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THE HIERARCHICAL  
SEMANTICS OF SELF

Georg Northoff and Diego Gorini

Introduction

The self is a basic phenomenon of our life and existence. While the concept of self has been discussed 
extensively in philosophy over the last three centuries, its presence in psychology and neuroscience is 
more recent. Various studies have shown complex psychological (Sui & Humphreys, 2015) and neural 
(Apps & Tsakiris, 2014; Frewen et al., 2020; Northoff et al., 2006; Qin et al., 2020; Tsakiris, 2016, 
2017; van den Meer et al., 2010) correlates of the self; yet, a crucial neurosemiotic question remains 
unanswered: How are these signatures and their psychological manifestation related to semantics? 
Is there correspondence – if not convergence –  between the neural hierarchies of the self and of 
semantic systems? And if so, what enables such a convergence?

Neurosemiotics investigates signs and their intersubjective manifestations by bridging neurobio-
logical levels with explanations of “psychological” phenomena such as cognition, intentionality, and 
meaning. Across multiple levels of interactions, semantics is one of the semiotic dimensions more 
critically related to meaning. In this chapter, we use a tool of neurosemiotics to forge interdiscip-
linary links between the self with the semantics. We will focus on semantic analogies among neural 
hierarchies of the self and semantic hierarchies, as well as their respective and convergent timescales. 
We will enrich our proposals by providing insight from a computational model of vector semantic 
space operating on a temporal continuum of long and short timescales. Briefly, we aim to address vital 
questions about the self and semantics, charting their connections with a neurosemiotic approach.

Hierarchical layers of self

Contemporary research on the self spans diverse psychological, neural, and conceptual levels. 
Psychologically, the self impacts functions such as perception (Sui et al., 2012), reward (deGreck et al., 
2008; Yankoskaya et al., 2020), action (Frings & Wentura, 2014), emotion (Northoff et al., 2009), 
attention (Sui et al. 2013), and decision- making (Nakao et al., 2016, 2019). Neurally, the self (as well as 
these functions) has been associated with multiple brain regions, including cortical midline structures 
(Northoff et al., 2006), premotor and motor cortices (Hu et al., 2016; Qin et al., 2020), the insula (Enzi 
et al., 2009), the temporo- parietal junction (Qin et al., 2016, 2020), and the anterior cingulate cortex 
(Qin et al., 2016, 2020), as well as subcortical regions such as the amygdala, the ventral tegmental area, 
and the midbrain (deGreck et al., 2008). These findings have inspired specific conceptualizations of 
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the self. Following Mesulam (1998) and others, including McLean (1990) and Panksepp (1998), the 
brain’s cortical organization has been conceived in a layer- based way as in terms of radial- concentric 
organization. The radial- concentric approach is also reflected in the three- layer model by Feinberg 
and Northoff (Northoff et al., 2011), the assumption of a dynamic core (DePasquale et al., 2018), and 
the core– periphery hierarchy with a sensory- transmodal gradient (Margulies et al., 2016).

Despite some differences, these radial- concentric models share the assumption of gradient 
patterns –  that is, a continuum of different processes, regions, and functions. Gradient patterns can be 
conceived as hallmark features of neural hierarchies (Huntenberg et al., 2018; Margulies et al., 2016). 
Following these developments, we propose an analogous hierarchy of the self, equally typified by gra-
dient patterns (Qin et al., 2020). Such a hierarchical model of the self integrates and unifies different 
neural, psychological, and conceptual correlates by assuming a gradient pattern of different layers of 
self- processing –  that is, self- related, self- predictive, and self- referential processing (Northoff, 2007, 
2016). This view offers fruitful foundations to examine the key question tackled herein.

From the hierarchy of self to semantic similarity and relatedness

Do these layers of self- specificity converge with analogous semantic layers? Our main assumption is 
that the hierarchy of self converges with a semantic hierarchy of semantic similarity and relatedness. 
This, as we demonstrate, is possible through shared time windows. While the different layers of self 
can be distinguished by their different timescales (from short to long), semantic similarity and related-
ness (see below for definition) are also mediated by short and long timescales, respectively.

We therefore propose that timescales provide the link, if not the “common currency” (Northoff 
et al., 2020), of self and semantics, as both are mediated by the co- occurrence of short and long 
timescales. Our proposal lies at the interface between semantics, semiotics, and neuroscience. It is 
semantic in that we are concerned with meaning and how it is constructed. For that, we assume that 
timescales are key in constructing meaning, thus adopting a temporal view of semantics. Such a view 
invites semiotic insights, as the self deploys acts and objects that take on the role of “signs” through 
their integration within the timescales of the self. This touches upon neurosemiotics, as we assume 
these timescales are yielded by and based on the brain, as most basic features of our self.

These three layers of self- specificity constitute the core proposal to trace neurosemiotic links 
between the self and semantics, as discussed in the first and second parts. Drawing on structuralist 
research, we distinguish between semantic similarity and relatedness. After establishing these concepts, 
we derive further insights from a recent computational model of vector semantic space that associates 
semantic relatedness and similarity with different timescales, long and short. That, as outlined in the 
third part, provides the link to the self, which also operates on a temporal continuum of long and 
short timescales. Specifically, we postulate that the three layers of self (self- related, self- predictive, and 
self- referential) mediate the temporal continuum of semantic similarity and relatedness with their 
short and long- time windows.

