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ARTICLE INFO ABSTRACT

Keywords: Neural responses to the same stimulus show significant variability over trials, with this variability typically
Dynamics reduced (quenched) after a stimulus is presented. This trial-to-trial variability (TTV) has been much studied,
Presn];nlulus however how this neural variability quenching is influenced by the ongoing dynamics of the prestimulus pe-
Variability

riod is unknown. Utilizing a human intracranial stereo-electroencephalography (sEEG) data set, we investigate
how prestimulus dynamics, as operationalized by standard deviation (SD), shapes poststimulus activity through
trial-to-trial variability (TTV). We first observed greater poststimulus variability quenching in those real trials
exhibiting high prestimulus variability as observed in all frequency bands. Next, we found that the relative ef-
fect of the stimulus was higher in the later (300-600ms) than the earlier (0-300ms) poststimulus period. Lastly,
we replicate our findings in a separate EEG dataset and extend them by finding that trials with high prestim-
ulus variability in the theta and alpha bands had faster reaction times. Together, our results demonstrate that
stimulus-related activity, including its variability, is a blend of two factors: 1) the effects of the external stimulus
itself, and 2) the effects of the ongoing dynamics spilling over from the prestimulus period - the state at stimulus
onset - with the second dwarfing the influence of the first.

Trial-to-trial variability
Spontaneous activity
Stereoelectroencephalography
State dependence

1. Introduction etal., 2010; He, 2013), the quenching (reduction) of this neural variabil-

ity occurs after stimulus onset (Arazi et al., 2017a, 2017b; Churchland

Over the past ten years, many studies (Baria et al., 2017; Galindo-
Leon et al., 2019; He, 2013; Hirschmann et al., 2019; Huang et al., 2017;
Nieus et al., 2018; Podvalny et al., 2019) have demonstrated that post-
stimulus activity levels depend on the initial state, the level of activity
before the stimulus is presented (Benwell et al., 2017; Fellinger et al.,
2011; Hanslmayr et al., 2013; He, 2013; Hirschmann et al., 2019;
Huang et al.,, 2017; Mathewson et al., 2009; Milton and Pleydell-
Pearce, 2016; Northoff et al., 2010; Yamagishi et al., 2008). Despite
these findings, the mechanism of such state-dependence is unclear; how
does prestimulus activity shape stimulus-induced activity beyond the
effect of the external stimulus?

Variability of the signal may be a key factor. As neural responses to
the same stimulus show significant variability over trials (Churchland

* Corresponding authors.

et al., 2010; Daniel et al., 2019; Haar et al., 2017; Huang et al., 2018,
2017; Schurger et al., 2015), though increases in neural variability
have also been observed at multiple levels (Churchland et al., 2011;
Haar et al., 2017; Huang et al., 2018; Wolff et al., 2019c). Although
much studied, how this neural variability quenching in the poststimu-
lus period - termed trial-to-trial variability (TTV) - is influenced by the
prestimulus state is unknown.

TTV describes and indexes (Arazi et al., 2017a, 2017b; Churchland
et al., 2010; Ferri et al., 2015; He and Zempel, 2013; Huang et al., 2017;
Schurger et al., 2015) the suppression of the variability of the sponta-
neous brain activity by the arrival of the stimulus (Arazi et al., 2017a,
2017b; Churchland et al., 2011, 2010; Dinstein et al., 2015; He, 2013;
He and Zempel, 2013; Wolff et al., 2019¢). TTV quenching has been
observed on multiple levels of neural activity: cellular (Arieli et al.,
1996; Chang et al., 2012; Churchland et al., 2011, 2010; Finn et al.,
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2007; Goris et al., 2014; Hussar and Pasternak, 2010; Liu et al., 2016;
Mazzucato et al., 2016, 2015; Monier et al., 2003; Scaglione et al., 2011;
White et al., 2012); scalp-level (Arazi et al., 2017b, 2017a; He and Zem-
pel, 2013; Schurger et al., 2015); functional magnetic resonance imag-
ing (fMRI) (Ferri et al., 2015; He, 2013; Huang et al., 2017) (see also
(Dinstein et al., 2015) for review of TTV).

In addition to its varying modulation by different stimuli (Arazi et al.,
2017b; Churchland et al., 2011, 2010; Hussar and Pasternak, 2010;
Wolff et al., 2019c), previous studies suggest that TTV is also de-
pendent on the degree of the brain’s variability at stimulus onset.
In non-human data, studies examining prestimulus variability in neu-
ral activity have provided direct evidence of its modulating effect on
stimulus-related sensory activity (Benwell et al., 2017; Gulbinaite et al.,
2017; Hanslmayr et al., 2013; Hennequin et al., 2018; Huang et al.,
2019; Lin et al., 2015; Luczak et al., 2013; Mathewson et al., 2009;
Romei et al., 2008; Scholvinck et al., 2015; Shimaoka et al., 2019;
Yamagishi et al., 2008). Moreover, cell-level studies in animals have
shown a strong dependence of poststimulus TTV and behavior (reaction
times) on prestimulus variability (Curto et al., 2009; Kisley and Ger-
stein, 1999; Pachitariu et al., 2015; Schurger et al., 2010). How stimulus
related TTV is shaped by prestimulus variability in humans, though, is
unknown.

We therefore asked what the electrophysiological relationship in
humans is between pre- and poststimulus variability as measured
with TTV. Closing the loop between these two factors - variability
in humans before (as measured by prestimulus standard deviation
(SD)(Garrett et al., 2013; Waschke et al., 2021)) and after stimulus onset
(as measured by TTV) — to demonstrate state-dependence of stimulus-
induced activity is the aim of the present study.

Specifically, we aimed to investigate how prestimulus activity shapes
poststimulus activity, hypothesizing that their interaction is mediated by
variability; what is the relationship between pre- and poststimulus vari-
ability in humans as measured with TTV? In addressing this question,
we encountered the methodological challenge of linking the continuous
ongoing dynamics (timepoint-to-timepoint within a single trial) of the
prestimulus period to the measurement of discrete, discontinuous (over
all trials at a single timepoint) activity time-locked to a stimulus (see
(Huk et al., 2018)). To combine both, we introduce a novel methodolog-
ical strategy by testing whether prestimulus temporal SD, as measured
in a continuous way (from timepoint-to-timepoint in each trial) through
standard deviation, influences poststimulus variability, measured in a
discontinuous way (over trials at a single timepoint) by TTV (Huk et al.,
2018) (Fig. 1).

