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Abstract
We investigate both experimentally and using a computational model how the power of the electroencephalogram (EEG) 
recorded in human subjects tracks the presentation of sounds with acoustic intensities that increase exponentially (loom-
ing) or remain constant (flat). We focus on the link between this EEG tracking response, behavioral reaction times and the 
time scale of fluctuations in the resting state, which show considerable inter-subject variability. Looming sounds are shown 
to generally elicit a sustained power increase in the alpha and beta frequency bands. In contrast, flat sounds only elicit a 
transient upsurge at frequencies ranging from 7 to 45 Hz. Likewise, reaction times (RTs) in an audio-tactile task at different 
latencies from sound onset also present significant differences between sound types. RTs decrease with increasing looming 
intensities, i.e. as the sense of urgency increases, but remain constant with stationary flat intensities. We define the reaction 
time variation or “gain” during looming sound presentation, and show that higher RT gains are associated with stronger 
correlations between EEG power responses and sound intensity. Higher RT gain further entails higher relative power differ-
ences between loom and flat in the alpha and beta bands. The full-width-at-half-maximum of the autocorrelation function 
of the eyes-closed resting state EEG also increases with RT gain. The effects are topographically located over the central 
and frontal electrodes. A computational model reveals that the increase in stimulus–response correlation in subjects with 
slower resting state fluctuations is expected when EEG power fluctuations at each electrode and in a given band are viewed 
as simple coupled low-pass filtered noise processes jointly driven by the sound intensity. The model assumes that the strength 
of stimulus-power coupling is proportional to RT gain in different coupling scenarios, suggesting a mechanism by which 
slower resting state fluctuations enhance EEG response and shorten reaction times.

Keywords  Looming and flat sound · EEG · Resting state · Inter-subject variability · Ornstein–Uhlenbeck process · 
Multisensory integration

Introduction

The ability to track changes in our environment relies on 
sensory processing (Wark et al. 2007). In order to perform 
appropriate motor responses (Heekeren et al. 2008; Ploran 
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et al. 2007; Werkle-Bergner et al. 2014) we need to discrimi-
nate between threatening and innocuous signals (Dean et al. 
2005). This implies that, at the neuronal level, sensory infor-
mation needs to be dynamically transformed into movement 
preparation and action or, if appropriate, into a withholding 
of a reaction. In particular, cues that predict a possible col-
lision of an object with our body are among the most salient 
stimuli coming from the environment. However, inter-indi-
vidual differences in sensory perception due to distinct prior 
experiences, genetic background or neural diseases (Kanai 
and Rees 2011; Nielsen et al. 2008) modulate the ability of 
each subject to react. Even in simple experimental setups, 
where each sensory modality can be set apart from the rest 
and conditions are homogenous across participants, inter-
individual response variability persists (Marder 2011).

In this study we have looked for signatures in the 
EEG that can explain variability across subjects to audi-
tory responses to two types of sounds inducing different 
response patterns, both at the behavioral and electro-
physiological level. In our experiment, subjects undergo 
three types of sessions that are performed sequentially as 
follows (Fig. 1a). First, they perform a behavioral audio-
tactile task where a tactile stimulation prompts subjects 
to react at varying latencies from sound onset (Ferri et al. 
2015). The acoustic intensity of the sounds used is either 
exponentially increasing (loom) or constant (flat). Second, 

the EEG is recorded during two separate resting state ses-
sions with eyes closed and in the absence of any stimulus 
to obtain the spontaneous brain dynamics of each subject 
that cannot be explained by attentional fluctuations dur-
ing a task. Finally, an auditory task follows, where only 
loom and flat sounds were delivered and the EEG was also 
simultaneously recorded. Therefore, in the latest recording 
session there was no tactile stimulation, and thus no mul-
timodal processing occurred and no reaction was required 
from the subject. This constitutes a No-report paradigm 
(Tsuchiya et al. 2015). The arrangement of the tasks allows 
us to investigate whether differences in the RTs between 
subjects (audio-tactile task) prevail (a) across their EEG 
power responses to sounds in the absence of any instruc-
tion to prepare a response (auditory task) and (b) across 
individual features of the spontaneous EEG power (resting 
state session).

Several studies have shown that the so-called spontaneous 
fluctuations affect stimulus-related responses. Pre-stimulus 
oscillatory power influences sensory perception, particularly 
in the alpha (Hanslmayr et al. 2007; Thut et al. 2006) and 
beta bands (Lange et al. 2012; Linkenkaer-Hansen et al. 
2004). And the variability of responses across stimulus repe-
titions has been linked to fluctuations in either the amplitude 
and/or the phase of the ongoing activity (Arieli et al. 1996; 
He 2013; Huang et al. 2017; Linkenkaer-Hansen et al. 2001; 
Murray et al. 2014; Saka 2010; Saka et al. 2012), such that 
the recorded activity cannot be solely explained by the input. 
Moreover, slow scale-free fluctuations in resting state EEG 
activity and in reaction times series were comparable dur-
ing a perceptual task (Palva et al. 2013), during timing-error 
sequences in a finger-tapping task (Smit et al. 2013) and dur-
ing reaction-time (RT) performance (Irrmischer et al. 2018). 
Here, we present evidence that the temporal structure of the 
spontaneous activity, quantified by the full-width-at-half-
maximum of its autocorrelation function (ACF)– also known 
as autocorrelation window (ACW)–, varies between subjects 
with different behavioral and electrophysiological responses 
to the sounds. Specifically, in the alpha and beta band, sub-
jects with stronger RT modulation during the looming sound 
presentation show, on average, stronger stimulus–response 
correlation (ρ) (i.e. acoustic intensity-EEG power correla-
tion), and better neural differentiation of loom versus flat 
sounds. This group also exhibits longer ACWs.

Finally, we use a computational model to demonstrate 
how the effects of longer ACW could be related to ρ when 
viewing resting state fluctuations in EEG power as simple 
low-pass filtered noise. Noise is a significant component of 
brain activity across brain states (Xing et al. 2012), includ-
ing in the alpha band of interest below (Lopes Da Silva et al. 
1997; Lefebvre et al. 2017). Simple, low-dimensional non-
linear dynamical system models of EEG have been proposed 
(Jansen and Rit 1995), as well as modular compositions of 

Fig. 1   Behavioral audio-tactile and auditory tasks. a Experimen-
tal paradigm showing the distribution of the three methodological 
features (EEG acquisition, auditory and tactile stimulation) and the 
measures used in the manuscript to quantify the data obtained in each 
session. FLAT and LOOM sounds correspond to the static (constant 
intensity) and dynamic (exponentially increasing intensity) sound 
presentation respectively (see Materials and Methods). The looming 
sound is felt as an object approaching the body (Ferri et  al. 2015). 
b Behavioral audio-tactile task. Along with the auditory stimula-
tion, in 60% of trials, participants were also presented with a tactile 
stimulus at one of five randomly chosen delays from sound onset. 
Trial-averaged reaction times (RTs) to the tactile target during loom-
ing sound (black circles) decrease at longer delays when the object 
feels closer. RTs during flat sound presentation (grey circles) remain 
approximately constant. The error bars represent one standard devia-
tion around the mean, computed across all subjects. The inset shows 
the RT gain (see Materials and Methods) averaged across subjects 
for both sound conditions. c Auditory task. Trial-average dynamic 
course of power spectral density (PSD) for loom (solid lines) and flat 
(dashed lines) sounds computed in four different frequency bands 
after taking the mean across artifact-free channels and subjects (see 
Materials and Methods). The shaded areas correspond to the 95% 
confidence interval across the population. Sound delivery starts 
at time 0 (left vertical dashed line) and ends at 3.1  s (right vertical 
dashed line). The grey patches show the time windows where there is 
a significant difference between the two signals after temporal clus-
tering (see Materials and Methods). Licenses for the EEG CAP and 
pointing hand are provided: EEG Cap—The Noun Project icon from 
the Noun Project by CIV is licensed under CC0 1.0 Universal. Point-
ing hand cursor vector, mouse cursor, mouseover by Manuel Cam-
pagnoli is licensed under CC0 1.0 Universal

◂
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such model into larger brain networks (David and Friston 
2003) in which stochastic inputs play an essential role. 
While these and other modeling frameworks include exter-
nal inputs, limited work has been devoted to understanding 
how the EEG tracks dynamical stimuli.

