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Multiparametric mapping of white matter microstructure
in catatonia
Jakob Wasserthal1,2, Klaus H. Maier-Hein 1,3, Peter F. Neher1,2, Georg Northoff4, Katharina M. Kubera5, Stefan Fritze6, Anais Harneit7,
Lena S. Geiger7, Heike Tost 7, Robert C. Wolf 5 and Dusan Hirjak6

Catatonia is characterized by motor, affective and behavioral abnormalities. To date, the specific role of white matter (WM)
abnormalities in schizophrenia spectrum disorders (SSD) patients with catatonia is largely unknown. In this study, diffusion
magnetic resonance imaging (dMRI) data were collected from 111 right-handed SSD patients and 28 healthy controls. Catatonic
symptoms were examined on the Northoff Catatonia Rating Scale (NCRS). We used whole-brain tract-based spatial statistics (TBSS),
tractometry (along tract statistics using TractSeg) and graph analytics (clustering coefficient—CCO, local betweenness centrality—
BC) to provide a framework of specific WM microstructural abnormalities underlying catatonia in SSD. Following a categorical
approach, post hoc analyses showed differences in fractional anisotrophy (FA) measured via tractometry in the corpus callosum,
corticospinal tract and thalamo-premotor tract as well as increased CCO as derived by graph analytics of the right superior parietal
cortex (SPC) and left caudate nucleus in catatonic patients (NCRS total score ≥ 3; n= 30) when compared to non-catatonic patients
(NCRS total score= 0; n= 29). In catatonic patients according to DSM-IV-TR (n= 43), catatonic symptoms were associated with FA
variations (tractometry) of the left corticospinal tract and CCO of the left orbitofrontal cortex, primary motor cortex, supplementary
motor area and putamen. This study supports the notion that structural reorganization of WM bundles connecting orbitofrontal/
parietal, thalamic and striatal regions contribute to catatonia in SSD patients.
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INTRODUCTION
Catatonia is a psychomotor syndrome characterized by hypo- and
hyperkinetic motor phenomena, affective symptoms, and dis-
orders of behavior [1–8]. Magnetic resonance imaging (MRI)
studies showed that catatonia in schizophrenia spectrum dis-
orders (SSD) is associated with aberrant frontoparietal, thalamic
and cerebellar networks [9–14]. Since catatonia is very likely to be
associated with dysconnectivity of large-scale neural networks
[15], dysconnectivity may be traced to abnormal white matter
(WM) microstructure. At least two lines of evidence support this
claim: First, numerous case studies have showed that WM
abnormalities in the context of immune dysregulation can lead
to catatonia [16]. Second, altered myelin-specific gene expression
and neurochemical aberrations (e.g., low-grade inflammation/
neurodegeneration) are associated with more severe catatonic
symptoms [17, 18].
Here, we combined three distinct diffusion-tensor imaging (DTI)

analysis techniques with an established diagnostic approach
[10, 11] to specifically investigate WM microstructural alterations
which are related to catatonia in SSD. First, we used a whole-brain
voxel-wise analysis of fractional anisotropy (FA) in catatonia using
Tract-Based Spatial Statistics (TBSS) [19]. TBSS projects all subjects’

