hard-minus-easy data samples (labeled as 1).

The MATLAB function fitcsvm was used to implement this machine learning
with the following parameter settings: Standardize: true; KernalFunction: gaussian.
The outliers were removed before applying machine learning following the above-
mentioned procedure. We used a k-fold cross-validation method that equally
separated the data into k groups and used one group as validation data and the rest
as training data in each iteration. We specified k as 5. Because 152 is not a multiple
of 5, there is always one group (randomly drawn) containing 32 samples. Each of
the 5 groups will have a chance to play the validation data, i.e., the full circle run
through 5 iterations. On top of this, we performed 100 outer iterations and
obtained the mean validation accuracy from all obtained results. Since we applied a
sufficiently large number of iterations, we did not particularly use a stratified
version of k folding. Each data sample contains multiple neural features (more
specifically, the difference between the two counting tasks). We selectively used one
or multiple features (e.g., alpha, theta, 1/f parameters, etc.) to compare the
performance of the SVM across different selections.

Association between neural features and behavioral performance in the hard
counting task. Because the high-band 1/f exponent is the strongest neural indi-
cator of cognitive load variation, we further tested the association between this
neural feature and individuals’ counting performance in the hard counting task.
Specifically, an ordinary least squares linear regression model was built with the
hard counting performance serving as the dependent variable. We examined the
regression results from two different independent variables: (1) the difference in 1/f
exponents between resting open and hard counting and (2) the difference in 1/f
exponents between easy and hard counting.

Statistics and reproducibility. The difference between the two conditions within
the same participant group were tested using paired two-tailed t-test (Table 1,
Fig. 3a, d, and Supplementary Tables 1–3, Fig. 5a). Non-parametric cluster-based
test was applied to address multiple comparison issues generated by multiple EEG
electrodes (Fig. 3a, d and Supplementary Fig. 5a). The outliers were defined as
more than 2 × inter-quartile range (IQR) above the 3rd quartile or below the 1st
quartile. The outliers were excluded before performing all statistical tests. The
effects of different neural features on the cognitive load were estimated by Linear
Mixed Model (LMM). The multicollinearity issue in the LMM was addressed using
the variance inflation factor (VIF) method. The classification of cognitive load
based on neural features were conducted by applying SVM.

All data were analyzed using customized MATLAB (including EEGLAB
plugin), Python, and R scripts. The MATLAB version was R2021a. The EEGLAB
version was 2022.0. The Python version was 3.6.6. The R version was 1.2.5019.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The anonymized EEG and behavioral data are available upon reasonable request. The
source data behind the graphs in the paper are provided in Supplementary Data 1.

Code availability
The codes used to reproduce the analyses are available at https://doi.org/10.5281/zenodo.
8118580128.
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