Neural hierarchy of self: Different layers of self- processing

Layers and neural hierarchy of self

A recent large- scale meta- analysis on healthy subjects (Qin et al., 2020) integrated imaging studies 
that focused on different aspects of the self, namely inner body (interoceptive processes), outer body 
(extero- proprioceptive processes), and reflections on one’s own mental states. Different regions 
were associated with each of the three layers, and the regions of the lower layer were included 
within the next upper layer (see below for details). Together, this amounts to a spatial multi- layered 
nested hierarchical model of self (Qin et al., 2020), including an intero- exteroceptive self, an extero- 
proprioceptive/ cognitive self, and a higher- order reflective or mental self.
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The interoceptive self (i.e., how the brain processes and perceives the body’s inner organs and 
their input) was investigated through fMRI studies that measured interoceptive awareness, including 
cardiorespiratory, urogenital, and gastrointestinal awareness. That was complemented by fMRI studies 
on the extero- proprioceptive self, focusing on external bodily inputs, such as facial or proprioceptive 
input signals. Finally, studies were included that tapped on more cognitive aspects of self, employing 
trait adjectives or other stimuli so that subjects became aware of their own self as distinct from others 
(Figure 25.1).

The intero- exteroceptive self: Self- related processing

Based on the interoceptive studies, there is a more basic or lower layer of self, an interoceptive self 
that is related to regions that mostly process interoceptive signals – for example, the bilateral insula, 
the dorsal anterior cingulate cortex, the thalamus, and the parahippocampus, thus including mainly 
regions of the salience network (Menon, 2011; Qin et al., 2020). The fact that these regions were 
shared among the different kinds of interoceptive awareness (i.e., cardiorespiratory, urogenital, and 
gastrointestinal) speaks to their role in integrating different interoceptive inputs from various inner- 
body organs (Craig, 2009). One can thus identify an “interoceptive or vegetative self ” (Azzalini et al. 
2019); Tsakiris, 2017), “bodily self ” or “proto- self ” (Panksepp, 1998) as the most basic and funda-
mental layer of self. However, subcortical and cortical regions, such as the thalamus and the insula, 
don’t just process interoceptive inputs form the inner body. They also process exteroceptive stimuli 
from the outer environment (Craig, 2009). Given such intero- exteroceptive convergence, we charac-
terize this level of self as self- related processing (SLP) and an intero- exteroceptive self.

To better understand SLP, we need to distinguish between intrinsic and extrinsic self- specificity. 
Self- specificity does not come with the stimuli themselves –  it is not an intrinsic feature. For instance, 
even our name is not intrinsic to our self as our parents could have named us otherwise. The same 
is true of our face, which due to changes by external events or over the course of life, can change 
in major ways without affecting our self –  it is still my face despite all the changes. Therefore, self- 
specificity is an extrinsic rather than intrinsic feature of stimuli or contents.

The typical example is the rubber hand illusion. We can conceive another person’s hand or arm 
as our own body’s hand or arm –  this means that our own body’s hand is not an intrinsic feature of 
our self as my body’s own hand can also be related with a hand from another body (Tsakiris, 2017). 
This may be due mostly to complex processes that integrate the multiple interoceptive input streams 
with the extero-  and proprioceptive input streams (Tsakiris, 2017) in a seemingly purely stochastic 
way (Apps & Tsakiris, 2014, independent of their respective origin (Northoff, 2016). This results in 
an intero- exteroceptive self that endows self- specificity to interoceptive and exteroceptive inputs by 
integrating them in ways that are specific for the respective person (that is, his/ her self). The intero- 
exteroceptive self is thus, in its most basic way, an integrative self (Sui & Humphreys, 2015).

Predictive or cognitive self: Self- predictive processing

The next or middle layer of self includes what Qin et al. (2020) describe as proprioceptive or extero-
ceptive self. This can also be taken as a first instance of a cognitive self. FMRI studies focusing 
on external bodily- related inputs, such as facial or proprioceptive inputs, implicate regions like the 
bilateral insula, the inferior frontal gyrus, the premotor cortex, the temporo- parietal junction (TPJ), 
and the medial prefrontal cortex (MPFC). As these regions process inputs from different sensory 
modalities, they may be key not only for integrating extero-  and proprioceptive modalities, but also 
different exteroceptive sensory modalities –  that is, cross- modal integration. Despite their differences, 
these regions share the processing of proprioceptive inputs related to one’s own body –  one can thus 
speak of a “proprio-  or exteroceptive self, or embodied self ” (Panksepp, 1998; Tsakiris, 2017). This 
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may be conceived as the most basic instance of prediction, and thus of cognition. We therefore char-
acterize this level of self as self- predictive processing (SPP) or cognitive self.

SPP implies that self- specific contents can serve to predict or anticipate future stimuli and their 
respective contents. More specifically, self- specific contents serve as predicted inputs which are then 
compared with the actual inputs from the body and/ or the world. SPP has been mainly examined in 
paradigms involving either parts of the body, like faces (see Hu et al., 2016, for meta- analysis of self- 
face paradigms) and arms (as in the rubber hand illusion; Apps & Tsakiris, 2014); or, alternatively, the 
whole body (Blanke et al., 2015).