Here, we propose a model of brain dynamics constrained 
by the observation that the time scale of resting state fluctua-
tions in a given band influences stimulus–response correla-
tion in that band. This link has been generally overlooked, in 
part due to the natural tendency to express time in a model in 
units of such internal time scales. We show that simple linear 
stochastic models can be adapted to understand the evolution 
of EEG auditory responses to dynamic stimuli, and further 
provide insights into the dependence of these responses on 
resting state properties.

Our paper is organized as follows. We first compute the 
power spectral density (PSD) of the EEG signal in different 
frequency bands during looming and flat sounds, and the 
RTs as a function of the cue time after sound onset. The 
variation of the RT with the sound time course is quanti-
fied as an RT gain. Two groups of participants are defined 
according to a median split of the RT gain in the loom condi-
tion. This split is further justified from the performance of 
a machine learning-based classifier. This subdivision of the 
population is then used to examine the relationship between 
this gain and the neuronal responses during the auditory 
task, which are quantified by the difference in PSD during 
loom and flat sounds, PSDL-F, and the stimulus–response 
correlation ρ. The relationship between RT gain and the 
resting state recordings is also examined using ACW. All 
measures reveal significant changes across the two groups in 
a frequency-dependent manner. The topographic distribution 
of such changes is then analyzed. Channels that display the 
strongest gap between groups reveal a clearer spatial segre-
gation. Finally, we discuss a simple model where the power 
fluctuations are described as lowpass-filtered noise and show 
that its power-sound correlation is expected to increase with 
ACW, as in our data. A Discussion of our results follows, 
highlighting that many of these properties of EEG power 
with sound intensity follow from the simple assumption that 
these power fluctuations are adequately described as noise.

Materials and Methods

Experimental Design

Participants

Thirty-eight healthy volunteers (12 females, mean age 
21.8 years, range 20–31) participated in the auditory and 
behavioral audio-tactile task, as well as in the resting state 
recording sessions. All the participants were right-handed 

and provided written informed consent before participating 
in the study. The experimental protocol was approved by 
the University G. D’Annunzio of Chieti institutional ethics 
committee.

Auditory Stimuli

The auditory stimuli presented in both tasks (Fig. 1a) were 
samples of pink noise of 3100 ms duration with constant 
(flat) or increasing (looming) intensity levels. The sounds 
were sampled at 44.1 kHz. Sound intensity was manipu-
lated using Soundforge4.5 software (Sonic Foundry) so that 
looming sounds had exponentially rising acoustic intensity 
from 55 to 70 dB of sound pressure level (SPL), whereas 
flat sounds remained at 62.5 dB SPL (Canzoneri et al. 2012; 
Ferri et al. 2015). During the auditory task, sounds were 
delivered by headphones (specifically designed for fMRI—
see below—and connected to a NordicNeuroLab audio sys-
tem), whereas during the behavioral audio-tactile task, two 
loudspeakers were used. It has been previously shown (Ferri 
et al. 2015) that perceived stimulus distance is not affected 
by these different experimental setups.

Tactile Stimuli

Tactile stimuli, presented during the behavioral sessions, 
were delivered using constant-current electrical stimula-
tors (DS7A; Digitimer) via pairs of neurological electrodes 
placed on the hairy surface of the index fingers. The elec-
trical stimulus was a single, constant voltage, rectangular 
monophasic pulse. At the beginning of each session, the 
intensity of the tactile stimulus was set to be clearly above 
threshold individually for each participant (Canzoneri et al. 
2012). Intensity of the stimulator was set at the minimum 
value and then progressively increased until the participant 
reported to clearly perceive the stimulation. Next, the par-
ticipant was presented with a sequence of 10 stimuli, inter-
mingled with five catch trials in which no stimulation was 
presented. He/she was asked to report when he/she felt the 
tactile stimulus. If the participant did not perform 100% cor-
rectly (i.e., if he/she failed to respond to some stimuli or gave 
false positives to the catch trials), the intensity was further 
increased by a 5 mA step and the procedure was repeated. 
Intensity for the tested participants ranged between 60 and 
90 mA. Stimulus duration was equal to 100 μs.

EEG Acquisition

During a single session measurement, the EEG was recorded 
simultaneously with fMRI at 3 T Philips Achieva using MR 
compatible devices. A 64-channel BrainAmp MR system 
(Brain Products GmbH, Germany) was used for EEG record-
ings, along with the BrainCap electrode cap (Falk Minow 
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Services, Herrsching-Breitbrunn, Germany). All of the 
electrodes, which were placed on the scalp according to the 
international 10–10 system, were ring-type sintered non-
magnetic Ag/AgCl electrodes. An additional channel was 
dedicated to the electrocardiogram (ECG) and to the EOG. 
The reference electrode was predefined in the cap and posi-
tioned in correspondence of the FCz electrode. The ground 
electrode was predefined and placed at Iz. The impedance of 
each electrode was maintained lower than 10 kΩ by means 
of electrode paste. The resolution and dynamic range of the 
EEG acquisition system were 100 nV and ± 3.2 mV, respec-
tively. EEG data were acquired at 5 kHz using the Brain 
Vision Recorder v2.0 software (Brain Products GmbH, Ger-
many) with a band-pass filter of 0.016–250 Hz. The Sync 
Box device (Brain Products, GmhB, Germany) was used to 
synchronize the hardware clock of the EEG with the MRI 
scanner’s gradient switching system.

EEG Data Pre‑processing

The acquired EEG data were first pre-processed with a Brain 
Vision Analyzer (Brain Products, Munich, Germany). Gradi-
ent artifact correction was performed using the method pro-
posed by (Allen et al. 2000) and incorporated into the Brain 
Vision Analyzer v.2.0. Data were down-sampled to 500 Hz 
using a Hanning-decimation process during the gradient 
correction and then exported in Matlab format for the fol-
lowing preprocessing step. Using a self-developed software 
implemented in Matlab (Mathworks, Sherborn, MA), the 
data were digitally filtered from 0.5 to 60 Hz using a Che-
byshev II-type filter with 40 dB attenuation and zero-phase 
distortion, along with 50 Hz and 18.5 Hz notch filtering with 
a bandwidth of 1 Hz and 0.5 Hz respectively. The segments 
in all runs with high gross motion artifacts were rejected 
from further analysis using an automatic mode by setting 
a threshold of 100 microvolts for all subjects. A procedure 
based on independent component analysis (ICA) (Comon 
1994; Hyvärinen and Oja 2000) was used for the rejection 
of ballistocardiographic artefact, ocular movements and the 
residual imaging artefact from the EEG data (Mantini et al. 
2007; Vanderperren et al. 2010). The result was visually 
inspected to confirm the quality control. Before carrying out 
the following analyses, the EEG data were re-referenced to 
the average of all channels.