Based on the data described above (Baria et al., 2017; He, 2013;
Huang et al., 2017), we had four hypotheses: i) poststimulus TTV in real
trials would show more TTV quenching than in pseudotrials (as related
to variability in ongoing activity independent of the external stimulus;
see below) (thus reflecting the effects of the external stimulus itself in-
dependent of the ongoing dynamics); ii) there would be differences in
poststimulus TTV between prestimulus low and high SD (reflecting the
impact of the ongoing prestimulus dynamics on stimulus-related activ-
ity); iii) there would be differences in the impact of prestimulus low and
high on TTV quenching in different frequency bands (reflecting differ-
ential impact of various frequency bands on pre-poststimulus shaping),
specifically in the alpha and beta bands which have previously showed
TTV differences (Wolff et al., 2019c¢); iv) there would be a difference
in reaction times between trials with prestimulus low and high in the
alpha band (Wolff et al., 2019b) (reflecting the behavioral relevance of
the ongoing dynamics).

We addressed these hypotheses by investigating human intracra-
nial electrophysiological activity, which measures local field potentials
(LFP) (Buzséki et al., 2012), as acquired in a stereoelectroencephalog-
raphy (sEEG) dataset comprised of 20 participants. We applied a sim-
ple paradigm with two different stimuli and no behavioral response — a
no-report paradigm (Tsuchiya et al., 2015). This allowed us to test the
impact of the stimulus alone on stimulus-related activity, independent
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of any behavioral and cognitive constraints as well as uncontaminated
by any response-related neural activity.

Furthermore, we applied the method of pseudotrials (Huang et al.,
2017; Wolff et al., 2019c¢). Pseudotrials (also referred to as surrogate
trials He (2013)) describe time periods between stimulus presentation
when a stimulus is absent (Dinstein et al., 2015). Used to model the
ongoing dynamics of the spontaneous activity, pseudotrials serve as
a baseline for the recorded activity when a stimulus was presented
(Huang et al., 2017). When the activity during these pseudotrials was
subtracted from the activity of the real trials, the difference shows the
stimulus-related activity itself, independent of the impact of the ongoing
dynamics (Huang et al., 2017). This allowed us to parcel out and dis-
tinguish the effects of the external stimulus itself, and those of the pres-
timulus dynamics, on stimulus-related activity as measured with TTV.

2. Results

Using the methodological factors described above, we set out to test
the relationship between prestimulus variability (measured by SD) and
poststimulus variability (measured by TTV). With sEEG data, we first
calculated the SD (an index of variability) of the signal amplitude in
the prestimulus period (varying interval lengths, see methods) (Fig. 1).
After a median split, trials were assigned to either the prestimulus low
or high SD group (median split) (Fig. 1b). TTV was then calculated in
each group in the period after stimulus onset, and the area under the
curve was measured.

We then sought to examine the effect of the stimulus, including the
timing of its effects, on the ongoing pre-poststimulus variability. This
was done by comparing the TTV in real trials to that in pseudotrials. Our
findings were replicated in a separate EEG dataset (see Supplementary
Results) with a report task (Wolff et al., 2019¢, 2019b). Finally, as the
task in this dataset required that participants respond behaviorally, we
tested whether the shaping of TTV by prestimulus SD is relevant for
behavior.

2.1. Prestimulus variability has a significant effect on poststimulus TTV in
real and pseudotrials

After verifying the presence (real trials) and absence (pseudotrials)
of a stimulus in the event-related potentials (ERPs) (Supplementary Re-
sults, Supplementary figure 1a) (p = 2.536 x 10~%), individual trials
were sorted according to their prestimulus SD (Fig. 1, Supplementary
Fig. 1cd, see methods). Trials with the lowest half of SD were assigned
to the prestimulus low group while trials in the top half of the SD were
assigned to the prestimulus high group (Fig. 1, Supplementary Figure
1CD).

Once this SD median split had been done, TTV was calculated (Fig. 1
step 4). TTV was defined as the variability changes relative to variability
at stimulus onset (see (Arazi et al., 2017a, 2017b; He and Zempel, 2013;
Wolff et al., 2019c¢) for related methods). We calculated the percent
change with respect to the value at stimulus onset (Arazi et al., 2017a,
2017b; He, 2013),

Jot(t) — Oyt (0)
64,(0)

where ¢,,(7) is the SD of the sEEG signal over trials as function of time
t and o,,(0) is the SD over trials at stimulus onset, or Oms (no differ-
ence between SD at stimulus onset between real and pseudotrials with
p = .065). To determine if there was a difference in the poststimulus
activity in the groups split by prestimulus SD, the area under the curve
(AUC) between 450 and 550ms was tested (approximate maximum TTV
quenching according to Fig. 2c).

In the broadband, a 2 (prestimulus high, prestimulus low) x 2
(real trials, pseudotrials) repeated measures ANOVA found a sig-
nificant difference in TTV AUC between low and high prestimulus

TTV (@) = x 100 (1)
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Fig. 2. Trial-to-trial variability (TTV) in real and pseudotrials for all frequency bands. a) Real trials (green lines) were from stimulus onset (Oms) while pseudotrials
(black lines) were from a virtual stimulus during the intertrial intervals. b) The standard deviation (SD) from a prestimulus period was calculated to each real and
pseudotrial. Those trials with high prestimulus SD were then assigned to the prestim high group, and TTV over all these trials were calculated from them. The same
was done for the low prestimulus SD. ¢) TTV in real trials for prestimulus low and high. Left column: Both real and pseudotrials SD over trials (at each timepoint)
without the normalization to stimulus onset. Center and Right column: Area under the curve (AUC) from 450 to 550ms was calculated and compared (bar plots). TTV
in pseudotrials with AUC for the same time interval compared. In the broadband, a 2 (prestimulus low, prestimulus high) x 2 (real trials, pseudotrials) repeated
measures ANOVA on the AUC found an effect of prestimulus (p < .001) and stimulus (p < .001). In all bands, a 2 (prestimulus low, prestimulus high) x 2 (real trials,
pseudotrials) x 5 (bands) repeated measures ANOVA found effects of prestimulus (p < .001), stimulus (p = .001), and bands (p < .001). Gray shaded areas are interval
of calculation of AUC which is shown in the bar plots. Error bars show standard e4rr0r. Each curve/bar is the mean of all participants.
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(F(1,19) = 58.692, p < .001 'Ip2 = .755) and between real and pseu-
dotrials (F(1,19) = 30.294, p < .001, np2 =.615) (Fig. 2c). There was a
large effect size for both factors.