This concerns mainly the proprioceptive and exteroceptive stimuli/ contents of the body. SPP is 
based on the theory of predictive coding (Friston, 2010) as applied to the self (Apps & Tsakiris, 2014). 
Predictive coding claims that the degree of matching or difference between the predicted input and 
the actual input determines further processing and subsequent behavior (Friston, 2010, 2018; Apps 
& Tsakiris, 2014).

Applied to the specific case of the self, this results in the following: if the stimulus (i.e., the actual 
input) is different from the self- specific content that is the predicted input, then there will be a large 
prediction error indicating a discrepancy between the self- specific content and the stimulus –  the 
actual stimulus will then be endowed with a low degree of self- relatedness. If, in contrast, the self- 
specific content as predicted input matches strongly with the input stimulus, this results in a small 
prediction error with a high degree of self- specificity attributed to the stimulus. The underlying 
mechanism here is that the brain can predict the self based on multisensory integration and a prob-
abilistic representation of the self –  that is, self- contents (Apps & Tsakiris, 2014).

The predictive relation in SPP is based on the stochastic properties of the self as predicted input 
and the actual input. This is so because predictive coding and SPP are based on a stochastically based 
active inference from its present self- specific content as predicted input to actual inputs –  e.g., future 
stimuli (Seth, 2013; Friston, 2018; Moutoussis et al., 2014; Apps & Tsakiris, 2014). That also entails 
a rather lower- order processing mode, as such stochastically based inference and matching can well 
operate in at least a partially implicit and involuntary mode. That distinguishes SPP from the more 
explicit level of higher- order reflective or mental self- processing, self- referential processing as we will 
discuss in the next section.

Higher- order reflective or mental self: Self- referential processing

Finally, the highest layer of self (Qin et al., 2020) has been related to typical midline regions of the 
default mode network (DMN), like the medial prefrontal and the posterior cingulate cortices as well 
as the regions included in the second level (most notably, the bilateral TPJ) and the first level (the 
bilateral insula and thalamus). These regions seem to be recruited when one needs to represent one’s 
own self in mental states –  one can therefore also speak of a “mental or cognitive self ” (Qin et al, 
2020) or “extended self ” (Damasio, 2010).

Self- specific stimuli in these paradigms usually involve the subjects’ own name, his/ her face, or 
personally related trait adjectives (see above). Importantly, the self- specificity of these stimuli is given 
and presupposed and thus pre- existing (or ready- made): these experimental paradigms do not focus 
so much on the stimuli themselves but rather on the psychological content of the stimuli and how 
the subject refers to self-  and non- self- specific stimuli. These paradigms thus test for the difference 
between the subjects’ referring to self-  and non- self- specific stimuli –  the underlying processing mode 
is therefore described as self- referential processing (SRP) (Sui & Humphreys, 2015; Sui et al., 2012).

On the psychological level, SRP involves a variety of different psychological functions. Several 
self- paradigms require subjects to focus their attention on self- specific stimuli vs. non- self- stimuli 
(Sui et al., 2012; Sui & Humphreys, 2015). Since self-  and non- self- specific stimuli lead to different 
recruitment of attentional resources (Sui et al. 2013; Sui & Humphreys, 2015), attention may need 
to be considered yet another important cognitive feature required by self- reference. Moreover, other 
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cognitive self- paradigms require subjects to imagine self- specific contents versus non- self- specific 
contents in past, present, and future (d’Argembeau et al., 2010) –  self- reference here involves imagin-
ation of future and past, described as episodic simulation (Schacter et al., 2012).

Taken together, SRP can be characterized by the subjects’ reference to self- specific contents, hence 
the name self- referential. SRP is usually coined self- reflection (Hu et al., 2016;, Sui and Humphreys, 
2015, Northoff, 2016), as one reflects upon one’s own self and its self- specific contents by recruiting 
various cognitive functions. Other related concepts include self- certainty, self- recognition, and self- 
insight (see Philippi & Koenigs, 2014). While somewhat distinct, these terms are nevertheless unified 
by the fact that they all describe the subjects’ reference to self- specific psychological contents in a 
higher- order reflective or mental way.

Nested hierarchy of self: Different spatial and temporal scales are integrated

Together, these findings point to what Qin et al. (2020) describe as “nested hierarchy of self ”: regions 
of the lower level were included in the next higher level, where they were complemented by add-
itional regions, and so forth. For instance, the bilateral insula was present on the most basic level (i.e., 
the interoceptive self) and resurfaced, in completely independent imaging studies, in both second 
(i.e., proprioceptive self) and third (i.e., mental self) levels. The same holds true for the bilateral TPJ, 
which first showed in the intermediate layer of the proprioceptive self and resurfaced again in the 
third level of the mental self. Accordingly, each of the hierarchical levels of self recruits both overlap-
ping and separate regions compared to other levels amounting to spatial nestedness with a spatially 
nested hierarchy of self.