diffusivity data onto a mean FA tract skeleton, before applying
voxel-wise cross-subject statistics. However, coregistration algo-
rithms used in voxel-based analysis have difficulties in accurately
aligning fiber tracts due to variation in tracts size and shape
[20, 21]. TBSS tries to reduce this problem by calculating statistics
on a “voxel skeleton” but is still affected by coregistration
inaccuracies. Therefore, in a second step, we used a recently
developed comprehensive approach (TractSeg) [22] which allows
an accurate reconstruction of fiber tracts in subject space, thus
avoiding the problem of inaccurate coregistration of tracts with
varying size and shape. We performed statistical analyses by
evaluating FA along each of the 15 neurobiologically plausible
tracts (often referred to as Tractometry) which represent
important connections between sensorimotor regions [corpus
callosum (rostrum (CC 1), genu (CC 2), rostral body (CC 3), anterior
midbody (CC 4), posterior midbody (CC 5), isthmus (CC 6),
splenium (CC 7)), corticospinal tract (CST), thalamo-premotor
(T_PREM), striato-fronto-orbital (ST_FO), and striato-premotor
(ST_PREM)]. Third, we analyzed network variations in the structural
connectome. We employed the concepts of local network
clustering coefficient (CCO) and local network betweenness
centrality (BC) to pursue hypothesis-driven and locally specific
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analyses of network indices assessed for psychomotor regions
[orbitofrontal cortex (OFC), primary motor area (M1), supplemen-
tary motor area (SMA), superior parietal cortex (SPC), thalamus,
nucleus caudatus and putamen] identified by previous MRI studies
[9–14] and case reports [23, 24] on catatonia in SSD. While CCO is
defined as a ratio of total number of edges among the neighbors
of the node (region) to the total number of edges that can exist
among the neighbors of the node per node [25], BC of a node
represents the number of shortest paths from all vertices to all
others that pass through that node [26].
This study had two main objectives: First, conducting a

categorical approach [i.e., comparing SSD patients with and
without catatonia according to Northoff Catatonia Rating Scale
(NCRS) [27]], we predicted that there will be a difference in TBSS-
specific FA, the above-mentioned 15 tracts connecting sensor-
imotor regions, and graph-based large-scale network measures of
psychomotor regions (CCO and BC of OFC, M1, SMA, SPC,
thalamus, nucleus caudatus, and putamen) between patients with
and without catatonia and healthy controls (HC). Second,
following a dimensional perspective on catatonia [28, 29], we
supposed that distinct dimensions of catatonia—i.e., motor,
behavioral and affective domains—will be significantly associated
with TBSS-specific FA, the above-mentioned 15 tracts and graph-
based large-scale network measures of psychomotor regions.

METHODS
Patients and healthy controls
We examined a total of 111 right-handed [30] patients satisfying
DSM-IV-TR [31] criteria for schizophrenia (n= 104) or schizoaffec-
tive disorder (n= 7) [10, 11] and 28 HC. Inclusion and exclusion
criteria are listed in the supplement. The local Ethics Committee
(Medical Faculty at Heidelberg University, Germany) approved the
study. Written informed consent was obtained from all SSD
patients and HC after all aims and procedures of the study had
been fully explained.

Clinical assessment
All patients were recruited and examined during inpatient
treatment within one week after partial remission of psychotic
symptoms. The duration between psychometric testing, motor
assessment and MRI examination was less than 3 days. At the time
of the psychometric testing, motor assessment and MRI examina-
tion, none of the SSD patients had taken benzodiazepines or
anticholinergic agents and all but five (5/111= 4.5% antipsycho-
tic-free) patients were on stable antipsychotic medication for at
least two weeks. Daily doses of antipsychotic medication were
converted to olanzapine equivalents (OLZ) [32]. For the assess-
ment of catatonic symptoms we used the German version of the
NCRS [27]. The scale measures the presence and severity of motor
(13 items), affective (12 items), and behavioral (15 items) catatonic
symptoms.
In a first step, we followed a categorical approach, using the

NCRS criteria [27] to cover all three categories of catatonia and to
identify a clear cut‐off to distinguish subjects with (NCRS total
score ≥ 3; at least 1 point in the three different symptom
categories; i.e., motor, behavioral, and affective) and without
(NCRS= 0) catatonia (presence vs. absence) [33]. Thirty out of 111
SSD patients (27%) were defined as having catatonia (NCRS total
score ≥ 3). The patient control group consisted of twenty-nine
right-handed SSD patients defined as not having catatonia (NCRS
total score= 0) matched for age, gender, education and OLZ
equivalents. This approach allowed us to investigate neural
underpinnings of catatonia controlling for the effects of SSD
[33, 34]. The HC group consisted of 28 right-handed participants
matched for age and gender. In a next step, we followed a
dimensional approach and identified forty-three out of 111 SSD
patients (38,7%), which were defined as having catatonia

according to DSM-IV-TR [1 motor and at least 1 other symptom
(behavioral or affective)] [31].
While the diagnosis of catatonia according to NCRS is rather

conservative in comparison to other criteria, the dimensional
approach using the DSM-IV-TR allowed us to identify a larger
group of catatonic patients. In this group, we used the NCRS
subscale scores to determine the neurobiological continuum in
SSD patients with a broader spectrum of the catatonic syndrome
(low and high severity) truly reflecting the dimensional view on
catatonia [31].