Next, to measure the same factors in the individual frequency bands,
a 2 (prestimulus low, prestimulus high) x 2 (real trials, pseudotrials)
x 5 (theta, alpha, beta, low gamma, high gamma) repeated measures
ANOVA was done. As in the broadband, there was a significant effect in
TTV AUC of prestimulus (F(1,19) = 39.288, p < .001, npz = .674), trials
(F(1,19) = 14.400, p = .001, :11,2 =.431) and frequency bands (F(2.495,
47.402) = 16.132, Greenhouse-Geisser corrected p < .001, npz =.459),
with a large effect size in all three factors. After these results, the impact
of the interval of the prestimulus SD was examined (see Supplementary
Results). With one prestimulus interval longer than that used above, and
one shorter, no significant effect of window size was found (Supplemen-
tary Tables 3-5).

Together our results show the effect of prestimulus variability on
TTV: the level of prestimulus SD exerts a strong impact on poststimu-
lus variability in both real and pseudotrials. More generally, our well-
controlled findings show the strong degree to which intrinsic prestim-
ulus SD shapes poststimulus activity, in addition to the effect of the
external stimulus.

2.1.1. Poststimulus TTV disambiguates the effect of the stimulus from the
ongoing spontaneous activity
Since our results above showed a similar difference between pres-
timulus low and high in pseudotrials as in real trials, we wanted to in-
vestigate the effect of the stimulus itself on poststimulus TTV.
Measured neural activity after stimulus onset, A, is a sum of mul-
tiple activities, plus their interaction (He, 2013; Huang et al., 2017):

A= A0+ A+ I, (1) 3)

where A, is the ongoing spontaneous activity at timepoint t, A is the
stimulus-related activity, and I, ; is the interaction between the ongoing
spontaneous activity and the stimulus-related activity. As it is not pos-
sible to measure the interaction between A, and A, (1,,) directly - A,
continues to change after stimulus onset He (2013) — neural activity was
replaced with variability over trials (TTV) in order to isolate stimulus-
related activity (A;). TTV encompasses the interaction of the ongoing
spontaneous activity with the stimulus-related activity (I, ;) within it; it
is measured relative to SD at stimulus onset and measures the variability
over trials. Therefore, to account for this interaction, the neural activity
was replaced by the variability over trials, or TTV:

TTV,(t) = TTV, () + TTV,() @

where TTV, is the TTV measured in the real trials at timepoint t, TTV, is
the TTV of the ongoing spontaneous activity as measured in the pseudo-
trials, and TTV, is the TTV of the stimulus-related activity (correlations
are neglected).

To isolate the effect of the stimulus, the broadband TTV in real and
pseudotrials were compared separately for prestimulus low and high
(Fig. 2c). For each timepoint from stim onset (Oms) to 600ms, two re-
peated measures t-tests were calculated with the respective TTV for all
participants. The two tests were a) prestimulus low in real trials com-
pared to prestimulus low in pseudotrials, and b) prestimulus high in
real trials compared to prestimulus high in pseudotrials. Therefore, the
TTV at timepoint one for all participants (20 patients) in real trials was
tested against the TTV at the same timepoint for all participants in pseu-
dotrials. As this was done at each timepoint, it produced a timeseries of
p-values, as was done previously He and Zempel (2013).

This p-value timeseries was then corrected for multiple comparisons
Benjamini and Hochberg (1995) and plotted (Fig. 3a). The time interval
when the corrected p-value timeseries was less than .05 was considered
the interval during which the stimulus had an impact. We considered it
so as there was a significant difference between the TTV when a stim-
ulus was presented and the TTV when no stimulus was presented; we
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Table 1
TTV AUC 2 x 2 repeated measures ANOVA in broadband for all trials.

Factor Levels df F-value p-value p,°

Trials Real, Pseudo 1,19 9.649 .006 337
Interval Early, Late 16.601 .001 466
Interaction 6.402 .020 252

df = degrees of freedom
np2 = partial eta squared

considered the stimulus to have an impact when there was a difference
between the real trials and the pseudotrials. In prestimulus low, this
timepoint was found to be at 226 ms, while the significance level was
passed at 254 ms in prestimulus high.

After visualizing the resulting p-value timeseries’, they crossed the
significance level at slightly before the 300 ms mark, or the halfway
point of our poststimulus window. Therefore, the stimulus was consid-
ered to have a significant impact on the TTV after the points where the
p-value timeseries crossed this significant threshold.

To verify our finding above in a second way, we divided the poststim-
ulus window into two equal intervals (300 timepoints), an earlier one
and a later one (henceforth termed ‘early’ and ‘late’). To determine the
effect of prestimulus variability and trials (real, pseudotrials) in these
two intervals (early: 0-300ms, late: 300-600ms), the AUC during the
two intervals for each of the four TTV curves were compared (Fig. 3b).
In the early time interval, a 2 (prestimulus low, prestimulus high) x
2 (real trials, pseudotrials) repeated measures ANOVA found a signif-
icant effect of prestimulus (F(1,19) = 56.291, p < .001, n,2 = .748)
but not of stimulus (F(1,19) = .896, p = .356, np2 = .045). In con-
trast, the late time interval found a significant effect of both prestimulus
(F(1,19) =60.795, p < .001, npz =.762) and stimulus (F(1,19) = 39.402,
p <.001, ,% = .675).

Next, to isolate the stimulus-related variability quenching (TTV re-
duction), Eq. 4 must be rearranged:

TTV, (1) = TTV,(t) — TTV, (1) 5)

We did this by subtracting the TTV curves at each timepoint t in the
pseudotrials (TTV,) from that in the real trials (TTV,) in the two time
intervals (Fig. 3b). These TTV curves were titled ‘corrected TTV’ (cTTV)
as the subtraction of the pseudotrials removed - corrected for - the effect
of the prestimulus variability.

The AUC of the resulting curves were calculated, and the absolute
value was taken (only the magnitude was of interest, not whether the
TTV curve increased or decreased in variability). This allowed us to iso-
late the change in variability due to the stimulus; it is hypothesized that
subtracting the pseudotrials effectively removes the variability related
to the ongoing activity (He, 2013; Huang et al., 2017).

A 2 (prestimulus low, prestimulus high) x 2 (early, late) re-
peated measures ANOVA found no significant effect of prestimulus SD
(F(1,19) = .289, p = .597, npz = .015) and a significant effect of time
interval (F(1,19) = 19.305, p < .001, r/pz =.504).

Finally, in the same early and late time intervals, the TTV AUC for all
real and pseudotrials (prestimulus low and high together) was measured
(Fig. 3c). This was done to measure the effect of the stimulus only on
poststimulus variability. For this reason, the trials were not divided ac-
cording to prestimulus variability as its effect had been examined above.
The factor being measured was the effect of the stimulus, so the compar-
ison between real trials (had a stimulus) and pseudotrials (stimulus was
absent) was done here. A 2 (real trials, pseudotrials) x 2 (early, late)
repeated measures ANOVA found a significant effect of both stimulus
and time interval, and a significant interaction between the two factors
(Fig. 3de, Table 1).