This conforms to nestedness as a spatial hierarchy of self: the lower layer regions are integrated 
within the more extended regions of the next upper layer and so forth. That conforms to an analo-
gous nestedness of different layers of self- processing: self- related processing is integrated and re- 
surfaces within SPP which, in turn, is integrated within SRP. Finally, on the more psychological level, 
this means that the intero- exteroceptive self is integrated and nested within the predictive self and 
that, in turn, it resurfaces within the higher- order cognitive reflective or mental self.

It shall also be noted that the spatial hierarchy of self in the brain is accompanied by a corresponding 
temporal hierarchy. The regions’ neural activity displays different timescales –  that is, intrinsic neural 
timescales (INT), which can be measured by the autocorrelation window (ACW). The upper layer 
regions, like the DMN, and midline structures show the longest ACW with long time windows opti-
mally suited for temporal integration (Golesorkhi et al., 2021). While the intero-  and exteroceptive 
regions exhibit much shorter ACW –  the temporal windows of their neural activity are thus better 
suited for temporal segregation than temporal integration (Golesorkhi et al., 2021).

Recent studies also associate the self with the brain’s INT. The higher the degree of self- specificity 
on the mental level, the longer the ACW and thus the higher the degrees of possible temporal inte-
gration (Huang et al., 2016; Kolvoort et al., 2020). This strongly suggests that the three layers of 
self- specific processing (self- relatedness, self- prediction, and self- reference) can also be distinguished 
in their temporal hierarchy: self- related processing involves shorter timescales which are nested and 
contained within the longer ones of SPP and ultimately within the longest ones of SRP. We are now 
ready to turn to semantics. We will see that semantics may also be viewed in terms of its timescales, 
which may provide an intrinsic connection between language/ meaning, brain, and self.

Self meets language: Semantic similarity and semantic relatedness

Semantic relatedness versus semantic similarity

For creatures living in the midst of a continuous flux of information, categorical perception is a 
fundamental surviving skill that has been carefully studied by psychology and the cognitive sciences 

9780367509163pre-end_pi-413.indd   3929780367509163pre-end_pi-413.indd   392 02-Aug-22   00:07:3602-Aug-22   00:07:36



393

The hierarchical semantics of self

(Harnad, 2003). In fact, determining that two things are identical, similar, or simply related is a com-
plex cognitive ability that has proven difficult to formalize in semantics (McRae et al., 2012; Schulte 
im Walde, 2020).

Take, for example, the pairs of words cup and coffee, and cup and mug. Which of these pairs has the 
stronger semantic similarity? We certainly employ the former pair in close proximity much more 
often than the latter pair, and the word cup primes the word coffee more strongly than the word mug. 
Thus, we are tempted to say that cup and coffee are similar words. Yet, cups and coffees are not at all 
similar, beyond the fact that they are both concrete entities. Cups and mugs, on the other hand, com-
monly share many attributes, such as shape, material, and function.

More precisely, semantic similarity between words A and B is commonly defined as having a high 
degree of substitutability, which usually entails that referents A and B share many attributes (Miller 
& Charles, 1991; Rapp, 2002; Schütze & Pedersen, 1993). Quite trivially, this explains why one can 
substitute some words with their synonym: synonyms are very similar words. On the other hand, 
words cup and coffee are said to be merely semantically related (rather than being similar), which usu-
ally entails that cups and coffees tend to co- occur in space and time. Again, this trivially explains the 
priming effect that word cup has on word coffee: one tends to perceive or interact with the referents 
within the same space- time window (Figure 25.2).

It is tempting to suppose that the distinction between true similarity and simple relatedness subsists 
only at the lexical level –  that is, as relations between words. However, this semantic distinction 
actually extrapolates up to the behavioral and neural sciences, in the distinction between taxonomic 
versus thematic knowledge (Merck et al., 2019; Mirman et al., 2017; Schwartz et al., 2011). For 
example, given task X, you could determine that tools A and B are similar enough to be substitutable 
in the performing of that task. Knowing that tool A may substitute tool B maps semantic similarity to 
taxonomic knowledge, while knowing that both A and B relate to task X maps semantic relatedness 
to thematic knowledge. Alternatively, on a logical view, one could decide to adopt either a dog or a 

Figure 25.2 2D semantic map

This figure shows four objects (cup, mug, coffee, tea) from a single point of view (POV). Things along the 
semantic relatedness axis (blue) tend to co- occur within the same spatiotemporal window. Things along the 
semantic similarity axis (orange) tend to share many attributes and functions, hence the possibility of substitution. 
The radial distance from the POV alludes to the likelihood of each object given the respective context. See e- 
book for a full- color version of this figure.
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cat for home; in this case, semantic similarity (and substitutability) maps to the logical operator or, 
and semantic relatedness (and co- occurrence) maps to and, as in cat dog∧( ) ∨ ∧( )home home . A more 
general cognitive- semiotic process may be found underlying these mechanisms helping us making 
sense of the world along the distinction of semantic relatedness and similarity.