MRI acquisition
MRI scans were acquired at CIMH on a 3.0 Tesla Magnetom TIM
Trio MR scanner (Siemens) equipped with a 32 channel multi-array
head-coil. Technical details on MRI sequences are provided as
Supplementary Information.

Image processing
Preprocessing. T1 images were skull stripped and bias field
corrected using FSL [35, 36]. DWI images were denoised (MRtrix
dwidenoise) [37], corrected for Gibbs ringing artifacts (MRtrix
mrdegibbs) [38], corrected for eddy currents and head motion
(FSL eddy) [39], corrected for bias field (MRtrix dwibiascorrect) [40]
and brain masked (FSL bet) [41]. DWI images were rigidly
registered to MNI space using FSL FLIRT [42]. T1 images were
rigidly registered to the DWI images. Finally, all images were
manually inspected and only images were kept where this
preprocessing pipeline was successful.

Data analysis. TBSS: To detect global patterns of WM variations,
we followed the recent recommendation regarding TBSS [43] and
aligned all subjects to a common space using tensor-based
registration with DTI-TK (http://www.nitrc.org/projects/dtitk). We
used TBSS [19] to build a common WM skeleton from FA images
derived from the co-registered tensor images. We then mapped all
dMRI measures onto the skeleton using the standard FSL TBSS
commands. The design matrix of the general linear model was set
up to identify differences in the voxel-wise TBSS-specific FA
between SSD patients with and without catatonia and HC. As
recommended, we used the “randomise” command for Monte
Carlo permutation tests with n= 5000 repetitions and a con-
fidence threshold of p < 0.05 for the corrected threshold-free
cluster enhancement (TFCE) significance maps [44]. Additionally,
for each of the bundles between sensorimotor regions (CC 1–7,
CST, T_PREM, ST_FO, and ST_PREM) which were also used for the
Tractometry analysis we averaged the FA values of the TBSS WM
skeleton within the bundle mask (as generated with TractSeg).
These average FA values were used for additional between-group
analyses along the lines of Kelly and colleagues [45].
Tractometry: Along-tract FA statistics (Tractometry) were

obtained using TractSeg [22, 46]. TractSeg generates bundle-
specific tractograms and then evaluates the FA along 100 points
of each tract (more details are provided as Supplementary
Information). Statistics such as correlations and T-tests can be
calculated point-wise along these 100 points. We used the
permutation-based multiple comparison correction (with n=
5000 repetitions) published by Nichols and Holmes (2001) [47, 48]
to appropriately adjust p values given the correlation structure of
the data. We used an uncorrected confidence threshold of p < 0.05
(the corrected p value is different for each bundle depending on
its correlation structure). Controlling for covariates was done by
regressing them out of the data before calculating the t-test
(categorical approach) or correlation (dimensional approach).
Large-scale network analysis: Whole-brain tractography was

performed following the recommendations given by the evalua-
tion of fiber tracking algorithms [49] (details are provided as
Supplementary Information). While tractography-based
approaches typically analyze specific structures of interest, a
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graph-based large-scale network analysis of the connectome can
yield comprehensive measures of larger-scale architectural pat-
terns in the brain [25, 50]. To construct a graph representation, the
T1 image was used to create a parcellation of the brain using
FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) [51–53] and the
atlas by Destrieux [54–56]. Details on the FreeSurfer processing
stream are provided as Supplementary Information. Connectomics
networks were consecutively constructed based on both the
tractography result and the brain parcellation using MRtrix [57].
We have computed the normalized CC and BC for 7 nodes (OFC,
M1, SMA, SPC, thalamus, nucleus caudatus, and putamen) located
in both hemispheres. A nominal significance threshold of p ≤ 0.05
was defined, and p values of the identified associations were
corrected for the number of tested nodes in our main analysis
using the Bonferroni method. The corrected threshold was set to
p= 0.0006 [α= 0.05/80 tests (5 nodes × 2 parameters × 2
hemispheres × 4 NCRS scores)]. For completeness, uncorrected
findings at p < 0.05, will be also reported.