Behavioral Audio‑Tactile Task

On their first day, participants were blindfolded and comfort-
ably seated beside a table with their right arm resting palm 
down. The audio-tactile apparatus, which was mounted on 
the table, consisted of two loudspeakers, one placed near 
to the participants’ right hand and the other at a distance 
of 100 cm from the near loudspeaker (i.e., far from the 

participant) and a constant-current electrical stimulator 
controlling a pair of neurological electrodes attached on the 
participant’s right index finger. During each trial, either a 
looming or a flat sound was presented. Along with the audi-
tory stimulation, in 60% of trials, participants were also pre-
sented with a tactile stimulus. The remaining trials (40% of 
total) were catch trials with auditory stimulation only (either 
looming or flat sounds).

The tactile stimulus was delivered at varying temporal 
delays from the onset of the auditory stimulus. Five different 
temporal delays were used: T1 = 300  ms; T2 = 800  ms; 
T3 = 1500 ms; T4 = 2200 ms; and T5 = 2700 ms. Each trial 
was followed by an inter-trial interval of 1000 ms. Each par-
ticipant was presented with a random combination of 18 
looming and 18 flat sounds for each temporal delay, ran-
domly intermingled with the catch trials. Trials were equally 
divided into three blocks. Participants were asked to respond 
as fast as possible to the tactile target, when present, by 
pressing a button on a response box (Cedrus RB-834) with 
their left index finger, trying to ignore the auditory stimulus. 
The presentation of auditory and tactile stimuli, as well as 
the recording of participants’ responses, were controlled by 
custom software implemented in MATLAB (The Math-
Works). The RT gain was defined as RT(T1)-RT(T5)

RT(T1)
 .

Resting State Session

On the second day, each participant underwent two 5 min-
runs of resting state (no stimuli). Following Honey et al. 
2012 an analysis was performed on each individual channel 
to detect spectral bursts, which may indicate epileptiform 
activity or an intermittent electrode contact. A spectral 
burst was defined as a power value more than six times the 
interquartile range away from the median of the power time 
course in any frequency. Channels with at least one spectral 
burst (1109 from 62 × 38 = 2356 total) in the resting state 
sessions were excluded here and in the following auditory 
task.

Auditory Task

Following the resting state session, participants underwent 
two consecutive 6 min-runs of passive listening to looming 
and flat sounds equally distributed across the two runs. For 
the latter, a total of 30 auditory stimuli for each condition 
(looming and flat) occurred with an inter-stimulus interval 
(ISI) randomly selected between the values of 4.65, 6.2, or 
7.75 s, and subjects were instructed to pay attention to the 
sounds. Participants were blindfolded and asked to keep 
their eyes closed. After artifact rejection was applied to the 
EEG data (see Sect. “EEG acquisition” below), the average 
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number of trials for the loom condition was 25 ± 3.4 and for 
the flat, 26 ± 3.4 (mean ± std).

Calculation of the Power Spectral Density 
and Selection of Frequency Bands

The time course of the power spectral density (PSD) was 
computed for each channel without spectral bursts for each 
participant. The PSD was estimated using the multi-taper 
method (Thomson 1982) commonly used to reduce the vari-
ance of the spectra of recorded signals, which are usually 
very noisy (Sancristóbal et al. 2013). This estimator was 
implemented in Chronux 2.10 (Bokil et al. 2010). The multi-
tapered power spectrum, (f ) , is the average of the power 
spectrum of the EEG signal multiplied by K orthogonal Sle-
pian functions:

where ẼEGk(f ) is the discrete Fourier transform of the 
EEG(t) signal multiplied by the k-th Slepian function (or 
taper). Following Honey et al 2012, we have used K = 3 
tapers and S(f ) was computed on data segments of 1 s every 
10 ms, padded with zeros up to a length of 512 to obtain 
an increased sampling rate in the frequency domain. The 
bandwidth was set to 4 Hz.

For the recordings from the auditory task, we extracted 
trials for looming and flat sound presentation, starting 
at − 1.50 s and ending at 7.0 s from onset (note that the 
minimum distance between the onset of two subsequent 
3.10 s long auditory stimuli is 3.10 s + 4.65 s = 7.75 s, cor-
responding to the smallest ISI of 4.65 s). Next, we applied 
a full-epoch length single-trial correction by dividing each 
trial by its temporal mean before trial-averaging. Then we 
defined the PSD by taking the logarithm after averaging 
across trials. Finally, the PSD within the alpha (7–13 Hz), 
low-beta (13–20 Hz), high-beta (20–30 Hz) and low-gamma 
(30–45 Hz) bands was obtained by averaging across the con-
stituent frequencies.

Pearson’s Correlation Coefficient

The stimulus–response correlation ρ between the neuronal 
response x(t) and the intensity of the looming sound I(t) was 
computed as follows and implemented in Matlab through 
the xcov function:

S(f ) =
1

K

K∑

k=1

|||ẼEGk(f )
|||
2

� =

∑N−1

n=0

�
xn −

1

N

∑N−1

i=0
xi

��
In −

1

N

∑N−1

i=0
Ii

�

�x�I

where xn(t) are successive time samples of x(t) . The response 
x(t) is either the PSD obtained from the experimental EEG 
data defined in the previous section or the trial-averaged 
Ornstein–Uhlenbeck process defined in the Computational 
model section. σ is the unbiased standard deviation 
1

N−1

∑N−1

i=0

�
xi −

1

N

∑N−1

i=0
xi

�2

 . N is the number of scalar 
observations of each variable. We note that the time samples 
of the sound stimulus intensity In are the same for every trial, 
as it is not a stochastic process.

Autocorrelation Window (ACW)

We used the definition in Honey et al. 2012, where ACW is 
computed as the full-width-at-half-maximum of the autocor-
relation function (ACF) of the PSD in each frequency band. 
The time course of the resting state power in a given fre-
quency band was normalized by its temporal average in that 
frequency band, and the logarithm was taken before defining 
the PSD in each band. Then, the time course is divided into 
20 s blocks with 10 s overlap, and the ACF is computed in 
each block. The ACW is extracted from the averaged ACF 
over these blocks. ACW is defined as the ACW averaged 
across the two resting state runs, and ⟨ACW⟩subjects is the 
ACW averaged across subjects. Only one participant pre-
sented inconsistency between the ACW computed in the two 
runs and was removed from the analysis in Fig. 3 and other 
analyses as well.

Statistical Analysis

Temporal Clustering

We compute the t-value at every time point as t = x

�∕
√
n
 , 

where x is the average across subjects of the variable x that 
is being tested against the null hypothesis, σ is the standard 
deviation between subjects and n the number of subjects. 
t-values decrease for high variance of the sample (high σ), 
for small samples (low n), and for low sample mean (low x 
). Hence, greater t-values provide greater evidence against 
the null hypothesis. In Fig. 1c, x is the difference between 
power in the loom and the flat conditions, i.e. PSDL-F, and 
the null hypothesis considers that there is no difference 
between the response to the two sounds.

Significance is set at p-values below 0.05, which cor-
responds to a t-value =  ± 2.024, for n = 38. Then we test 
whether the length of clusters of consecutive time points 
where ||x|| ≥ 2.024 are larger than obtained by chance. To 
do so we built a permutation distribution of lengths of 
clusters under the null hypothesis that consists of shuf-
fling the sound-label for each subject, thus creating 10,000 
resamplings of the observed data. The proportion of per-
muted values that are larger than the observed ones sets the 
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significance for each temporal cluster of the data (Maris and 
Oostenveld 2007).

Confidence Intervals

For approximately normally distributed variables (such as 
the log transformed power), the upper and lower bounds of 
the 95% confidence intervals are computed from the Stu-
dent’s t distribution evaluated at the probability 0.025 and 
0.975.