Finally, the distinction of semantic relatedness versus semantic similarity can also be viewed within 
the larger context of the self. The self provides references or a standard against or relative to how both 
semantic relatedness and semantic similarity are perceived. For instance, the self of a coffee addict will 
certainly draw extremely close semantic relationship of coffee and cup. In contrast, the self of some-
body who hates and does not drink coffee at all but tea may rather draw close semantic relation of 
cup with tea while, at the same time, perceiving large semantic distance –  that is, low relatedness of 
cup and coffee. Hence, the degrees of semantic relatedness and, ultimately, also of semantic similarity, 
strongly depend upon the context like on the self in which they operate.

Isomorphism of structural and semantic relations

Back to lexical semantics, a first step in this direction is to consider similarity and relatedness from 
the structural point of view (Erk, 2016; Peirsman, 2008; Sahlgren, 2008; Schulte im Walde, 2020). 
A bit like they are in mathematics, structural relationships in semantics should be understood as 
those relationships between words that occur by virtue of their position in a certain phrase or context, 
regardless of their content or referent. Studying word meaning without taking into account their 
referent may seem like a difficult task, but it turns out to be the essential requirement for machines 
to understand natural language, as we will see later. An example should suffice to clarify this point. 
A common task in many tests of second- language proficiency is for participants to be asked to guess 
(“fill in the blank”) the most suitable word given a certain context (Landauer & Dumais, 1997). In 
English, sentences follow the structure subject– verb– object (SVO). So, if given the following sentence:

“My grandfather _ _ _ _  a successful lawyer,”

the verbs was, is, and will be would surely come to mind, although, with less probability, other 
verbs are also possible, such as met and saw. Notably, this prediction is based entirely on the 
structural properties of the sentence. In fact, we could replace all of its words and the pre-
diction would remain the same:

“Her grandpa _ _ _ _  an unsuccessful doctor.”

Clearly, the “horizontal” SVO structure allows for this kind of “vertical” substitution. 
However, finer- grained, nested structures also preserve this lexical property. The words was, 
is, and will be are merely conjugations of the verb to be, and conjugation is a typical example 
of vertical substitution. Other examples include pronouns (my, her), and semantic classes 
such as synonyms (grandfather, grandpa), co- hyponyms (lawyer, doctor), and antonyms (successful, 
unsuccessful).

More precisely, words having this “vertical” relationship within a linguistic structure are said to be 
paradigmatic parallels or to have a paradigmatic relation. Conversely, words having a “horizontal” 
relationship within a linguistic structure are said to be syntagmatic associates or to have syntagmatic 
relation. And now we can better understand the distinction between true semantic similarity and 
simple relatedness: Similar words imply an underlying vertical, exclusive, paradigmatic relation, and 
hence the possibility of substitution. Likewise, related words imply an underlying horizontal, inclu-
sive, syntagmatic relation, and hence the spatiotemporal co- occurrence. Together, one can speak of 
isomorphism of structural and semantic relations (Figure 25.3).
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From isomorphism to structuralism: The self is part of sociocultural structure

Isomorphism of meaning and structure has only recently been the subject of study (Erk, 2016; 
Jezek, 2016; Peirsman, 2008; Sahlgren, 2008; Schulte im Walde, 2020). Its historical origins can be 
traced to Ferdinand de Saussure’s linguistic structuralism (de Saussure, 1922), Wittgenstein’s idea of 
word meaning as usage (Wittgenstein, 1953), and especially to the so- called distributional hypothesis 
developed by Harris (1954).

In a nutshell, this hypothesis attempts to explain the meaning of words (i.e., semantics) as a function 
of context (i.e., structure), and has been stated and restated in various ways over time: “Difference 
of meaning correlates with difference of distribution,” “You shall know a word by the company it 
keeps,” “Words which are similar in meaning occur in similar contexts,”, and so on. The idea is that 
you do not necessarily need to know the content or referent of a word to infer its meaning, so as long 
as you know the context (or “company”) it is usually found in. For example, maybe you have never 
had seen an aardvark, but if you read the following sentences:1

“The long- eared aardvark slept all day and ate insects all night.”
“With its rabbit- like ears and pig- like snout, the aardvark is an interesting looking 

animal.”
“Though it is a small mammal, the ant- eating aardvark finds its closest relative in the 

elephant.”

Figure 25.3 Structural and semantic relations along the same linguistic plane

Similar words have a “vertical” relation of substitutability because they are in a paradigmatic relation. Conversely, 
related words have a “horizontal” relation of co- occurrence because they are in a syntagmatic relation. The words 
in gray make clear that one and the same linguistic structure can serve as context to several similar and related 
words. See e- book for a full- color version of this figure.
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You could probably guess that an aardvark is an animal similar to an anteater but with long ears –  
example adapted from Lenci (2008). In fact, the distributional hypothesis may explain the fast rate 
at which we are able to learn new words simply by reading (Landauer & Dumais, 1997). Moreover, 
acquiring semantic knowledge from distributional information may be particularly important in the 
case of abstract words, for which no external referent exists (Frassinelli et al., 2017). One can see that 
linguistic structuralism converges here more or less with what is described as distributional semantics, 
opening new avenues for mathematical and computational formalization of semantic similarity and 
relatedness. These will be exploited in the next part.