Statistical analyses
The following statistical tests, including the covariates, were used
for all the above-mentioned data analyses [TBSS (voxel-wise and
aggregated FA), Tractometry and Large-scale network analysis]
(for overview see Fig. 1): Following the categorical approach, we
controlled for PANSS total score and BARS global score, because
the two study groups differed significantly in these two variables.
Duration of illness (DOI), Packyears (PY; number of cigarettes as a
potential confounding factor), SAS and AIMS total scores were
not included as covariates since (1) these variables did not differ
significantly (all p values > 0.05) between the two groups and (2)
there was no significant correlation between NCRS total score
and SAS total score (r= 0.318; p= 0.087), AIMS total score (r=
0.314; p= 0.091), DOI (r=−0.037; p= 0.846) and PY (r=−0.185;
p= 0.329) in SSD patients with catatonia (n= 29). Still, we
performed supplementary between-group analyses using PANSS
total score, BARS global score, SAS total score, AIMS total score,
DOI, and PY as covariates (see Supplementary Table 3 and
Supplementary Fig. 4 for results). In the next step, we also
included an additional between-group ANCOVAs [controlling for
(i) age, gender, education and OLZ and (ii) age and gender]
comparing catatonic and non-catatonic SSD patients with 28
right-handed HC matched for age [mean= 35.14 years; SD=
14.18), F(2, 84)= 0.93, p= 0.39] and gender (20 males, 8 females)
(Table 1). For the dimensional approach in catatonic patients

(two-tailed partial correlation) we controlled for age, gender,
medication and PANSS total score.
The selection of different covariates for the categorical and

dimensional approaches is based on different hypotheses, the
recommendations of the neuroimage community [58, 59], the
influence of individual covariates on the target variables (WM
metrics and catatonic symptoms) [60, 61] and previous MRI
studies on motor abnormalities in SSD [10–12, 62]. Finally, we
calculated the effect size (Cohen’s d) and statistical power (using
G*Power) of significant results (for results see Supplementary
Material).

RESULTS
Clinical and demographic characteristics
Clinical and demographic characteristics are shown in Table 1.
Thirty SSD patients with and twenty-nine SSD patients without
catatonia according to NCRS as well as 28 HC were included in the
final between-group (categorical) analyses. Forty-three SSD
patients fulfilling the DSM-IV-TR [31] criteria for catatonia were
included in the final correlational (dimensional) analyses. In the
non-catatonic SSD group, none of the twenty-nine patients would
qualify for any of the single DSM-IV-TR criteria of catatonia. Thirty-
nine SSD patients (39/111= 35.1%) who did not meet the NCRS or
DSM-IV-TR criteria for catatonia or could not have been included
in the matched control group were excluded from further
analyses.

Categorical analyses
TBSS. The standard TBSS analyses did reveal a nominal
reduction of FA in catatonic patients compared to non-
catatonic patients, but this difference was not statistically
significant (p= 0.19). Using the average FA across the 15 tracts
between sensorimotor regions, ANCOVA revealed no significant
difference between catatonic and non-catatonic SSD patients (all
p values > 0.1). After excluding the four covariates there was still
no significant difference in FA between catatonic and non-
catatonic patients (all p values > 0.08).

Tractometry. Looking at along-tract statistics (Tractometry) using
TractSeg, we found significantly decreased FA in the corpus
callosum (CC) (min. p values < 0.002) and significantly increased FA
in the thalamo-premotor tract (T_PREM) (min. p value= 0.0006)
(all p values below alphaFWE corrected threshold) in catatonic

Fig. 1 Overview of the different analytical steps. Colored bars indicated which groups are compared by the respective statistical test. The
color shows if the test gave significant results (p < 0.05) (green) or not (red). * indicates significant findings from analyses that were not
covaried for age, gender, aducation and OLZ. SSD: schizophrenia spectrum disorders, reg. + ind. t-test: regressing out covariates +
independent t-test, Partial Correl.: partial correlation.