These findings show the effect of the stimulus itself on poststimulus
variability in two ways. They indicate that the early period of poststim-
ulus activity — 0-300 ms - is shaped by both the state-dependent vari-
ability of prestimulus SD and the external stimulus. In the later period
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p-values — Benjamini-Hochberg corrected for multiple comparisons — were then plotted for all timepoints. The p-values fell below the significance level (.05) just
before 300ms. b) After the findings in a, the poststimulus period was divided into two equal intervals, 0-300ms and 300-600ms. The area under the curve (AUC) was
then calculated for all TTV curves in a for both intervals. 2 x 2 repeated measures ANOVAs in each interval found an effect of prestimulus only in the early intervals,
and of prestimulus and stimulus in the late interval. Right plot: For each timepoint the TTV curve for the pseudotrial was subtracted from that of the real trial. The
AUC was then calculated, and a 2 x 2 repeated measures ANOVA was done to determine the effect of prestimulus and time interval. No effect of prestimulus was
found, though an effect of time interval was. ¢) TTV in all real trials and all pseudotrials. d) Finally, in the same intervals from b, the AUC for TTV in all trials —
not divided by prestimulus low and high — and pseudotrials was compared. An effect of time interval was found, as was stimulus (real and pseudo). e) Finally, the
difference between the two intervals was calculated, and a significant difference was found. Each bar is the mean of all participants.
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Fig. 4. Corrected trial-to-trial variability
(cTTV) and its maximum quenching. a) cTTV
(b) is equal to TTV of real trials minus TTV of
pseudotrials — for prestimulus low and high. c)
TTV maximum quenching (0-600 ms) for all
trials, TTV and cTTV. In all real trials (black
L. bar, left), max quenching is less than 20%.
< L When the trials are divided into prestimulus
v low and high (blue and gray bars, center), the
cTTV ngh maximum quenching differs between them.
When cTTV is calculated, therefore corrected

— for prestimulus effects by subtracting pseu-
) dotrials (b), maximum quenching no longer
\ differs between prestimulus low and high
. (green bars, right), though does differ from
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—300-600 ms - the external stimulus exerts a relatively stronger impact
on poststimulus activity than the ongoing spontaneous variability.

2.2. Poststimulus TTV corrected for prestimulus variability shows greater
quenching than uncorrected TTV

To this point, we found that prestimulus variability has a significant
impact on poststimulus variability. Based on these findings, we next hy-
pothesized that if the TTV curves were corrected for prestimulus vari-
ability, the poststimulus differences between prestimulus low and high
would decrease, and the magnitude of the TTV quenching would in-
crease. As the difference in poststimulus variability was due to prestim-
ulus variability if we were to remove this factor — prestimulus variability
- the resulting difference after stimulus onset should therefore be gone.
This would be possible using pseudotrials as they serve as a model for the
ongoing spontaneous activity when no stimulus is present (Huang et al.,
2017; Wollff et al., 2019c).

We therefore tested this by calculating TTV corrected using pseudo-
trials (cTTV),

¢TTV(1) = TTV, (1) — TTV,() ®

with TTV, being the curve of the real trials, TTV), being the curve of the
pseudotrials, and t being the data point in the timeseries (0 < t < 600).
The poststimulus variability of the real trials would have the effect of
their prestimulus variability removed by subtracting the poststimulus
variability of the pseudotrials; the pseudotrials contain only the effect
of the prestimulus variability.

The maximum quenching (percent change) between stimulus onset
and 600 ms was measured for three groups of trials: 1) all real trials
together (180 trials per curve Fig. 4ac far left bar); 2) real trials divided
into prestimulus low and prestimulus high (90 trials per curve, Fig. 4ac
center two bars); 3) corrected TTV (cTTV) — real trials TTV minus pseu-
dotrials TTV - divided by prestimulus low and prestimulus high (90 trials
per curve, Fig. 4bc right two bars). All trials together show poststimulus
variability when prestimulus variability is ignored, separated by pres-
timulus variability shows its effect on poststimulus variability, and cor-

cTTV Low cTTV High

Table 2
sEEG Maximum SEEG quenching in TTV and cTTV repeated measures t-test
results.

Curve Prestimulus Mean t-value p-value

TTV Low -3.69 + 4.39 6.79 1.430 x 10771
High -25.35 + 13.20

cTTV Low -37.94 + 24.59 -0.77 4497
High -31.92 + 23.84

* = Degrees of freedom are 38
T = False Discovery Rate corrected

Table 3
Maximum sEEG quenching between TTV and cTTV in all
trials repeated measures t-test results.

Curve for all trials ~ Mean t-value  p-value

TTV -18.96 + 11.38  3.23¢ .004!
cTTV -34.93 + 18.94

* = Degrees of freedom are 38
T = False Discovery Rate corrected

rected maximum quenching shows the effect on poststimulus variability
when prestimulus variability is accounted for and removed.

Our results supported our hypothesis. A repeated measures t-test
(participants provided data to both levels) found a significant differ-
ence in the maximum quenching in TTV, but not cTTV (Table 2). The
difference in quenching between prestimulus low and high disappeared
when TTV was corrected for prestimulus SD.

Lastly, to compare quenching in TTV to cTTV when all trials were
combined (180 trials), the maximum quenching in these two curves was
measured. A repeated measures t-test found a significant difference be-
tween TTV (Fig. 4c center two bars) and cTTV (Fig. 4c right two bars)
maximum quenching (Table 3), with greater quenching in the cTTV.

Finally, to replicate our TTV and cTTV findings in the sEEG data, we
did the same analysis (with standard EEG preprocessing) (see Supple-
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Fig. 5. Behavioral relevance of prestimulus SD shown in EEG dataset. A) Real trials in each frequency band were split into thirds based on the prestimulus SD and
the reaction times for the top and bottom third were extracted. The mean was calculated. A repeated measures t-test was done to compare the mean reaction times
of prestimulus low and high. There was a significant effect of prestimulus SD in the theta and alpha bands (p = .032, .032, Benjamini-Hochberg FDR corrected). Each
bar is the mean of all participants. B) In these two bands only, the TTV AUC (450-550ms) was Pearson correlated with mean reaction times. In the alpha band, the
TTV AUC of prestimulus low had a significant correlation with mean reaction time (p = .013), but the prestimulus high did not (p = .226).

mentary Results). We found the same results, with greater quenching in
the cTTV data than in the TTV data calculated in the standard way.