This view of semantic relatedness and similarity carries important consequences for conceiving 
the relationship between language and the self. Structuralism conceives semantic relatedness and 
similarity according to their context, the spatiotemporal features of which are key in especially deter-
mining the network of semantic relatedness. The self is, by itself, part of that context; importantly, 
though, it is not to be identified or equated with the context. The self provides a perspectival view of 
that context while being itself only part or one aspect of that context. Hence, the above figure may 
need to be enlarged by drawing the context in which the relation of self to semantic relatedness and 
similarity occurs.

Back to our example with the coffee and tea drinker, now imagine that the coffee addict is a 
Chinese man having grown up in a predominant tea culture; this will certainly affect both his self 
(Han & Northoff, 2008) and how he perceives the semantic relatedness of cup to both coffee and 
tea. One may guess that this will be different by his counterpart in, for instance, Italy, where coffee is 
much more often drunk than in China. The same, conversely, applies to the tea lover. Also, an Italian 
in China may want to drink coffee from a gaiwan or a chawan (both of which are typical Chinese 
bowls for preparing and drinking tea) because of the perceived semantic similarity to a coffee cup in 
Italy. In contrast, one cannot really imagine that a Chinese would associate such semantic similarity 
with a coffee cup since they relate gaiwan and chawan exclusively to tea drinking.

Accordingly, in addition to the self, the introduction of structuralism allows consideration of the 
self by itself as part of the more general and larger structure of the environment, a spatiotemporal 
structure. The latter, in turn, provides the ground or condition for establishing and constituting 
different degrees of semantic relatedness and similarity. The self, as discussed in the first part, may 
then be conceived primarily in terms of those structural relations or networks. It is primarily spatio-
temporal, constituting and interweaving itself within the complex network of semantic relatedness 
and similarity of the respective cultural, social, and environmental context.

Computational mechanisms: Vector semantic space

A most interesting aspect of linguistic structuralism in the distributional hypothesis is that it can be, and 
has been, very successfully operationalized using relatively modest mathematical and computational 
means (Erk, 2012; Landauer & Dumais, 1997; Lenci, 2018; Turney & Pantel, 2010). This has made it 
possible to empirically test the capacity of the distributional hypothesis to model word meaning, and 
the semantic relations of similarity and relatedness, as well as other finer- grained semantic relations. 
The main idea behind these models is to map the semantic space of natural language to a math-
ematical vector space, so that to each word a corresponds an N- dimensional vector 



a encoding its 
meaning in a distributed fashion. Ideally, each dimension of the semantic vector space should encode 
some feature of word meaning (e.g., abstractness, concreteness). Although in practice it is not pos-
sible to be sure that that is what actually happens, semantic vector spaces do offer a clear semantic 
interpretation: vectors representing similar words are close in space. In other words, in a vector space, 
the semantic similarity of words i and j is a function of the distance between word vectors 



i  and 


j :

similarity i j
i j

,
,

( ) = ( )
1

distance
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The most commonly used distance metric is cosine, and a typical application consists in finding the 
k- nearest neighbors of a given word. For example, the five nearest neighbors of the noun lawyer in 
this2 vector semantic space (Kutuzov et al., 2017) are (in order of descending cosine score): attorney, 
jurist, barrister, solicitor, and politician. However, keep in mind that the k- nearest neighbors of a word are 
not necessarily those words that could be considered the most similar by human judgment. Rather, 
the k- nearest neighbors are those words with which the target word maintains the strongest paradig-
matic relation, and that therefore could reasonably substitute it in a given sentence. This is perfectly 
in line with the idea that distributional semantics regards words simply as positions in a structure, 
and thus the vectors encode word meaning (or content) as a function of distributional (or structural) 
information. But where does that information come from? (Figure 25.4).

Vector semantic models are created from large collections of texts (in the order of billions of 
words) using either of two methods: by counting co- occurrence frequencies (Landauer & Dumais, 
1997; Lenci, 2018; Turney & Pantel, 2010), or by training a neural network to predict masked words 
in a sentence (Collobert & Weston, 2008; Devlin et al., 2018; Mikolov et al., 2013; Pennington et al., 
2014). Despite some negligible differences in performance (Baroni et al., 2014; Lenci, 2018), both 
methods are based on the same principle (e.g., the distributional hypothesis), and have been proven to 
be mathematically equivalent (Levy & Goldberg, 2014; Levy et al., 2015) –  that is, either an explicit 
(counting models) or implicit (predictive models) factorization of a matrix of co- occurrence fre-
quencies. For simplicity, here we will only deal with “predictive” models.

Figure 25.4 3D semantic vector space

Similar words (mug and cup, car and bike) tend to be close to each other in space. One may interpret the k- nearest 
neighbors of a word as a cluster representing a semantic family of some kind. Keep in mind that real semantic 
vector spaces have hundreds of dimensions (typically 100 or 300), so words can be close and further from each 
other along dimensions hard to interpret. See e- book for a full- color version of this figure.
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Converging semantics, brain, and self through their timescales

Vector semantic space: Short-  and long- time relations shape  
similarity and relatedness

We are now confronting the hardest part: taking into view the link between self and semantics. For 
that, we first go back to the semantic vector space itself and how it can be trained to yield semantic 
similarity and relatedness. Training a distributional model is a self- supervised task. Simplifying it quite 
a bit, a large collection of text is randomly segmented into training examples according to a so- called 
context window, the size of which (1 ≤ N) determines the length of the training examples (2N +  1). 
For each training example, the distributional model learns to predict the word at the center, which 
is masked, based on the surrounding words –  that is, based on the context. Essentially, the task is very 
similar to the “fill in the blank” exercise that was presented above, except that here the model can 
take into account only N number of words to the left and to the right of the mask (rather than the 
entire sentence); that is, it can only “see” the context window around the target word (Figure 25.5).