Classification Algorithm

We use a logistic regression algorithm (mnrfit MATLAB 
function) to classify whether a subject belongs to the high or 
low RT gain group defined by a median split of the RT gain 
in the loom condition. The logistic function that is imple-
mented is defined as:

where the predictor variables are the xi ’s and correspond to 
PSDL-F computed at the sound onset, ρ and ACW for low 
and high beta and averaged over the highlighted electrodes 
in Fig. 5 (3 × 2 features). The regression coefficients bi index 
the direction and strength of the relationship between indi-
vidual estimates of xi and the probability of belonging to the 
high RT gain group. bo is the model intercept or bias. We 
apply a tenfold cross validation. Hence, on every run of the 
classifier we obtain 10 values for the prediction accuracy 
(i.e. the percentage of correct classifications) evaluated in 
a different data set (randomly chosen 40% of the data) than 
the one used for the training set (the 60% left). In both the 
training and test set we ensure the same number of subjects 
in each group. In order to test whether prediction accuracy is 
significantly different than chance, we have run 10,000 times 
the described classifier, randomly assigning the high/low RT 
gain group to the true observations xi . The true prediction 
accuracy is compared against the distribution of accuracies 
from the null-hypothesis to obtain a p-value.

Computational Model

We have used the Euler–Maruyama algorithm to integrate 
the stochastic differential equation Eq. (2) in the Results, 
known as the Ornstein–Uhlenbeck process. The time step 
was set to 10–4. The autocorrelation time constant τ and the 
variance σ2 are obtained from the resting state recording and 
are frequency and channel specific (Fig. 6d). The external 
current I(t) mimics the increase in acoustic intensity of the 
looming sound during the 3.1 s. The rate of increase is 

log

(
p(high)

1 − p(high)

)
= bo +

∑

i

bi ⋅ xi

linked to the time course of the intensity by � =
1

T
ln
(

IF

Io

)
 , 

where T = 3.1 s is the duration of the sound, IF = 70 dB SPL 
and Io = 55 dB SPL for the looming sound, and for the flat 
sound I = 62.5 dB SPL (see “Auditory Stimuli” section 
above). The coupling strength between I(t) and the stochastic 
process x(t) was assigned a different value for the low and 
high RT gain groups.

Results

We first examined the reaction times to the tactile stimulus 
in the multimodal auditory-tactile task. The RTs were 
assessed following tactile cues, T1–T5, delivered randomly 
at one of five times after the onset of loom and flat sound 
stimulus depicted in Fig. 1a (see “Materials and Methods”). 
Figure 1b shows RT as a function of the five onset times, 
averaged across trials and subjects. Under the flat sound 
intensity condition, little variation in the RT is observed. For 
the looming stimulus, however, there is a clear decreasing 
trend in which the RT shortens as the sound becomes louder. 
The RT gain, defined as RT(T1)-RT(T5)

RT(T1)
 , averaged across sub-

jects along with its standard deviation, is shown in the inset. 
The RT gain is clearly much larger in the looming condition, 
such that a louder sound speeds up the tactile task (sign test, 
p = 2.8·10–10).

The neural response to the looming and flat sounds is 
measured by the PSD of the EEG signal recorded during the 
auditory task and filtered into the various bands of interest 
(see “Materials and Methods”). The PSD revealed distinc-
tive patterns between conditions in the alpha (7–13 Hz), 
low-beta (13–20  Hz), high-beta (20–30  Hz), and low-
gamma (30–45 Hz) bands (Fig. 1c). After sound onset, at 
about ~ 0.7 s later, power responses of either sound start to 
separate significantly with respect to baseline.

The onset response is more marked for the flat sound, 
which turns on with an intensity that is halfway between 
the minimum and maximum intensities used in the loom-
ing condition (Fig. 1a). This onset increase in power is fol-
lowed by a decrease around 1.5 s after flat stimulus onset, 
after which power reverts to baseline before the offset of the 
stimulus (Maier and Ghazanfar 2007). In contrast, the EEG 
power tracks the intensity of the looming sound, although an 
onset response is clearly seen and displays a peak at about 
the same time as the one seen for the flat sound. Within a 
second or so of this first peak, the power resumes its increase 
with the looming sound; this is the case in the three lower 
frequency bands of interest here. We also notice in the loom-
ing case an offset response that peaks between 0.5 and 1.0 s 
after the stimulus ends, thereby leaving a remnant in the 
post-stimulus period. These results are in agreement with 
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Fig. 2   Effect of RT gain on the auditory task. Histograms across 
channels of the PSD during loom minus the PSD during flat sound 
presentation, PSDL-F , computed within the significant window a after 
sound onset and b after sound offset (see grey boxes in Fig.  1c). c 
Histogram across channels of the stimulus–response correlation, 
ρ, between the EEG power and the acoustic intensity of the loom-
ing sound. Quantities are averages across subjects, ⟨…⟩subject , within 

two groups according to whether their RT gain in the loom condition 
(black bar in Fig. 1b inset) is above its median (dark colors/upward 
triangles) or below (light colors/downward triangles). Tables in 
gray show the p-value of a one-sided Wilcoxon rank sum test where 
the alternative hypothesis is that the high RT gain histogram has a 
median lower (a), or greater (b, c) than the low RT gain histogram
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the psychophysical finding that ramped sounds are heard 
as being longer than steady sounds (Grassi and Darwin 
2006). Grey boxes are displayed in each frequency band, 
which bracket the times during which the EEG power during 
loom minus the EEG power during flat sound presentation, 
⟨PSDL-F⟩subject , is significantly different than zero.

Panels in Fig. 2 show the distribution across channels of 
⟨PSDL-F⟩subject after averaging across participants with high 
RT gain (dark colors/upward triangles) and low RT gain 
(light colors/downward triangles) computed within the sig-
nificant window (A) towards sound onset and (B) towards 
sound offset (see grey boxes in Fig. 1c). These groups are 
determined through a median split of the RT gain distribu-
tion computed in the loom condition. The median of the 
distributions is marked with a triangle. In all bands, the high 
RT gain group shows ⟨PSDonset

L-F
⟩
subject

 values around sound 
onset that are more negative than in the low RT gain group, 
while ⟨PSDoffset

L-F
⟩
subject

 are more positive. Therefore, the 
PSDL-F statistic takes on more extreme values in the high RT 
gain group.

Of particular interest is the correlation of the EEG power 
fluctuations with the stimulus intensity. We next show results 
for the Pearson linear correlation ρ, or stimulus–response 
correlation for brevity, between the looming sound intensity 
and its corresponding EEG power response in the different 
bands in Fig. 2c. Correlations tend to be more positive in the 
high RT gain group than in the low RT gain group particu-
larly in the alpha and beta bands. Gray tables in Fig. 2a–c 
summarize all the p-values for testing the null hypothesis of 
no difference between the medians of the two distributions.

These results indicate that a high RT gain corresponds 
to more sensitivity to the type of sound being played not 
only reflected in a subject’s behavior but also in its neuronal 
activity across the scalp. By performing a median split on 
the data, we do not suggest that there are two inherent groups 
of participants (indeed, the distribution of RT gain is uni-
modal). This analysis rather shows that channel-based EEG 
related variables of the auditory task significantly change 
between groups that, by construction, have different mean 
RT gains, even in the absence of a linear correlation between 
these variables. We will later support an RT split using a 
machine learning-based classifier.