Multiparametric mapping of white matter microstructure in catatonia
J Wasserthal et al.

3

Neuropsychopharmacology (2020) 0:1 – 8

http://surfer.nmr.mgh.harvard.edu/


compared to non-catatonic patients (Fig. 2). Regarding the
corticospinal tract (CST), we found significant differences (both
decrease and increase) in FA values depending on the location of
the bundle between catatonic and non-catatonic patients (min.
p value= 0.0007; Fig. 2 and Supplementary Fig. 1).

Large-scale network analysis. We found significantly higher CCO
of the left caudate nucleus in catatonic compared to non-
catatonic patients (p = 0.03) (Supplementary Table 1).

Correlational (dimensional) analyses
TBSS. We found no significant association between NCRS scores
and FA (voxel-wise TBSS) (all p values > 0.05).

Tractometry. We found a significant positive association between
NCRS behavioral score and FA in the left CST (min. p value=
0.0006; all p values below alphaFWE corrected threshold) (Fig. 3).

Large-scale network analysis. We found a significant association
between NCRS motor score and CCO of the left OFC (p= 0.006),
M1 (p= 0.04) and putamen (p= 0.01) as well as CCO and BC of the
right SMA (p= 0.04 and p= 0.0003) (Table 2). Further, we found a
significant association between NCRS total score and CCO of the
left OFC (p= 0.04) and BC of the right thalamus (p= 0.01)
(Table 2). However, only the association between NCRS motor
score and BC of the right SMA survived the Bonferroni correction
for multiple testing (threshold at p= 0.0006).

Patients vs. healthy controls
TBSS. The standard voxel-wise TBSS analyses did not reveal
significant differences of FA in SSD patients with and without
catatonia when compared to HC (p= 0.74 and p= 0.59). Using
the average FA across the 15 tracts between sensorimotor
regions, ANCOVA revealed no significant difference between
catatonic patients and HC (all p values > 0.5) and non-catatonic
patients and HC (all p values > 0.2). Using ANCOVA with
age and gender as covariates, we found significantly lower FA
in CC6 (p= 0.03) and CC7 (p= 0.03) of catatonic patients
when compared to HC. We also found significantly lower FA
in CC1 (p= 0.04) and right ST_FO (p= 0.04) of non-catatonic
patients when compared to HC. After excluding all four
covariates (age, gender, education and OLZ) and performing
an independent two sample t-test, we found significantly low-
er FA in all CC regions (all p values < 0.05) and left (p= 0.03)
and right (p= 0.01) ST_FO of catatonic patients when compared
to HC. We also found significantly lower FA in CC2 (p=
0.03) and ST_PO (p= 0.01) of non-catatonic patients when
compared to HC.

Tractometry. We found significantly decreased FA in the CC, left
and right T_PREM, left and right ST_FO and both ST_PREM in
catatonic patients when compared to HC (Supplementary Fig. 2).
There was also a significant difference in FA of the CC, left and
right CST, right ST_FO and left ST_PREM between non-catatonic
patients and HC (Supplementary Fig. 3).

Table 1. Demographic and clinical variables in SSD patients with and without catatonia according to NCRS and healthy controls.

Patients with
catatonia (n= 30)

Patients without
catatonia (n= 29)

Healthy controls
(n= 28)

Ta/Fb Dfa/b Sig. (2-tailed)a/b

Age 39.40 ± 10.49 38.00 ± 11.25 35.14 ± 14.18 0.494 F(2, 84) = 0.934 57 0.623/0.397

Gender (m/f)c 16/14 14/15 20/8 – 1 0.698/0.17

Education (years) 13.77 ± 2.41 13.17 ± 3.12 15.39 ± 1.4 0.818 F(2,84) = 6.343 57 0.417/0.003

Olanzapine equivalents 18.03 ± 9.64 18.41 ± 12.51 0 −0.133 F(2, 84) = 37.378 57 0.894/<0.0001