Intuitively, you could think that a longer context window would yield more accurate predictions, 
and consequently better semantic vector spaces. Note that semantic vector spaces refer primarily to 
positional distance in space which, as one can assume, translate into temporal distances in speed: the 
more distant two words are “located” from each in the semantic vector space, the more distant their 
respective positions in time. Hence, the spatial distances in the semantic vector space may translate 
into corresponding distances in time –  see also Golesorkhi et al. (2021) for an analogous example 
of temporal and spatial convergence in brain topography. The concept of window, as used in the 
following sections, can thus be conceived in both spatial and temporal terms.

Extensive experimentation has shown that the size N of the context window actually determines 
the type of structural information that the model is able to capture (Agirre et al., 2009; Kiela & Clark, 
2014; Kiela et al., 2015; Lapesa et al., 2014; Lapesa & Evert, 2017; Levy & Goldberg, 2014; Turney, 
2012). Models trained on smaller windows (N =  1, 2) produce semantic vector spaces that capture 
or encode the paradigmatic relations between words, and thus perform best on semantic similarity 
tasks (in which, clearly, human judgment is the gold standard). Conversely, models trained on larger 
windows produce semantic vector spaces encoding syntagmatic relations, and thus perform best on 
semantic relatedness tasks. This result is important not only because it allows to distinctly model 

Figure 25.5 Example of a context window

This figure shows a context window of size n equals 4 around a masked word (hobbit) in a sentence. Keep in 
mind, though, that a real training example consists only of the words within the context window, and that 
training examples are kept within sentence boundaries, such as full stops in English. See e- book for a full- color 
version of this figure.
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semantic similarity and semantic relatedness in a principled manner, but also because it points towards 
continuity of the semantic space rather than strict polarity, in which semantic similarity appears to be 
a constrained or “distilled” form of semantic relatedness.

The precise reason for this strong correlation of size of the context window with the type of 
structural (and semantic) information encoded in the vector spaces remains unknown. It could 
be partly explained by the fact that small windows best capture the immediate syntactic function 
of a word in a certain linguistic context, whilst larger windows tend to associate words by topic 
(Erk, 2016).

However, even if distributional models were able to overcome the noise produced by the long- 
range syntactic dependencies commonly found in language, this explanation induces a gratuitous 
linguistic bias into the hypothesis, which does not allow to extrapolate the structural approach 
beyond word meaning. After all, semantic knowledge in humans is grounded on much more than 
just syntactic, combinatorial, or distributional schemes (Andrews et al., 2009; Carota et al., 2017; 
Pulvermüller, 2018; Vigliocco et al., 2004, 2009). So, the fact that vector spaces are able to model 
semantic knowledge only from a structural proxy of language demands deeper analysis and suggests 
that meaning may actually emerge from structure itself, while the strong correlation of window size 
with type of structural relation suggests that detecting nested structures requires a variety of infor-
mation processing windows.

Self, brain, and environment are predispositions of semantics

Together, the semantic vector space seems to provide a continuum of semantic relatedness and simi-
larity (as distinguished from their polarity or dualism). Yet, where and how is such continuum coming 
from? What is the context for such continuum? This leads us back to the self and its respective envir-
onmental context.

The self provides a perspectival context for semantic relatedness and similarity: the continuum of 
semantic relatedness and similarity is viewed from and within a particular perspective, the perspec-
tive of the self as a particular person. That introduces differences in how the continuum of semantic 
relatedness and similarity is viewed: depending on the angle or perspective, the same two words, like 
cup and coffee, can be viewed to stand in different degrees of semantic closeness or distance in their 
semantic relatedness.

The self thus provides a perspectival context for the continuum of semantic relatedness and simi-
larity. Yet where is the context itself, independent of its perspectival nature, coming from? This leads 
us to the environment –  the cultural, ecological, and social context. We already argued that the coffee 
and tea lovers may view the degree of semantic relatedness of cup, tea, and coffee depending on their 
respective cultural context. Hence, it is ultimately the relation of the self to its respective environ-
mental context that determines the perspectival context as a setting for the continuum of semantic 
relatedness and similarity.

The semantic structure (i.e., the continuum of semantic relatedness and similarity) is in itself 
deeply embedded and anchored within the structural relation of self and environment. That struc-
tural relation of self– environment can, by itself, be traced to the relation of the brain and environ-
ment as the brain provides the basis for the self. The brain– environment relation as a basis for the 
self– environment relation is determined in spatiotemporal terms: the timescales of the world/ envir-
onment relate to the timescales of the brain and ultimately the self. The self ’s timescales, in turn, may 
provide the temporal windows that map semantic relatedness and similarity on a temporal continuum 
of short and long windows.

