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a b s t r a c t 

Neural responses to the same stimulus show significant variability over trials, with this variability typically 

reduced (quenched) after a stimulus is presented. This trial-to-trial variability (TTV) has been much studied, 

however how this neural variability quenching is influenced by the ongoing dynamics of the prestimulus pe- 

riod is unknown. Utilizing a human intracranial stereo-electroencephalography (sEEG) data set, we investigate 

how prestimulus dynamics, as operationalized by standard deviation (SD), shapes poststimulus activity through 

trial-to-trial variability (TTV). We first observed greater poststimulus variability quenching in those real trials 

exhibiting high prestimulus variability as observed in all frequency bands. Next, we found that the relative ef- 

fect of the stimulus was higher in the later (300-600ms) than the earlier (0-300ms) poststimulus period. Lastly, 

we replicate our findings in a separate EEG dataset and extend them by finding that trials with high prestim- 

ulus variability in the theta and alpha bands had faster reaction times. Together, our results demonstrate that 

stimulus-related activity, including its variability, is a blend of two factors: 1) the effects of the external stimulus 

itself, and 2) the effects of the ongoing dynamics spilling over from the prestimulus period - the state at stimulus 

onset - with the second dwarfing the influence of the first. 
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. Introduction 

Over the past ten years, many studies ( Baria et al., 2017 ; Galindo-

eon et al., 2019 ; He, 2013 ; Hirschmann et al., 2019 ; Huang et al., 2017 ;

ieus et al., 2018 ; Podvalny et al., 2019 ) have demonstrated that post-

timulus activity levels depend on the initial state, the level of activity

efore the stimulus is presented ( Benwell et al., 2017 ; Fellinger et al.,

011 ; Hanslmayr et al., 2013 ; He, 2013 ; Hirschmann et al., 2019 ;

uang et al., 2017 ; Mathewson et al., 2009 ; Milton and Pleydell-

earce, 2016 ; Northoff et al., 2010 ; Yamagishi et al., 2008 ). Despite

hese findings, the mechanism of such state-dependence is unclear; how

oes prestimulus activity shape stimulus-induced activity beyond the

ffect of the external stimulus? 

Variability of the signal may be a key factor. As neural responses to

he same stimulus show significant variability over trials ( Churchland
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t al., 2010 ; He, 2013 ), the quenching (reduction) of this neural variabil-

ty occurs after stimulus onset ( Arazi et al., 2017a , 2017b ; Churchland

t al., 2010 ; Daniel et al., 2019 ; Haar et al., 2017 ; Huang et al., 2018 ,

017 ; Schurger et al., 2015 ), though increases in neural variability

ave also been observed at multiple levels ( Churchland et al., 2011 ;

aar et al., 2017 ; Huang et al., 2018 ; Wolff et al., 2019c ). Although

uch studied, how this neural variability quenching in the poststimu-

us period - termed trial-to-trial variability (TTV) - is influenced by the

restimulus state is unknown. 

TTV describes and indexes ( Arazi et al., 2017a , 2017b ; Churchland

t al., 2010 ; Ferri et al., 2015 ; He and Zempel, 2013 ; Huang et al., 2017 ;

churger et al., 2015 ) the suppression of the variability of the sponta-

eous brain activity by the arrival of the stimulus ( Arazi et al., 2017a ,

017b ; Churchland et al., 2011 , 2010 ; Dinstein et al., 2015 ; He, 2013 ;

e and Zempel, 2013 ; Wolff et al., 2019c ). TTV quenching has been

bserved on multiple levels of neural activity: cellular ( Arieli et al.,

996 ; Chang et al., 2012 ; Churchland et al., 2011 , 2010 ; Finn et al.,
n). 
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n  
007 ; Goris et al., 2014 ; Hussar and Pasternak, 2010 ; Liu et al., 2016 ;

azzucato et al., 2016 , 2015 ; Monier et al., 2003 ; Scaglione et al., 2011 ;

hite et al., 2012 ); scalp-level ( Arazi et al., 2017b , 2017a ; He and Zem-

el, 2013 ; Schurger et al., 2015 ); functional magnetic resonance imag-

ng (fMRI) ( Ferri et al., 2015 ; He, 2013 ; Huang et al., 2017 ) (see also

 Dinstein et al., 2015 ) for review of TTV). 

In addition to its varying modulation by different stimuli ( Arazi et al.,

017b ; Churchland et al., 2011 , 2010 ; Hussar and Pasternak, 2010 ;

olff et al., 2019c ), previous studies suggest that TTV is also de-

endent on the degree of the brain’s variability at stimulus onset.

n non-human data, studies examining prestimulus variability in neu-

al activity have provided direct evidence of its modulating effect on

timulus-related sensory activity ( Benwell et al., 2017 ; Gulbinaite et al.,

017 ; Hanslmayr et al., 2013 ; Hennequin et al., 2018 ; Huang et al.,

019 ; Lin et al., 2015 ; Luczak et al., 2013 ; Mathewson et al., 2009 ;

omei et al., 2008 ; Scholvinck et al., 2015 ; Shimaoka et al., 2019 ;

amagishi et al., 2008 ). Moreover, cell-level studies in animals have

hown a strong dependence of poststimulus TTV and behavior (reaction

imes) on prestimulus variability ( Curto et al., 2009 ; Kisley and Ger-

tein, 1999 ; Pachitariu et al., 2015 ; Schurger et al., 2010 ). How stimulus

elated TTV is shaped by prestimulus variability in humans, though, is

nknown. 