2.3. In sum, these findings show that correction for prestimulus SD and its
ongoing variability yields larger TTV quenching when compared to TTV
measured in the standard way, with no correction

2.3.1. Significant effect of prestimulus variability on reaction times in the
theta and alpha frequency bands

Finally, we wanted to determine if there was behavioral relevance
for prestimulus variability, and if reaction times correlated with post-
stimulus TTV. With the EEG data used for replication (see Supplemen-
tary Results), the mean reaction time from the trials with the lowest and
highest third (bottom and top 60 trials) of prestimulus variability was
calculated for the broadband and each frequency band (Fig. 5a).

Repeated measures t-tests found a significant difference in the
mean reaction times in the theta (¢(19) = 2.31, p = .032) and alpha
(t(19) = 2.59, p = .032) bands. There was no significant difference in
the broadband, beta, and low gamma bands (p = .528, .554, .494 re-
spectively).

Next, to correlate the standard TTV AUC measured (see Supplemen-
tary Figure 5 and Results) in these two significant frequency bands
(theta, alpha) with the mean reaction times, two-tailed Spearman cor-
relations were done. None of the correlations were significant (theta:
Diow = -191 and pyigp, = .191; alpha: pj,,, = .264 and ppig, = .273).

However, when the same correlations were done between the AUC
from the cTTV (Supplementary Fig. 6) and the reaction times, the cor-
relation was significant between the alpha band and the prestimulus
low group (r = -.597, p = .013, linear fit R-squared = .2514, linear fit
sum of squares due to error = 7.278 x 10°) (Fig. 5b). This was not sig-
nificant in the prestimulus high group (r = -.597, p = .013, linear fit
R-squared = .0082, linear fit sum of squares due to error = 6.745 x 105)
or either of the theta correlations (pjo,, = .581 and py;g = .130).

Finally, to test whether 1) the correlation between ¢TTV AUC and
reaction time were significantly different in prestimulus low and high,
and 2) whether these correlations were different between ¢TTV AUC
and regular TTV AUC, Fisher’s r-to-z transformation was done (He et al.,
2008). This found that there was a difference between prestimulus low
and prestimulus high in the correlation with reaction time and c¢TTV
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AUC (p = .246), and a difference in the correlations between reaction
time of ¢TTV and TTV (Pioy = -344, Phigh = -936).

In sum, we show that prestimulus SD not only shapes poststimulus
activity, but also associated behavior in a complex cognitive task, espe-
cially in the alpha band.

3. Discussion

We investigate the impact of the ongoing dynamics, e.g. prestimulus
SD, on poststimulus activity as measured with TTV in intracranial elec-
trophysiological recordings (sEEG). First, we show that prestimulus SD
impacts poststimulus activity in real trials as we observed differences in
the latter between prestimulus high and low trials. This served as a basis
for our second main finding: the late poststimulus period (300-600ms)
shows a greater impact of the external stimulus (relative to the ongo-
ing dynamics) than the early poststimulus period (0-300ms) (where the
impact of the ongoing dynamics dominates).

Next, we found that when corrected for prestimulus SD - subtract-
ing the TTV of the pseudotrials from the TTV of the real trials - the
maximum quenching of poststimulus variability was the same in trials
with low or high prestimulus variability; this reflects the impact of the
external stimulus itself independent of the ongoing dynamics. In con-
trast, that was not the case when TTV calculation was not controlled for
prestimulus variability, that is, standard TTV curves. This indicates the
relevance of accounting for prestimulus SD in the analyses of stimulus-
related activity when averaging over trials; controlling for the ongoing
prestimulus dynamics is thus key in isolating the effect of the stimulus
itself.

Finally, we replicate all sEEG findings in a separate scalp-recorded
EEG dataset (Wolff et al., 2019¢) with a report paradigm (Tsuchiya et al.,
2015). This also allowed us to show the behavioral relevance of pre-
poststimulus variability, specifically in the alpha band, by shaping reac-
tion time.

Together, the main result of our study is that stimulus-related activity
is highly dynamic as it blends and is composed of two components: 1)
activity evoked by the stimulus, therefore from an external source; 2) the
ongoing dynamics, i.e., variability carrying over from the prestimulus
period to the poststimulus period. This carries major implications for our
understanding of stimulus-related activity as we show that the influence
of the ongoing dynamics dwarfs the influence of the stimulus itself.

3.1. Poststimulus trial-to-trial variability is relative to the ongoing
dynamics and the stimulus, especially in the later period

Our finding of a difference in TTV between real trials with pres-
timulus low and high variability is consistent with previous studies
(He, 2013; Huang et al., 2017); activity at stimulus onset, either high or
low, has a differential impact on poststimulus activity. We extend these
findings by showing that this difference was found not only in the real
trials, but also in the pseudotrials when no stimulus is present. The dif-
ference found in the pseudotrials is strong evidence of the effect of the
ongoing dynamics on poststimulus activity.

The earlier period (0-300 ms) in stimulus-related activity saw a
greater influence of the ongoing prestimulus variability than the exter-
nal stimulus, as seen in Fig. 3bde. The difference in TTV between low
and high prestimulus was significant in this early period while the dif-
ference between real and pseudo was not. This changed in the later time
interval; there were significant differences between both low and high
prestimulus, and real and pseudotrials. Of note, differences between real
and pseudotrials were slightly different in the prestim low compared to
high trials. This difference should be the sole aim of a future paper,
but it does support previous findings on nonadditive interactions of the
prestimulus state on the poststimulus activity (He, 2013; Huang et al.,
2017).

Again, as done above, when the real trials were corrected for prestim-
ulus SD using pseudotrials in this context, the early interval difference
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between low and high prestimulus disappeared. It also did in the later
interval. This last finding again supports our idea of the substantial im-
pact of the prestimulus dynamics as measured with SD on poststimulus
activity. While the findings in Fig. 3 show the different temporal course
of both prestimulus SD and the external stimulus in shaping stimulus-
related activity, the later poststimulus period (300-600 ms) shows a
larger impact of the stimulus on TTV compared to the earlier period
(before 300 ms).

Together, we demonstrate that the two components identified as
shaping poststimulus-induced activity - ongoing dynamics and the ex-
ternal stimulus - differ in their temporal course. The ongoing variability
exerts stronger effects in the early period while the impact of the exter-
nal stimulus is stronger in the later period. It remains to be seen whether
the time course of the external stimulus is modulated by diverse stimuli
or cognitive requirements related to the said stimulus; this should be a
focus of future studies.

3.2. Neurophysiological substrate of prestimulus and its ongoing variability

SEEG recordings acquire the activity of local field potentials (LFPs),
which measure membrane-potential derived fluctuations in the extra-
cellular space (Buzsdki et al., 2012). Changes in the LFP of the brain
have been shown to be mediated by synchronization after action po-
tential burst hyperpolarization — a burst of fast neuronal spikes is often
followed by the hyperpolarization of the membrane - which can be large
and contribute to the extracellular field (Pachitariu et al., 2015).