In sum, we can now see how the vector-  and window- based temporal determination of the con-
tinuum of semantic relatedness and similarity is related to the self and its own brain- based intrinsic 
temporal relationship with the environmental context. Like the self and the brain by themselves 
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(Northoff et al., 2020), semantic relatedness and similarity are intrinsically linked to the timescales of 
the environment as mediated through self and brain. It is because of such primarily temporal nature 
of our semantics that we can ascertain meaning (i.e., semantics) to words in terms of their similarity 
and relatedness.

Losing such context (i.e., our sense of self or the environment) means losing the temporal struc-
ture of semantics. This is what we mean when we say that the intrinsically temporal nature of self, 
brain, and environment provides a necessary condition or predisposition for semantics featured by the 
long and short windows of semantic relatedness and similarity.

From the hierarchy of self to the temporal continuum of semantic  
similarity and relatedness

We have so far treated the self as homogenous in the context of semantics. Yet that is not supported 
by the empirical data described in the first section. We differentiated self- related, self- predictive, and 
self- referential processes, each associated with different functions (intero- exteroception, cognitive, 
and higher- order- reflective dimensions, respectively). This raises the question of how these layers of 
self are related to the temporal continuum of semantic relatedness and similarity.

The three layers of self can be distinguished on spatial and temporal grounds. Following the meta- 
analysis by Qin et al. (2020), the lowest layer, interoceptive and self- related processing, is spatially 
restricted to subcortical regions and insula as cortical region; this means the spatial extension of the 
neural processing of interoceptive inputs is rather restricted to small set of regions. The same applies 
temporally as the timescales are rather short here –  that is short- time windows as reflected in the 
short ACW of these regions.

What does the spatial and temporal restriction of the lowest layer of self imply for its semantic 
processing? We saw that semantic similarity is related mainly to short spatial, and thereby temporal, 
windows in computational models. Short- time windows allow for temporal precision, which is exactly 
what is needed when determining semantic similarity: two different words need to be precisely 
compared and mapped onto each other, which requires the temporal precision provided by short- 
time windows. Albeit tentatively, we can see that short- time windows of the intero- exteroceptive 
layer of self- related processing may be ideally suited to allow for semantic similarity.

How about semantic relatedness? This requires longer- time windows. Those longer- time windows, 
as well as more spatial extension, are more prevalent at the opposite end of the hierarchy of self, the 
mental self with its self- referential processing recruiting longer timescales and large parts of cortical 
regions, the DMN. Given such especially temporal expansion, we assume that the longer timescales 
of the mental self and its self- referential processing are ideally suited to mediate semantic relatedness 
as that, per vector space, require longer- time windows.

Together, albeit tentatively, we assume that the brain’s temporal (and spatial) hierarchy of self is 
related to the structural relation of semantic relatedness and similarity. Lower layers of the hierarchy of 
self with this more bodily- based self are more suited to process semantic similarity, while an increasing 
degree of semantic relatedness may be taken into view in the higher layers of the hierarchy of self, 
the mental self.

Importantly, what mediates the relationship of self and semantics is the temporal scale (and 
spatial ranges) with the transition of the self ’s short and long timescales providing the brain- 
based temporal continuum of semantic similarity and relatedness. The different durations of the 
timescales on the three layers of self allow for integration of different signs by means of which 
distinct meanings are constructed. We can thus see how semantics, which focuses on meaning, 
converges here with neurosemiotics, the neural basis of signs, through the timescales of our brain- 
based self (Figure 25.6).
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Conclusion

We are confronted with an enormous psychological, neural, and conceptual diversity of self in 
current neuroscience and psychology. We here extend the previously proposed “Basis Model of 
Self- specificity” (Northoff, 2016) in a hierarchical way by assuming different layers of self- specific 
processing including self- related, self- predictive, and self- referential processing. Considering recent 
results in semantics, we postulate that the hierarchy of self is related to a more or less corresponding 
hierarchy of semantics along the lines of semantic similarity and relatedness.

Importantly, what mediates the self- semantic relation, as we postulate, are temporal features: lower 
layers of self are mediated by the brain’s short timescales, which are ideal for yielding semantic simi-
larity, while higher layers of self exhibit longer timescales that process semantic relatedness. Accordingly, 
we assume convergence of the brain- based self with semantics: through the active deployment of the 
self ’s neural timescales, different linguistic inputs are integrated into different meaningful wholes. 
What connects brain, self, and semantics/ semiotics are, thus, their timescales – a potential “common 
currency” between them (Northoff et al., 2020).

Notes

1 https:// words inas ente nce.com/ aardv ark- in- a- sente nce
2 http:// vect ors.nlpl.eu/ expl ore/ emb eddi ngs/ en

Figure 25.6 Layers of self

Layers of self (left and right) are related to the temporal continuum of semantic similarity and relatedness (middle 
cone). The conical shape recalls the radial perception in Figure 25.2. Semantically, it represents the fact that as 
the context window increases, the perception of semantic relatedness also increases. In relation to the self, it 
represents the fact that longer timescales mediate the more mental self, which is semantically related to semantic 
relatedness rather than semantic similarity.
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