Next, we test our hypothesis that higher behavioral and 
neuronal responsiveness in subjects can be explained by dif-
ferences in the dynamics of their spontaneous brain activ-
ity, which we quantify by the time scale of the EEG power 
fluctuations during rest or autocorrelation window (ACW). 
ACW measures the width of the resting state autocorrela-
tion function around its origin (i.e. around zero lag). The left 
panel of Fig. 3a shows two superposed ACFs, one for the 
activity in the alpha band (red), and the other for the activ-
ity in the high-beta band (green) for a particular subject and 

electrode located in the occipital lobe. It is clear from this 
panel that the ACW for the alpha band is larger than that 
for the high-beta band, implying that the power fluctuations 
in the alpha band occur on a slightly slower time scale than 
those in the high-beta band. This tendency is in fact pre-
served when averaging across subjects and pooling all chan-
nels, as the right panel of Fig. 3a shows. The ⟨ACW⟩subject 
values in alpha stand out from those computed in the other 
bands. We also observe that the mean of the ⟨ACW⟩subject 
distribution increases as the frequency content of the band 
decreases (top inset). Figure 3a further reveals that the distri-
butions of ⟨ACW⟩subject values are narrower as the frequency 
of the band increases (bottom inset).

Figure 3b shows that in the alpha and beta bands, higher 
RT gain participants exhibit longer ACW , since the distri-
bution of ACW averaged across participants within this 
group is higher than the corresponding distribution of the 
low RT gain group. A link between the auditory task and 
the resting state session can also be established by compar-
ing ⟨PSDL-F⟩subject and ⟨�⟩subject with ⟨ACW⟩subject . In Fig. 4, 
each of the variables measured in the auditory task is plotted 
against ⟨ACW⟩subject , where the average is taken separately 
for the high and low RT gain participants. Hence, for each 
channel, population averages within the low RT gain group 
(light colors) and for the high RT gain group (dark colors) 
are simultaneously shown on each axis. Means for the low 
and high RT groups are shown with downward and upward 
triangles, respectively. Below each panel, the correlation 
coefficient r quantifies the linear relationship between the 
y and x coordinates, as well as the corresponding p-value. 
Most of the statistically significant r values occur in the 
alpha and low-beta bands. We have seen that auditory 
evoked changes in EEG are heterogeneous across the scalp 
and are larger for the high RT participants (Fig. 2). Now, 
Fig. 4 reveals that such variability is consistent with a similar 
variation of ACW . We will later examine with a computa-
tional model whether these relationships can be causal.

So far, the connection between the behavioral audio-tac-
tile task and the different EEG recording sessions has been 
studied by pooling all channels separately for the high and 
low RT gain groups (Figs. 2, 3, 4). It is possible, though, that 
not all brain areas are involved in the explicit and implicit 
demands of each task, and that the PSD time course of only 
some of the electrodes shows more pronounced differences 
between participants in the measures characterizing the 
auditory task ( � and PSDL-F ) and the resting state ( ACW).

Thus, we next explore which channels contribute more 
to the horizontal separation of the upward and downward 
triangles in all panels of Figs. 2, 3b, which denote averages 
within the high RT gain group and within the low RT gain 
group, respectively. To do so, we have plotted the spatial 
distribution of such differences between high and low RT 
groups, Δ⟨… ⟩subject . In order to account for the varying 
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width of the histograms across frequency bands and com-
puted variables, we show the standard score (or z-score). 
Channels that lead to a z-score ≥ 1.5 (≤ − 1.5 for PSDonset

L-F
 ) 

are highlighted and labeled (Fig. 5) and correspond to the 
locations where PSDL-F , ρ and ACW better correlate with 
the RT gain (see Supplementary Figures S1 and S2 for an 
example of a highlighted and non-highlighted channel, 
respectively).

We quantify the similarity of the topographic maps in 
each band by computing the correlation matrix between all 

four variables (bottom matrices in Fig. 5). For each compari-
son, we show in the upper triangular portion of the matrix 
the scatter plots between the x and y coordinates labeled 
in the horizontal and vertical axis, respectively. The corre-
sponding correlation coefficients R and p-values are shown 
in the lower triangular portion of the matrix, symmetric to 
the diagonal.

In all four bands, Δ⟨PSDonset
L-F

⟩
subject

 and Δ⟨PSDoffset
L-F

⟩
subject

 
are anti-correlated (compare blue vs warm colors on similar 

Fig. 3   Effect of RT gain on the autocorrelation window during rest. 
(a left) Two autocorrelation functions (ACF) of the PSD computed 
from the EEG during a resting state session (see “Materials and 
Methods”) for electrode O1. The red line corresponds to the ACF 
computed from the EEG power fluctuations in the alpha band. The 
light green line is the corresponding ACF of the signal in the high-
beta band. The horizontal colored bars at the half-maximum (hori-
zontal dashed line, ACF = 0.5) define the length of the autocorrela-
tion window (ACW) for each ACF. (a right) Distribution of the ACW 

across channels, averaged over the two resting state runs, ACW , and 
over subjects, ⟨ACW⟩subjects , for the different frequency bands. The 
insets display the mean (top) and standard deviation (bottom) of the 
distributions. b Histograms across channels of ⟨ACW⟩subjects for the 
participants with high RT gain (dark colors/upward triangles) and low 
RT gain (light colors/downward triangles). The gray table shows the 
p-value of a one-sided Wilcoxon rank sum test where the alternative 
hypothesis is that a high RT gain histogram has higher median than 
the low RT gain histogram
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electrodes), meaning that similar areas are involved in the 
stronger power amplitude responses to flat and loom sounds 
of the high RT gain participants. However, none of these 
areas are involved in changes in � or ACW , which are found 

Fig. 4   Effect of ACW on the auditory task. The variation PSDL-F 
in PSD responses to loom and flat sounds is computed for each 
electrode and averaged within the two RT gain groups separately. 
This is done in the significant window after stimulus onset in a 
and after stimulus offset in b and plotted against the corresponding 
⟨ACW⟩subjects . For each electrode, panel c shows ⟨�⟩subjects within the 

two RT gain groups and plotted against ⟨ACW⟩subjects . A gray table 
below panels a–c shows the Pearson cross-correlation coefficient 
r between the variables shown in the y-axis in the panel above and 
⟨ACW⟩subjects (x-axis), along with its p value. Upward (downward) tri-
angles show the average across the high (low) RT gain group

to be significant in other areas. Interestingly, Δ⟨�⟩subject and 
Δ⟨ACW⟩subject are maximally correlated in alpha, where they 
share similar topographies. Specifically, relevant electrodes 
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Fig. 5   Topographic distribution of the differences Δ between the high 
and low RT gain groups. Each of the quantities computed from the 
EEG power during the auditory task ( PSDonset

L-F
 , PSDoffset

L-F
 and ρ) and 

during the resting state ( ACW ) have been averaged across the par-
ticipants within each RT gain group separately. The spatial distribu-
tion across the scalp of the standard score (z-score) of each of these 
differences ( PSDonset

L-F
 , PSDoffset

L-F
 , Δρ and ACW ) is shown in each fre-

quency band. Black circles indicate the location of the electrodes 

where z-score ≥ 1.5 (≤ -1.5 for PSDonset
L-F

 ). On the bottom, the correla-
tion between these quantities in the four spatial maps for each band is 
shown (Lin 2015). On the upper triangular portion of the matrix, the 
scatterplots of the data in the x and y axis are shown. On the lower 
triangular portion of the matrix, we show the corresponding correla-
tion values, R, and associated p-values. Correlation  values and  sig-
nificance levels are also visualized as the color and sizes of circles, 
respectively
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are located in the right centro-parietal regions and frontal 
areas.

Given the spatial heterogeneity of the effect of the 
median split on the variables obtained from the EEG 
power, we have only used data from the channels where 
the EEG power features show the highest difference 
between RT gain groups (shown in Fig. 5 as black circles) 
to train a multinomial logistic regression to classify 
whether a subject belongs to the high or low RT gain 
group. Each subject is determined by a selection of fea-
tures, namely its PSDonset

L-F
 , ρ and ACW computed in the 

beta band, where the number of relevant channels is the 
highest (see Material and Methods). Due to the collinear-
ity between Δ⟨PSDonset

L-F
⟩
subject

 and Δ⟨PSDoffset
L-F

⟩
subject

 (shown 
by the correlation matrices in Fig. 5), we have only used 
the former as a predictor. The accuracy of such a classifier, 
0.63 ± 0.13, is significantly higher than chance (p = 0.04).