A relevant study of LFPs in gerbils (Pachitariu et al., 2015) found
that in desynchronized cortical states low frequency fluctuations are
suppressed. This, in turn, allows individual neurons to spike indepen-
dently with measured activity being more reliable and consistent over
trials, and responses to stimuli being faster than in synchronized states.
In contrast, in a synchronized cortical state the extracellular space shows
strong low frequency LFPs fluctuations with high variability in activity
over trials and slower responses to stimuli than in the desynchronized
state.

These results on the population level are consistent with ours on
a more macroscale. Using sEEG, we, as in their study, measured LFPs
which, together with their cellular and population observations, pro-
vides a neurophysiological basis for our findings on a wider level. What
they described as the desynchronized state in their population-based
LFPs corresponds to our more macroscale-based high prestimulus vari-
ability; it is associated with stronger poststimulus TTV quenching over
trials and faster reaction times in the theta and alpha bands. Similarly,
their synchronized state finds its equivalent on the more macroscale
level in our prestimulus low variability which had less TTV quenching
and slower reactions times. Due to such correspondence, we infer that,
on a cellular level, our high prestimulus variability possibly reflects a
desynchronized state that exhibits a higher degree of independent spik-
ing and firing of individual neurons, in comparison to the low prestim-
ulus synchronized state. This inference remains tentative, however, and
requires a combined investigation of population firing rates and LFPs in
humans.

3.3. Limitations

Firstly, though sEEG electrodes are placed in different locations
and regions of the brain, we here did not explicitly analyse the spa-
tial and regional differences. We could observe regional differences in
TTV which were largely in accordance with previous data (He 2013,
Huang et al. 2017). However, as the placement of electrodes in SEEG
were dependent upon the pathology of the individual patient (epilep-
tic focus), we here refrained from analyzing the spatial distribution and
differences in a more pronounced way.

Secondly, it should be mentioned that Arazi et al (Arazi et al., 2017a)
observed the TTV peak to be slightly earlier - between 200 and 400 ms
after stimulus onset - than the TTV peak in the current dataset which
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occurred between 500ms to 800 ms. Though it cannot be verified here, it
may be related to differences in stimulus type and length; they presented
short visual stimuli for roughly 100ms while we presented verbal stimuli
lasting for about 700ms in the sEEG data and long (2s) complex visual
stimuli with responses in the replication EEG data.

Thirdly, the prestimulus SD impact on poststimulus activity may
have a more cognitive rather than dynamic interpretation, as has been
shown in recent studies (Groot et al., 2021; Madore et al., 2020). For
instance, one may assume that prestimulus SD reflects the prediction or
anticipation of the upcoming stimulus as is consistent with predictive
coding Friston (2010) and recent results on prestimulus alpha (Cao et al.,
2017). However, our sEEG no-report paradigm did not include any self-
generation of the stimuli and presented self and non-self stimuli ran-
domly and with a jitter. This makes any prediction or anticipation (pre-
dictive coding) in the prestimulus period unlikely. Therefore, we assume
that the prestimulus SD and its impact on poststimulus TTV are more dy-
namic than cognitive in nature.

4. Conclusion

To address how the ongoing prestimulus dynamics impact the effect
of the external stimulus, we investigate the impact of prestimulus SD on
poststimulus TTV in an intracranial sEEG data set. Our pre-poststimulus
variability analyses found two main findings: 1) poststimulus variability
reduction, e.g. TTV quenching, is stimulus-driven and relative to the
prestimulus dynamics, as measured through prestimulus variability; 2)
the effect of the stimulus is higher in the later poststimulus period (300-
600 ms) than the earlier (0-300 ms) where the prestimulus dynamics
influence dominates. These results were replicated in a separate EEG
dataset and task, which also found that real trials with high prestimulus
variability in the theta and alpha bands had faster reaction times. Our
findings show that stimulus-related activity is blended, being composed
of a) the effects of the external stimulus, and b) the effects of the internal
ongoing spontaneous variability, with the second dwarfing the influence
of the first.

5. Methods
5.1. sEEG data and analyses

5.1.1. Experimental paradigm

The experimental paradigm presented to the patients was comprised
of two auditory stimuli: the subjects’ own name and a paired unknown
person’s name (in their native language, Chinese) are spoken by the
same familiar voice (Huang et al., 2018; Lipsman et al., 2014; Qin et al.,
2012). The duration of each name was less than 800 ms. The average
Root Mean Square (RMS) decibel level was less than -20 dB, with the
maximum RMS difference between the two names less than 1 dB. Dur-
ing this no-report paradigm, participants were presented with 180 trials
in total, 90 with their own name and the same number of another name.
The intertrial interval (ITI) between trials was 3-3.75 s, randomly jit-
tered by 0.25 s — this allowed us to minimize anticipation or prediction
effects in our analysis of stimulus-related activity as to focus on its dy-
namic rather than cognitive components.

5.1.2. Prestimulus SD

Temporal variability as defined here is the moment-to-moment
change in a neural signal (Garrett et al., 2013), which in this paper
is the timepoint-to-timepoint change. Temporal signal variability mea-
sures the distributional width of the timepoints (Garrett et al., 2013;
Waschke et al., 2021).

As our aim of the paper was to examine the relationship between pre-
and poststimulus variability, with poststimulus variability measured by
trial-to-trial variability (TTV), we needed an appropriate measure of
prestimulus variability. TTV is calculated in the time-domain (standard
deviation at each timepoint across all trials), so our prestim temporal
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variability measure should likewise be in the time domain. The most
simple and widely known of these measures was standard deviation ac-
cording to the literature (Garrett et al., 2013), so we chose standard
deviation.

The SD was calculated according to Eq. 2, then SD values were sorted
in ascending order - the first trial had the lowest prestimulus SD, the
last trial had the highest - and the median value was calculated (Fig. 1
step 3). Trials below the median were assigned to the low prestimulus
group and those above the median to the high prestimulus group, with
90 trials in each.

The time interval for the prestimulus variability calculation varied
according to frequency band due to the various period lengths of each
band. They were: broadband = -500 to 0 ms; theta = -1000 to 0 ms;
alpha = -400 to 0 ms; beta = -200 to 0 ms; low gamma = -100 to 0 ms;
high gamma = -50 to 0 ms. To ensure that this window did not affect
the results in the TTV AUC, two alternate windows were also calculated
and the TTV AUC computed and statistically tested (Table 1).