Packyears 12.02 ± 13.06 11.48 ± 10.23 n.a. 0.175 57 0.861

Duration of illness
(years)

12.27 ± 11.53 7.31 ± 8.86 n.a. 1.846 57 0.07

PANSS total score 80.27 ± 20.73 56.72 ± 19.42 n.a. 4.497 57 <0.001

PANSS positive score 18.93 ± 8.18 13.1 ± 6.16 n.a. 3.083 57 0.003

PANSS negative score 21.17 ± 8.63 13.83 ± 6.75 n.a. 3.628 57 0.001

PANSS global score 40.4 ± 11.85 29.9 ± 9.64 n.a. 3.725 57 <0.001

BPRS total score 43.17 ± 13.92 31.83 ± 11.75 n.a. 2.484 57 0.017

GAF score 57.97 ± 14.96 75.17 ± 15.72 n.a. −4.306 57 <0.001

CGI-S 4.50 ± 0.9 3.48 ± .68 n.a. 4.865 57 <0.001

NCRS motor score 1.87 ± 1.33 0 n.a. 7.544 57 <0.001

NCRS affective score 2.8 ± 1.66 0 n.a. 9.031 57 <0.001

NCRS behavior score 2.27 ± 1.2 0 n.a. 10.156 57 <0.001

NCRS total score 6.9 ± 2.6 0 n.a. 14.263 57 <0.001

SAS total score 3.27 ± 2.24 2.14 ± 2.13 n.a. 1.979 57 0.053

AIMS total score 1.83 ± 3.05 0.59 ± 1.93 n.a. 1.867 57 0.067

BARS global score 1.2 ± 1.51 0.48 ± 0.98 n.a. 2.144 57 0.036

Data are mean ± standard deviation. Significant results (p < 0.05) are displayed in bold font.
n.a. indicates that these data were not available in healthy participants, PANSS Positive and Negative Symptoms Scale, BPRS brief psychiatric rating scale, GAF
global assessment of functioning, CGI-S clinical global impression scale (severity), SAS Simpson and Angus scale, AIMS abnormal involuntary movement scale,
BARS Barnes Akathisia rating scale, NCRS Northoff Catatonia Rating Scale.
aThe t and p values (2-tailed) were obtained using an independent samples T-test between catatonic and non-catatonic patients.
bThe F and p values were obtained using an one-way ANOVA between SSD patient with and without catonia and HC.
cThe p values for distribution of gender were obtained by chi-square test.
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Large-scale network analysis. We found significantly higher BC of
the right supplementary motor area (p= 0.01) as well as higher
CCO of the right superior parietal cortex and putamen in catatonic
patients compared to HC (Supplementary Table 2).

DISCUSSION
This dMRI study investigated brain WM microstructure abnorm-
alities underlying catatonia in SSD patients. Three main findings
emerged: First, following a categorical approach, we found
significantly reduced FA in CC and higher FA in T_PREM in
catatonic compared to non-catatonic SSD patients. There was a
location-dependent increase and decrease of FA in CST in
catatonic compared to non-catatonic SSD patients. Second, we
found a significant positive association between NCRS behavioral
score and FA in the left CST. Third, catatonic symptoms were

significantly associated with variations of local network indices in
the OFC, M1, SMA, thalamus and putamen.

TBSS and Tractometry
Standard voxel-based TBSS could not identify significant differ-
ences in FA between catatonic and non-catatonic patients or
significant associations between FA alterations and catatonic
symptoms. Since FA alterations are a marker of both myelination
and/or axonal disruption [63] and WM tracts organization [64–66],
the anomalies that could be considered as catatonia-associated
were not severe enough to be detected by voxel-based TBSS.
Given that catatonic symptoms are considered to be a “specifier” of
SSD according to DSM-5 and appear as transient phenomena, this
notion seems plausible.
While we did not find any significant FA differences between