Computational Model of Auto‑correlation Window 
and Sensory‑Related Activity

Our analysis shows that individuals with significantly different 
temporal scales of EEG power fluctuations during rest, quan-
tified by the ACW , respond with different neuronal patterns 
to both the looming and flat sound. Yet it is not clear whether 
there is anything beyond this correlation in terms of causation, 
and if so, what possible mechanism could underlie causation. 
A precise answer is currently not within reach given our data. 
But a beginning of an answer can be obtained by considering 
a simple computational model that is calibrated on the resting 
state to reproduce basic features of the spontaneous dynamics 
of the EEG power, and then driven by the acoustic stimulus.

We demonstrate that, by only assuming that the EEG power 
fluctuations are a manifestation of linearly filtered noise, we 
can qualitatively reproduce the results shown in Fig. 4c, 
namely, the stimulus–response correlations across the brain 
are higher for the high RT gain group, and their changes are 
linearly correlated with changes in ACW. This was done with-
out assuming any detail about brain structure, circuitry, rhythm 
dynamics, and neurochemistry. Our approach is in line with 
recent modeling work based on linear stochastic neural mass 
models with nonlinear delayed feedback to understand how 
brain states, i.e. spatiotemporal patterns of EEG and MEG, 
can be altered by external stimulation (Hutt et al. 2016; Lefe-
bvre et al. 2017). We simplify their coupling between neural 
subsystems, as we seek the minimal ingredients required to 
reproduce the correlation between ACW and � while account-
ing for RT gain.

Specifically, we assume that the EEG power fluctuations 
at each electrode in a given frequency band are governed by 
simple stochastic linear dynamics endowed with a finite cor-
relation time, τ. Therefore, the fluctuating EEG power at the 

i-th electrode is modeled as a random variable xi(t) which has 
a tendency to revert to an equilibrium value, but is moved away 
from it by noise. Without loss of generality, we consider x(t) to 
be the zero-mean lowpass-filtered Gaussian white noise pro-
cess, more precisely known as the Ornstein–Uhlenbeck (OU) 
noise process (Uhlenbeck and Ornstein 1930). Here we will 
adopt the scaling in Lindner and Longtin 2006, for which the 
power fluctuations x(t) in any given band and channel evolves 
according to the linear stochastic differential equation:

where � is the characteristic timescale of the exponential 
decay of the autocorrelation function ⟨x(t)x(t + l)⟩ = �2e−�l�∕� 
and � is the strength of the Gaussian white noise process �(t) 
and determines the standard deviation of x(t).

In order to extract the parameter τ from the data, we 
compute the ACF for all positive lags for the same sub-
ject, channel and bands. Like in Figs. 3a, 6a shows two 
ACFs as solid colored lines and a fit of these data to a 
single exponential, as the OU process would have, with 
dashed colored lines. The distribution of the set of coef-
ficients of determination, R2, obtained from the fitting in 
each frequency band is left-skewed, meaning that some 
experimental ACF diverge from the exponential decay 
assumption (Fig. 6b). However, given that these distribu-
tions are quite narrow and show a clear peak around 0.9, 
the premise that power fluctuations are given by an OU 
process is reasonable. The parameter τ obtained from the 
fitting is plotted against the experimental ACW in Fig. 6c, 
showing that both quantities are directly proportional.

Finally, we also extract the variance from the resting 
state power signal to feed into our multivariate OU model. 
It is seen in Fig. 6d that the variance increases as the fre-
quency of the band decreases. This is foremost a conse-
quence of the fact that the power spectrum of the EEG 
in the lower frequency bands is higher. In our modeling 
below, we will constrain the variance of x(t) using these 
data.

As in the EEG recordings, we simulate as many OU pro-
cesses as channels (N = 62), each one with its own �i and var-
iance constrained by the data in Fig. 6d. We add to Eq. (1) 
two extra terms: one that accounts for the coupling between 
OU processes and another one that accounts for the external 
time-varying input current I(t) representing the sound, as in 
the auditory task:

Our model is a simplified version of that used in (Hutt 
et al. 2016) in which the recurrent connectivity is simply 

(1)dx

dt
= −

1

�
x(t) +

√
2�2

�
�(t)

(2)

dxi

dt
= −

1

�i
xi(t) +

�
2�2

i

�i
�i(t) − A

∑N

j=1

�
xi(t) − xj(t)

�

�i
+

Ri

�i
I(t)
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a constant all-to-all diffusive coupling without delay and 
strength A. Note that the coupling term effectively decreases 
the variance of xi(t) . In order to set the variance of xi(t) equal 
to �2

i,data
 (Fig. 6d) we thus further needed to scale up �2

i
 in 

Eq. (2). We will simulate Eq. (2) when A = 0, and all the 
OU processes are independent, and when A = 0.1, in order 
to investigate whether the coupling influences the stimu-
lus–response correlation and its dependence on electrode-
specific ACW measures in the resting state.

The stimulus I(t) , added here to the standard OU process, 
increases exponentially as Ioe�t for the looming sound 
(Fig. 1a) (see “Materials and Methods”). Regarding the ratio 
of parameters Ri

�i
 , we will examine two scenarios. First, we 

will assume that xi(t) is a simple leaky integrator with an 
injected stimulus current, whose leak resistance Ri and time 

constant �i are proportional Ri

�i
= C and, thus, I(t) is not 

scaled by �i (no scaling case). This yields the following 
dynamics:

where R�

=
1

C
.

Secondly, we will study the case where an EEG channel 
does not behave like a simple capacitor in parallel with a linear 
resistor, but is rather more complex and, thus, Ri

�i
 is not constant 

and the I(t) is also divided by the system response time (scal-
ing case). This now yields the following dynamics:

dxi

dt
= −

1

�i
xi(t) +

�
2�2

i

�i
�i(t) − A

N∑
j=1

�
xi(t) − xj(t)

�

�i
+ R�

⋅ I(t)

Fig. 6   Lowpass-filtered noise model for resting state dynamics of 
EEG power fluctuations. a Fitting of an exponentially decaying auto-
correlation function C(l, l�) = �2

e
−|l−l�∕�| with σ = 1 (dashed line) 

over the experimental ACF (solid line) shown in Fig. 3a for all posi-
tive lags (red: alpha, green: high-beta). b Distributions of the coef-
ficient of determination, R2, of the fitting as in a in each color-coded 
frequency band and across channels. c The parameter τ from the best 
fits in b versus the experimental ACW for each electrode shows a 
quasi-linear relationship in each frequency band. In each band, there 
are as many points as there are electrodes and subjects. d The vari-

ance of the resting state, σ2, is plotted against the parameter τ for each 
frequency band and channel separately. σ2 is averaged across the par-
ticipants within the low (light colors) and high (dark colors) RT gain 
group separately. The black (high RT gain) and gray (low RT gain) 
circles mark the data that have been used in Fig. 7. e The stimulus–
response correlation, ρ, is plotted against the parameter τ for each fre-
quency band and channel separately. Black/Gray circles are as in d. 
Color code as in previous figures. Upward (downward) triangles in d 
and e show the average across the high (low) RT gain group
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With �i and �2
i
 estimated from the resting state data, we 

aim at reproducing Fig. 4c, which is also shown in Fig. 6e 
by pooling all frequency bands in a single plot. Each dot 
represents data from one electrode, averaged across subjects 

dxi

dt
= −

1

�i
xi(t) +

�
2�2

i

�i
�i(t) − A

∑N

j=1

�
xi(t) − xj(t)