5.2. sEEG data and analyses

5.2.1. Subjects

Twenty patients (25.13 + 5.57 years; mean + SD; 8 female) with
drug-resistant epilepsy who underwent sEEG exploration in the depart-
ment of Neurosurgery of Huashan Hospital (Shanghai, China) from
September 2016 to May 2017 were included in this study. SEEG is
a long-established invasive evaluation method for patients with drug-
resistant epilepsies (Parvizi and Kastner, 2018). All patients had com-
prehensive presurgical evaluations, including a detailed medical history,
scalp EEG, magnetic resonance imaging (MRI), and positron emission
tomography (PET) scans prior to SEEG exploration. The choice of the
anatomical location of electrodes was based on results from the presur-
gical evaluation and was made by a team of clinicians independent of
the present study.

The study was approved by the research ethics committee of
Huashan Hospital, at Fudan University, and all aspects of the study were
performed according to their relevant guidelines and regulations. Writ-
ten informed consent was obtained from the patients, or their guardians,
for participation in this study.

5.2.1.1. SEEG recording. The surgical plans were made by stereotac-
tic neuronavigational software (iPlan Cranial 2.0, Brainlab AG) and
the procedures were carried out as previously documented (Gonzalez-
Martinez, 2016). Double dosage enhanced T1 images were obtained
to identify the blood vessels first then the Leksell stereotactic frame
(Elekta) was applied to localize the coordinates of the electrodes. In-
tracerebral multiple contacts electrodes (HKHS, Beijing, China), with a
diameter of 0.8 mm and 8-16 contacts, were applied during the surgery
which was performed under local anesthesia. The length of each con-
tact was 2 mm with 1.5 mm between contacts. Post-implantation CT
scans were performed the day after implantation surgery to 1) exclude
intracranial hematoma, and 2) localize the location of each contact.

The sEEG signals were recorded on a Nihon Kohden 256-channel EEG
system (EEG-1200C) with a sampling rate of either 1 or 2 kHz, and hard-
ware filtered between 0.01 Hz and 600 Hz. The signals during recording
were referenced to white matter in the brain which was defined by the
clinicians.

SEEG is minimally contaminated by artifacts such as swallowing,
eye movement, muscle movement, etc., compared to scalp EEG, so it
is not prone to artifacts related to gaze position, electrode offset vari-
ability, and movement (Parvizi and Kastner, 2018) (see for instance
Arazi et al. 2017a and b for excellent control of those factors in EEG).
This makes sEEG an ideal tool to record and measure specific variability
measures such as TTV.
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5.2.2. Electrodes localization

Electrodes were auto segmented from post-implanted computed to-
mography (CT) images (Qin et al., 2017). The post-implantation CT was
aligned to preoperative MRI images and contacts were calculated and re-
constructed. The locations of these contacts were checked manually with
neuronavigational software. Finally, the contacts were labeled based on
Freesurfer’s parcellation of the MRI.

5.2.3. sEEG preprocessing

Before any data analysis was performed, the timeseries of each con-
tact was examined by an epileptologist who classified contacts as either
seizure or non-seizure. To start, as the data for some of the participants
was recorded at a sampling rate of 2 kHz while others were recorded
at 1kHz, all the former were resampled to 1 kHz using MATLAB’s re-
sample function which includes an anti-aliasing filter. The events for the
task were then imported, superfluous channels (ECG, EMG, etc) were
removed, and the contacts previously determined to be seizure contacts
by the epileptologist were also removed.

To follow the preprocessing steps of the literature closely, the same
methods of two recent SEEG publications (Daitch and Parvizi, 2018;
Helfrich et al., 2018), were followed exactly. In MATLAB (The Math-
Works, v2012) and according to the methods of Daitch (Daitch and
Parvizi, 2018), we calculated the power spectrum for each contact as
well as the mean power over all contacts. If the mean power of a given
contact was > +5 SDs of the mean power across all contacts for a given
participant, that contact was removed from the data (median =2 + 1.2,
range = 0-5).

Next, the remaining contacts were two-way zero-phase FIR notch fil-
tered at 50Hz and harmonics (100 Hz, 150 Hz), and rereferenced to the
mean of all remaining contacts. The signal was then bandpass filtered us-
ing a two-way, zero-phase FIR non-aliasing filter in the following bands:
0.1-1 Hz, 1-4 Hz, 4-8 Hz, 8-13 Hz, 13-30 Hz, 30-70 Hz, 70-80 Hz, 80—
90 Hz, 90-100 Hz, 100-110 Hz, 110-120 Hz, 120-130 Hz, 130-140 Hz,
140-150 Hz, 150-160 Hz, 160-170 Hz, and 170-180 Hz.

The instantaneous amplitude for each band was then computed by
applying the Hilbert transform (MATLAB function hilbert) and taking its
modulus. Each datapoint for each contact was then normalized by the
mean activity of each contact to partially correct for the 1/f nature of
electrophysiological signals. The signal for each band was then recom-
bined into one signal by taking the mean of all bands per timepoint per
contact.

5.2.4. Event-related potentials confirm neural response to stimuli

The green curve (shaded area is standard error) is the mean over all
participants for all real trials while the black curve is the same for the
pseudotrials. To statistically compare the two curves, the area under the
curve (AUC) using the trapezoidal method was computed. This was done
from stimulus onset (Oms) to 304ms as it was at 304ms that this mean
curve reached OuV. A Wilcoxon signed rank non-parametric repeated
measures test on the AUC was done and found a significant difference
between the real and pseudotrials (Z = 3.659, p = 2.536 x 10~4). There-
fore, this visualization and statistically significant difference confirms a
neural response to the no-report sensory stimuli.

5.2.5. Stimulus-responsive contact classification

From the preprocessed data, a high-pass two-way zero-phase FIR fil-
ter was applied at 70Hz. This left the signal with high frequency band
(HFB) gamma between 70-180Hz. The data was then epoched from -
2000ms to 2000ms, with a baseline of -200 to Oms applied to ERP anal-
ysis (Helfrich et al., 2018).

We determined which contacts were stimulus responsive according
to the methods of Helfrich (Helfrich et al., 2018). Briefly, a contact was
excluded from all subsequent analyses when the average HFB response
to the stimulus was below a z-score of +1.5 for 10% (50 samples) of
consecutive timepoints between stimulus onset (0 ms) and 500 ms (me-
dian = 125 + 37, range = 45-182 contacts removed per participant).
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5.2.6. Event-related potentials (ERPs)

Event-related potentials (ERPs) were calculated to confirm a re-
sponse to the stimuli (or its absence in pseudotrials) and for control
analysis (see below). As for all other analyses, the data was epoched
from -2000 ms to 2000 ms and was baseline corrected from -200 to
0 ms. The mean of all trials (180) over all contacts was calculated for
each participant.