SSD patients and HC using the standard voxel-wise TBSS, we used
the average FA across the 15 tracts between sensorimotor regions
(similar to a large-scale coordinated study of WM microstructural
differences in schizophrenia conducted by Kelly and colleagues
[45]). Using an ANCOVA, we did not find any significant between-
group differences. After excluding the four covariates age, gender,
education and OLZ from the statistical analyses, we identified
significantly lower FA in CC and striato-fronto-orbital tract in
catatonic patients when compared to HC. Thus we were able to
corroborate the results of Kelly and colleagues [45]. In addition,
our findings provide further evidence for the microstructural
dysconnectivity in SSD patients with catatonia.
Using Tractometry with TractSeg [22] we identified signifi-

cantly reduced FA in the CC and CST as well as increased FA in the
T_PREM tract and CST in catatonic compared to non-catatonic SSD
patients. These results are important for several reasons: First, CC
is essential for interhemispheric transfer in terms of increased
inhibition or synchronization of bilateral movements [67]. Poggi

Fig. 3 Significant correlations between FA variations and NCRS
behavioral score in catatonic patients (Tractometry analysis).

Fig. 2 Significant differences in FA between non-catatonic and catatonic SSD patients (Tractometry analysis).
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and colleagues showed that a very subtle hypomyelination in the
prefrontal CC of Mbp+/− (heterozygous) mice (MBP myelin basic
protein) is associated with age‐related catatonia-like behavior [68].
Muetzel and colleagues found a significant association between
WM microstructure in CC and bimanual task performance [69].
Second, CST contains monosynaptic connections (originating in
M1) to spinal motoneurons, which are responsible for fine,
fractionated movements of the hand [70–73]. Our findings
suggest that reduced myelination of CC and CST might lead to
less efficient neural signal transmission causing difficulties in
movement execution and coordination [69, 74], as we can observe
them in catatonia. Third, the T_PREM cortical fiber tract is part of
the cerebellar-thalamo-cortical system, which is the major bundle
through which the cerebellum affects voluntary movements in
higher mammals [75, 76]. Interestingly, CST and T_PREM showed
higher FA in catatonic compared to non-catatonic patients. These
findings are in line with a very recent MRI study that used TBSS
and examined WM abnormalities in schizophrenia patients with
catatonia [77]. Viher and colleagues [77] identified 13 patients
with (≥2 items on the BFCRSI for a minimum of 24 h) and 35
patients without catatonia. Patients with catatonia revealed left-
lateralized higher FA in the CST and internal capsule when
compared to non-catatonic patients. A possible explanation for

the FA increase in CST may be that this structural reorganization is
necessary to compensate for the impaired top-down modulation
of higher-order cortical areas and aberrant motor behavior in
catatonia [77, 78]. Although striatal involvement in catatonia has
only rarely been described in case reports [23, 24], it has been not
detected by MRI studies focusing on GMV or resting-state activity.
Therefore, it is rather a disturbed regional connectivity in the
striatum that can lead to the development of catatonic symptoms.
The finding of a significant association between FA variations in
the left CST and NCRS behavioral score supports the above-
mentioned arguments and shows a specific relationship to
behavioral abnormalities in the context of catatonic syndrome.

Large-scale network analysis
Using graph analytics, we identified significantly increased CCO of
the right SCP and the left caudate nucleus in catatonic compared to
non-catatonic patients. These findings could reflect regionally
increased structural connectivity of SCP and caudate nucleus, which
may account for catatonic motor symptom expression [12, 13].
However, these regions did not survive Bonferroni correction and
should be considered as exploratory. Another important finding is
the significant correlation between NCRS motor score and BC of the
right SMA. This association did survive the correction for multiple

Table 2. Association between clustering coefficient and betweenness centrality in sensorimotor regions and NCRS scores in SSD patients with
catatonia according to DSM-IV-TR (n= 43).

Region NCRS motor score NCRS affective score NCRS behavioral score NCRS total score

OFC Left CCO p= 0.006, r= 0.434 (d*= 0.96) n.s. n.s. p= 0.04, r= 0.323 (d*= 0.68)

BC n.s. n.s. n.s. n.s.

Right CCO n.s. n.s. n.s. n.s.

BC n.s. n.s. n.s. n.s.