�

�i
+

R

�i
I(t)

within the high (dark colors) and low (light colors) RT gain 
groups and after the EEG power has been averaged across 
presentations of the loom sound. The experimental results 
for individual bands appear in a staggered manner, i.e. mov-
ing from left to right as the frequency of the band decreases 
or, equivalently, as τ increases. We observe a wide range 
of values of the correlation coefficient, with some negative 
ones but mainly positive ones. Moreover, a clear tendency 

Fig. 7   Realizations of the Ornstein–Uhlenbeck process as a band-spe-
cific model of power fluctuations (red: alpha, orange: low-beta, light 
green: high-beta, dark green: low-gamma). Time traces of a single 
channel from the integration of Eq. (2) in the uncoupled case (A = 0), 
and no scaling (i.e. Ri

�i
= C ). The left column corresponds to low val-

ues of the parameter R and the right column to high values of R that 

represent, respectively, low and high RT gains. Gray/black time traces 
correspond to the resting state simulations, where no input is present 
as in Eq.  (1). Colored time traces correspond to the trial-average of 
x(t) after 100 presentations of the stimulus I(t) = I

o
e
�t . Vertical 

dashed lines delimit stimulus duration (as in Fig. 1c). In each panel of 
the left/right column, τ and � are assigned values based on our exper-
imental data highlighted with thin/thick black circles in Fig. 6d
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is visible, where high RT gain is associated with higher val-
ues of � . This cannot be solely explained by τ, since higher 
changes in � occur between RT gain groups with smaller dif-
ferences in τ (compare, for instance, red upward and down-
ward triangles for the mean of each RT gain group) than with 
larger τ shifts (compare, for instance, red upward and orange 
downward triangles). We mimic this RT gain dependency by 
choosing two different R’ (no scaling) or R (scaling): a weak 
one R’/R = 1.67·10–4 for low RT gain subjects, and a higher 
one R’/R = 6.67·10–4 for high RT gain subjects.

Time traces of x(t) for a single channel in the uncoupled 
and no scaling case for τ and � selected from Fig. 6d (black 
circles) for each different frequency band are shown in 

Fig. 7 for the two R values (low value in the left column and 
high value in the right column). It can be also verified that, 
in agreement with Fig. 6e, the dark red (alpha band) and 
orange (low-beta band) x(t) time traces (high RT: right col-
umn Fig. 7) increase along with the sound (vertical dashed 
lines) as compared to the light red and orange x(t) (low RT: 
left column Fig. 7).

Figures 8 and 9 show the � versus τ plot (to compare 
with Fig. 6e) when � is computed from the trial-averaged 
simulated electrode ensemble x(t) and τ and the variance 
are constrained by the experimental data in Fig. 6d. Fig-
ure 8 represents the uncoupled electrode case and Fig. 9 
the coupled case. Both show the results for the two scaling 

Fig. 8   Stimulus–response correlation for the uncoupled OU pro-
cesses. Equation  (2) is integrated when A = 0, that is when the OU 
processes are uncoupled, and for the no scaling (left panels) and scal-
ing (right panels) scenario. In the upper square panels, we plot the 
simulated correlation coefficients ρ against the parameter τ obtained 
from the data. Each of the 62 OU processes in our model represents 
the activity in a channel whose variance and correlation time are 
calibrated using our experimental data for each channel (Fig. 6d). ρ 
is the stimulus–response correlation between the averaged response 

of the OU process, x(t) , to N = 100 presentations of an exponentially 
increasing input stimulus I(t) = I

o
e
�t of 3.1 s of duration. Below each 

square plot, we show the trial and channel averaged responses cor-
responding to the experimental values of τ within the alpha band (red 
dots in the square panels) and for the two RT gain groups, represented 
by different values of R in Eq.  (2). Light colors correspond to low 
R and dark colors to high R. The resting state, I(t) = 0 , is shown in 
black/gray
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choices, although similar results are obtained. Greater 
effects occur when going from A = 0 to A ≠ 0, since the 
all-to-all coupling of the OU processes synchronizes the 
signals and the distribution of � shrinks and better resem-
bles the data (Fig. 6e). Going from the no scaling to the 
scaling scenario effectively boosts the impact of I(t) by 
dividing it by 𝜏i < 1. 

This computational model thus shows that the effect of 
the correlation time of the OU processes, which is simply 
proportional to ACW, on the stimulus–response correla-
tion can be replicated under simple assumptions of stim-
ulus-driven low-pass filtered noise processes operating at 
each electrode and calibrated to mimic resting state activity 

autocorrelation and variance. Slower resting state fluctua-
tions (longer τ values) can thus plausibly lead to better 
stimulus–response correlation. The simulation data further 
mimic the strong variability in the stimulus–response cor-
relation across channels. The model reveals that a weak cou-
pling amongst the channels can improve this correlation, 
especially under a stronger coupling to the stimulus in the 
high RT gain case. The higher RT gain can thus be seen as 
a higher signal-to-noise ratio for the stimulus-driven OU 
dynamics, which somehow reflects the overall responsive-
ness of the brain area and the impact of this responsiveness 
on multimodal processing.

Fig. 9   Stimulus–response correlation for the coupled OU processes. 
Equation (2) is integrated with A ≠ 0, that is, when the OU processes 
representing the activities in each channel are coupled. This is done 
again for the no scaling (left panels) and scaling (right panels) sce-
nario. The calibration of each electrode using the data in Fig. 6d leads 
to different noise strengths for each channel compared to Fig. 8 due 
to the effect of the coupling. In the upper square panels, we plot the 
simulated correlations ρ against the parameter τ obtained from the 
data. ρ is again the stimulus–response correlation between the aver-

aged response of the OU process, x(t) , to N = 100 presentations of 
an exponentially increasing input stimulus I(t) = I

o
e
�t of 3.1 s dura-

tion. Below each square plot we show the trial and channel averaged 
responses corresponding to the experimental values of τ within the 
alpha band (red dots in the square panels) and for the two RT gain 
groups, represented by different values of R in Eq.  (2). Light colors 
correspond to low R and dark colors to high R. The resting state, 
I(t) = 0 , is shown in black/gray
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Discussion

Our study investigates how sensory-related activity is modu-
lated by both the dynamics of acoustic stimuli and the spon-
taneous activity. The sounds used in this study differ in their 
temporal evolution and, as a consequence, in their implicit 
content: the looming sound is perceived as an approaching 
object whereas the flat is not. Therefore, the first provides 
changing information about the environment in relation to 
the body and the latter does not supply additional evidence 
apart from its onset and offset. In a previous study, a com-
parison between the perceived positions of these sounds in 
space revealed a significant reduction of the noticed distance 
from body with increasing intensity that was absent dur-
ing flat sound presentations (Canzoneri et al. 2012; Ferri 
et al. 2015). Hence, even in the absence of a motor task, the 
passive perception of approaching, non-stationary sounds 
elicited an altered representation of the external space, prob-
ably due to an implicit urge to prepare a defensive action. 
Our ‘no-report’ paradigm (Tsuchiya et al. 2015) decouples 
perception from immediate action and allows to distinguish 
stimulus-related from task-related effects.

Human response times were found to vary along the 
looming sound in an audio-tactile multisensory task that 
demands a motor response cued by a tactile stimulus. The 
subject’s RT drops significantly as the sound intensity 
increases but remains relatively constant during the flat 
sound (Fig. 1b). The RT gain quantifies the strength of this 
drop, and is correlated with changes in certain EEG power 
statistics. A machine learning-based classifier that consid-
ers changes in particular channels and frequency bands of 
stimulus-EEG response correlation, ACW, and EEG power 
differences between the two auditory stimulus conditions, 
provides the justification for a median split of our subjects 
into low and high RT gain groups, even though there is 
clearly a continuum of such gain values. The low-vs-high 
RT gain split enabled us to succinctly summarize the trends 
in our data.