5.2.7. TTV in different frequency bands

The frequencies of the SEEG between 0.1 and 70 Hz was selected as
the broadband for TTV calculation. Moreover, the continuous signal was
decomposed into the following frequency bands using a two-way zero-
phase FIR filter: theta = 4-8 Hz, alpha = 8-13 Hz, beta = 13-30 Hz,
low gamma = 30-70 Hz, and high gamma = 70-180 Hz. Afterwards,
the filtered signals were epoched. The prestimulus SD, including the
median split and high/low grouping, and TTV was computed (as ex-
plained above) for each band according to the findings of previous stud-
ies (Arazi et al., 2017b; Wolff et al., 2019c¢). Thus, the filtering of the
data was done prior to epoching, and the determination of prestimulus
high/low SD groups was done separately for each band.

5.2.8. Real and pseudotrial TTV

The TTV as calculated above includes both a) the effect of the
stimulus on the ongoing variability, and b) the ongoing variability
that transfers from the prestimulus interval to the poststimulus pe-
riod (see Eq. 3 below). To disentangle stimulus-related effects within
TTV from those of the ongoing variability, we calculated ‘pseudotrials’
(Huang et al., 2017; Wolff et al., 2019c). Based on fluctuations of the
spontaneous activity, the pseudotrials were selected from the ITI pre-
ceding each stimulus; specifically, we marked -1500ms (1500ms before
onset of the real stimulus) as the virtual stimulus onset and investigated
the subsequent 800ms (same duration as the real trials) period as the
pseudotrial. In contrast, the real trials were defined as 0 to 800ms of the
stimulus-related epoch.

Both real and pseudotrial TTV were calculated in the same way as
described above (Results, Eq. 1). To determine if the prestimulus vari-
ability had a significant effect on the poststim TTV, the AUC between
450-550ms was calculated using the MATLAB function trapz which em-
ploys the trapezoidal method of integration.

5.3. EEG data and preprocessing for replication

5.3.1. EEG paradigm

To replicate the findings in the sEEG data, the same analyses were
done in a separate dataset with a moral judgement task (Wolff et al.,
2019b) (20 participants, 11 females, mean age = 29.9 + 11.3 years,
range of 19-55 years) in scalp EEG. The data was recorded on Neu-
roscan’s 64 channel Quik-Cap with parameters detailed previously
(Wolff et al., 2019b). Written informed consent was obtained from all
participants prior to participation (REB# 2009018, University of Ottawa
Institute of Mental Health Research).

The task employed here was the externally-guided decision-making
control task explained in detail elsewhere (Wolff et al., 2019¢, 2019b).
Briefly, participants were presented with a black screen divided verti-
cally by a white line. On either side of the center line, two-dimensional
stick people were presented, with the numbers on either side varying.
Each stimulus contained a total of twelve people, however the ratio be-
tween the left and right sides differed and was presented for two sec-
onds. The ITT’s were jittered at 5 s, 5.5 s and 6s and randomized. The
participants’ task was to judge whether there were more people on the
left side of the screen than the right side. Each participant was presented
with four stimuli repeated 45 times each, therefore 180 trials in total,
the same number as in the SEEG task.

Participants responded by a button press (the YES button was coun-
terbalanced across participants) with the mean reaction time being 761
+ 198ms and a range of 391 to 1111ms.



A. Wolff, L. Chen, S. Tumati et al.

5.3.2. EEG preprocessing and pseudotrial insertion

Preprocessing of the data was done according to standard steps for
task-related EEG data (Wolff et al., 2019c¢, 2019a). The preprocessing for
the EEG data was done in MATLAB (The MathWorks, v2018b) with the
Optimization, Statistics and Signal Processing Toolboxes using EEGLAB
(Delorme and Makeig, 2004) version 14.

To begin, data was resampled to 500 Hz using EEGLAB’s resample
anti-aliasing function. The data was then low- and high-pass filtered us-
ing a two-way zero-phase FIR filter at 0.5 Hz and 70 Hz respectively
(High Gamma was excluded). Data were then visually inspected. Chan-
nels flat longer than 5s, those that had less than 0.8 correlation with
neighboring channels or line noise +4SD compared to other channels
were removed (mode = 2, range O to 3). The data was then referenced
to the average of all channels, as was done in the sEEG preprocessing.
To remove 60Hz electrical noise activity, EEGLAB function CleanLine,
which uses a multi-taper sliding window approach to remove electrical
line noise, was used.

Data was epoched similarly to the sEEG data (described above) and
independent component analysis (ICA) reduced stationary artifacts with
the Multiple Artifact Rejection Algorithm (Winkler et al., 2014, 2011).

Identical to methods previously stated (Wolff et al., 2019¢), pseudo-
trials were inserted into the EEG blocks. This was done in the ITI pre-
ceding the real stimulus, specifically the onset of the pseudotrial was set
3.5s prior to the onset of the actual stimulus. This allowed for a mini-
mum of 1s between the pseudo and real trial.

5.3.3. Reaction time data and behavioral relevance

To determine if there was a significant difference in reaction time
between trials with prestimulus high or low variability, the prestimulus
SD of trials were split into three groups (triple-split). The corresponding
reaction times from the top and bottom third (ascending SD values 1-
60 and 121-180) for each frequency band were then extracted and the
mean of each group was computed. A repeated measures t-test was done
for each frequency band to compare the mean reaction times between
the low and high prestim.

To correlate the TTV AUC in the difference curves described above
(TTV real trials minus TTV pseudotrials), the reaction times for the me-
dian split based on the prestimulus SD were extracted and the mean
was computed. A two-tailed Spearman’s correlation (some of the distri-
butions were non-normal) between these mean reaction times and the
TTV AUC was done for both the prestimulus high and low. To support
this correlation, a linear polynomial curve was fit to the data using MAT-
LAB v2018b’s fit function (fitType = ‘polyl’). Finally, to contrast these
results with those from the TTV curves that were not corrected for pres-
timulus variability, the same analysis was done with the TTV AUC from
the real trials.

5.4. Correlation and statistics

All statistics were computed either in SPSS v24 or MATLAB v2018b
using the Statistics Toolbox, and the significance level for all tests was
.05. To control for multiple comparisons, the False Discovery Rate by
Benjamini-Hochberg Benjamini and Hochberg (1995) was applied to the
p-values of all statistical tests (See the result sections for more detailed
statistics).

Repeated measures t-tests and ANOVA’s were used as all participants
contributed to both/all levels (real trials/corrected trials/pseudotrials,
prestimulus low/prestimulus high, etc). All assumptions of ANOVA’s
were met prior to calculating the statistical test.
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