M1 Left CCO p= 0.04, r= 0.328 (d*= 0.69) n.s. n.s. n.s.

BC n.s. n.s. n.s. n.s.

Right CCO n.s. n.s. n.s. n.s.

BC n.s. n.s. n.s. n.s.

SMA Left CCO n.s. n.s. n.s. n.s.

BC n.s. n.s. n.s. n.s.

Right CCO p= 0.04, r=−0.318 (d*=−0.67) n.s. n.s. n.s.

BC p= 0.0003, r= 0.546 (d*= 1.3) n.s. n.s. n.s.

SPC Left CCO p= 0.04, r= 0.322 (d*=−0.67) n.s. n.s. n.s.

BC n.s. n.s. n.s. n.s.

Right CCO n.s. n.s. n.s. n.s.

BC n.s. n.s. n.s. n.s.

TH Left CCO n.s. n.s. n.s. n.s.

BC n.s. n.s. n.s. n.s.

Right CCO n.s. n.s. n.s. n.s.

BC n.s. n.s. n.s. p= 0.01, r= 0.409 (d*= 0.89)

PUT Left CCO p= 0.01, r= 0.379 (d*= 0.81) n.s. n.s. n.s.

BC n.s. n.s. n.s. n.s.

Right CCO n.s. n.s. n.s. n.s.

BC n.s. n.s. n.s. n.s.

CAU Left CCO n.s. n.s. n.s. n.s.

BC n.s. n.s. n.s. n.s.

Right CCO n.s. n.s. n.s. n.s.

BC n.s. n.s. n.s. n.s.

The p values were obtained using two-tailed partial correlation adjusted for age, gender, medication and PANSS total score as covariates. Significant
associations (p value= 0.05) are indicated.
SSD schizophrenia spectrum disorders, CCO clustering coefficient, BC betweenness centrality, OFC orbitofrontal cortex, M1 primary motor area, SMA
supplementary motor area, SPC superior parietal cortex, TH thalamus, PUT putamen, CAU nucleus caudatus, d* Cohen’s d.
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testing and is noteworthy for several reasons: First, the SMA is a key
region that subserves high-order internally initiated movements
[79]. Second, this finding confirms prior studies that showed
aberrant neural activity in the SMA of catatonic patients [60, 80].
Third, these results are particularly consistent with the study by
Walther and colleagues who found that excited catatonia was
associated with higher perfusion of SMA [12]. Therefore, both
aberrant activity as well as BC variations of the SMA may contribute
to catatonic symptoms in SSD [9]. Taken together, these data
suggest a key role of the SMA in the circuitry that has been
previously implicated in catatonia, and suggest that one potential
mechanism may be through deviations in the main top-down flow
of information through cortical and subcortical sensorimotor circuits.

Strengths and limitations
The study sample size, well-matched study groups, and the use of
comprehensive set of sophisticated WM microstructural para-
meters are the strengths of our study. However, some methodo-
logical aspects limit the generalizability of our results: First, the
antipsychotic medication should be considered as a potential
confounder. Second, no statement can be made regarding waxing
and waning course of catatonia. The question concerning the
symptom stability vs. dynamics could be robustly answered using
longitudinal monitoring, preferably using electronic devices. Third,
our DTI sequences didn’t include the brainstem and cerebellum (in
favor of higher resolution of cortical structures), so we cannot
appreciate contributions of WM microstructural alterations in the
brainstem and cerebellar tracts to catatonia [12]. Finally, we only
examined SSD patients with catatonic symptoms. Since catatonia
occurs in 9–17% of acute mental disorders [81] and is also present
in specific medical conditions, we strongly advocate transdiag-
nostic MRI studies on catatonic symptoms. This approach will
support the intensive effort to recognize catatonia as an
independent diagnostic entity in future classification systems.

CONCLUSION
The present study provides consistent evidence for WM micro-
structure abnormalities of bundles connecting orbitofrontal/
parietal, thalamic and striatal regions in catatonia. The data
suggest that catatonia is associated with widespread cortical-
subcortical changes in structural connectivity that go beyond the
previously reported atrophy of frontoparietal regions.
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