Further, these behavioral differences for loom versus flat 
sounds were accompanied by differences in alpha, beta, and 
low-gamma bands activity during an auditory uni-sensory 
task. EEG power following a flat sound onset relaxes back 
to baseline before the offset, while it builds up following a 
looming sound well into the post-stimulus period (Fig. 1c). 
These PSD patterns were quantified by differences in power 
during loom and flat, PSDL-F , and by stimulus–response 
cross-correlation ρ. Similar results were reported in a study 
where the blood oxygen level-dependent (BOLD) signal in 
humans was greater for rising (looming) compared to con-
stant (flat) intensity sounds across time (Seifritz et al. 2002). 
Comparable patterns of brain activity were also found in 
monkeys, where a sustained increase in gamma-band power 

of the local field potential (LFP) signals in the auditory cor-
tex was obtained during looming but not receding sound 
presentation (Maier and Ghazanfar 2007).

Our RT result are also compatible with a recent report of 
an auditory bias towards identifying more quickly a looming 
versus a receding stimulus (Bidelman and Myers 2020). That 
finding was based on an EEG source analysis in the 1–30 Hz 
range and establishes the involvement of the prefrontal cor-
tex—and its functional connectivity to the primary auditory 
cortex- for processing such evolutionary important stimuli. 
Our study exposes the relevant dynamical features of the 
EEG during the looming phase, notably in the alpha and 
low-beta bands and their correlation with response speed. 
These features may reflect an influence from the PFC and 
underlie its involvement visible in Fig. 5 for stimulus-corre-
lation in the lower frequency range.

PSD responses averaged across subjects with high RT 
gain are larger than those averaged across subjects with low 
RT gain (Fig. 2a, b). This is also true when comparing the 
loom stimulus–response correlation between the two groups 
(Fig. 2c) and the resting state temporal structure, as meas-
ured by ACW (Fig. 3b). Inter-individual variability during 
behavioral and perceptual tasks has been explained by vari-
ations in brain anatomy (Kanai and Rees 2011; Mueller et al. 
2013) and EEG task-evoked activity (Drew and Vogel 2008; 
Martens et al. 2006). Our results suggest that this heteroge-
neity can also be explained by the temporal scale of sponta-
neous power fluctuations.

We found that, particularly in the alpha and beta bands, 
single-electrode measures of power amplitude during sound 
delivery and stimulus–response correlation with looming 
acoustic intensity changed across RT gain groups propor-
tionally to changes in ACW (Fig. 4). Interestingly, only a 
subset of channels contributed to enhance such differences 
Δ across participants with different RT gains (Fig. 5). For 
instance, the spatial distribution of electrodes with higher 
ΔPSDL-F was similar when computed both after sound onset 
and offset. This means that similar brain areas account for 
high changes in acoustic intensity in flat (onset) and loom 
(offset) sounds. Also, in alpha and beta, right centro-parietal 
and left frontal electrodes more specifically contributed to 
larger Δρ and ΔACW.

Higher � values in the alpha band, as a proxy for the rise 
of PSD during looming sound, usually occur in those brain 
regions involved in movement planning, such as motor areas 
(Klimesch et al. 2007). Similar power accumulation in beta 
can potentially be attributed to previously reported increases 
in prefrontal beta power during inhibition of the motor sys-
tem to suppress saccades in monkeys (Hwang et al. 2014). In 
humans, beta power increases in fronto-central areas during 
motor inhibition or in prefrontal regions during enhanced 
cognitive control when subjects had to cancel or change 
motor behavior (Liebrand et al. 2018). Although RTs and 
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EEG during sound presentation were not collected simul-
taneously, the stronger co-variation found between them in 
beta is consistent with studies examining volitional motor 
control. In monkeys, spontaneous increases in beta power or 
induced with neuro-feedback biased behavior towards slower 
movement onset (Khanna and Carmena 2017). Therefore, 
the increase in beta power during the loom condition in the 
auditory task can potentially reflect strong suppression of 
movement implicit in the perception of approaching stimuli. 
If this is so, a subject with a high � would be strongly push-
ing the brake over motor responses during the auditory task 
and would release it when an action is prompted during the 
audio-tactile task, which translates into a high RT gain. By 
examining subjects’ time scale of the EEG power fluctua-
tions during rest (ACW, Fig. 3) we were also able to deter-
mine that such a subject within the high RT gain group is 
intrinsically more reactive to sensory stimuli due to his/her 
longer ACW.

Finally, our computation model for resting state brain 
activity allows us to attribute a potential causal role for 
the magnitude of ACW on the neuronal and behavioral 
responses to sounds. There are two assumptions that under-
pin our modeling approach of power fluctuations as lowpass 
filtered Gaussian white noise (OU process). The first is sim-
plicity: this noise has two parameters, namely its amplitude 
and its correlation time (or inverse bandwidth). It is thus 
the simplest level of complexity in modelling dynamical 
noise processes beyond the standard Gaussian white noise 
approach. It also acknowledges the fact that an OU process 
entails a stochastic signal that asymptotically reverts to its 
mean with a finite time scale. As the ACF shows (Fig. 3a), 
the experimental PSD corresponds to this type of damped 
dynamics whereby low values of ACW lead to fast relaxa-
tion to the mean. Indeed, the ACF of power fluctuations is 
well-fitted by an exponential, which is the property of an OU 
process. The second assumption is one of coupling simplic-
ity between electrodes and to the external stimulus. This 
simplified, coarse-grained view of brain activity then leads 
to the conclusion that longer ACW may be causally linked 
to a stronger linear correlation between the sound stimulus 
and the EEG response.

Our modeling approach identifies minimal dynamical 
elements to account for observed stimulus–response corre-
lations, as well as their dependence on resting state proper-
ties and their link to behavioral RTs in this multisensory 
scenario. Further experimental and computational work is 
needed to explain the nature of the stimulus-EEG and inter-
electrode coupling strengths and their relation to the gain of 
the behavioral responses. Our assumption of linearly cor-
related noise is compatible with autoregressive models of 
EEG that represent activity fluctuations as a time-invariant 

near-equilibrium linear thermal process (Wright et al. 1990). 
Future work could add local resonances and delayed inter-
actions between areas (David and Friston 2003; Hutt et al. 
2016; Jansen and Rit 1995; Nunez 2000) to seek improved 
agreement with our data in different bands. The effect of the 
stimulus on the response time could also be considered in 
a conductance-based formulation of our model. Adaptation 
which is visible in our power responses to flat stimuli, could 
also be considered as in (Lefebvre et al. 2017). These addi-
tions will deepen our understanding of the stimulus-resting 
state interactions in terms of time scale-specific interactions 
(Murray et al. 2014) beyond the ACW-dependent stimu-
lus–response correlation described in our study.

Conclusions

Our work provides evidence for the role of the resting 
state dynamics in modulating sensory-related and motor 
responses. The autocorrelation time constant, ACW, of 
resting state dynamics characterizes the temporal scale of 
ongoing EEG power and constrains its ability to track a 
looming versus a flat sound since it measures the scale 
at which perturbations away from average power decay. 
ACW can be considered a source of inter-individual vari-
ability in sound perception and behavior as supported by 
heterogeneous power responses and reaction times elic-
ited by looming and flat sounds. In particular, participants 
with short ACW also exhibit a low modulation of their 
power dynamics and RT with sound intensity. Although 
the experimental data do not allow us to conclude a causal 
relationship between resting and active sensory states, our 
computational model allows us to conjecture that more 
responsive brains (neurally and behaviorally) are an 
endogenous property of slower spontaneous dynamics.
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