We therefore asked what the electrophysiological relationship in

umans is between pre- and poststimulus variability as measured

ith TTV. Closing the loop between these two factors - variability

n humans before (as measured by prestimulus standard deviation

SD)( Garrett et al., 2013 ; Waschke et al., 2021 )) and after stimulus onset

as measured by TTV) – to demonstrate state-dependence of stimulus-

nduced activity is the aim of the present study. 

Specifically, we aimed to investigate how prestimulus activity shapes

oststimulus activity, hypothesizing that their interaction is mediated by

ariability; what is the relationship between pre- and poststimulus vari-

bility in humans as measured with TTV? In addressing this question,

e encountered the methodological challenge of linking the continuous

ngoing dynamics (timepoint-to-timepoint within a single trial) of the

restimulus period to the measurement of discrete, discontinuous (over

ll trials at a single timepoint) activity time-locked to a stimulus (see

 Huk et al., 2018 )). To combine both, we introduce a novel methodolog-

cal strategy by testing whether prestimulus temporal SD, as measured

n a continuous way (from timepoint-to-timepoint in each trial) through

tandard deviation, influences poststimulus variability, measured in a

iscontinuous way (over trials at a single timepoint) by TTV ( Huk et al.,

018 ) ( Fig. 1 ). 

Based on the data described above ( Baria et al., 2017 ; He, 2013 ;

uang et al., 2017 ), we had four hypotheses: i) poststimulus TTV in real

rials would show more TTV quenching than in pseudotrials (as related

o variability in ongoing activity independent of the external stimulus;

ee below) (thus reflecting the effects of the external stimulus itself in-

ependent of the ongoing dynamics); ii) there would be differences in

oststimulus TTV between prestimulus low and high SD (reflecting the

mpact of the ongoing prestimulus dynamics on stimulus-related activ-

ty); iii) there would be differences in the impact of prestimulus low and

igh on TTV quenching in different frequency bands (reflecting differ-

ntial impact of various frequency bands on pre-poststimulus shaping),

pecifically in the alpha and beta bands which have previously showed

TV differences ( Wolff et al., 2019c ); iv) there would be a difference

n reaction times between trials with prestimulus low and high in the

lpha band ( Wolff et al., 2019b ) (reflecting the behavioral relevance of

he ongoing dynamics). 

We addressed these hypotheses by investigating human intracra-

ial electrophysiological activity, which measures local field potentials

LFP) ( Buzsáki et al., 2012 ), as acquired in a stereoelectroencephalog-

aphy (sEEG) dataset comprised of 20 participants. We applied a sim-

le paradigm with two different stimuli and no behavioral response – a

o-report paradigm ( Tsuchiya et al., 2015 ). This allowed us to test the

mpact of the stimulus alone on stimulus-related activity, independent
2 
f any behavioral and cognitive constraints as well as uncontaminated

y any response-related neural activity. 

Furthermore, we applied the method of pseudotrials ( Huang et al.,

017 ; Wolff et al., 2019c ). Pseudotrials (also referred to as surrogate

rials He (2013) ) describe time periods between stimulus presentation

hen a stimulus is absent ( Dinstein et al., 2015 ). Used to model the

ngoing dynamics of the spontaneous activity, pseudotrials serve as

 baseline for the recorded activity when a stimulus was presented

 Huang et al., 2017 ). When the activity during these pseudotrials was

ubtracted from the activity of the real trials, the difference shows the

timulus-related activity itself, independent of the impact of the ongoing

ynamics ( Huang et al., 2017 ). This allowed us to parcel out and dis-

inguish the effects of the external stimulus itself, and those of the pres-

imulus dynamics, on stimulus-related activity as measured with TTV. 

. Results 

Using the methodological factors described above, we set out to test

he relationship between prestimulus variability (measured by SD) and

oststimulus variability (measured by TTV). With sEEG data, we first

alculated the SD (an index of variability) of the signal amplitude in

he prestimulus period (varying interval lengths, see methods) ( Fig. 1 ).

fter a median split, trials were assigned to either the prestimulus low

r high SD group (median split) ( Fig. 1 b). TTV was then calculated in

ach group in the period after stimulus onset, and the area under the

urve was measured. 

We then sought to examine the effect of the stimulus, including the

iming of its effects, on the ongoing pre-poststimulus variability. This

as done by comparing the TTV in real trials to that in pseudotrials. Our

ndings were replicated in a separate EEG dataset (see Supplementary

esults) with a report task ( Wolff et al., 2019c , 2019b ). Finally, as the

ask in this dataset required that participants respond behaviorally, we

ested whether the shaping of TTV by prestimulus SD is relevant for

ehavior. 

.1. Prestimulus variability has a significant effect on poststimulus TTV in 

eal and pseudotrials 

After verifying the presence (real trials) and absence (pseudotrials)

f a stimulus in the event-related potentials (ERPs) (Supplementary Re-

ults, Supplementary figure 1a) ( p = 2.536 × 10 − 4 ), individual trials

ere sorted according to their prestimulus SD ( Fig. 1 , Supplementary

ig. 1cd, see methods). Trials with the lowest half of SD were assigned

o the prestimulus low group while trials in the top half of the SD were

ssigned to the prestimulus high group ( Fig. 1 , Supplementary Figure

CD). 

Once this SD median split had been done, TTV was calculated ( Fig. 1

tep 4). TTV was defined as the variability changes relative to variability

t stimulus onset (see ( Arazi et al., 2017a , 2017b ; He and Zempel, 2013 ;

olff et al., 2019c ) for related methods). We calculated the percent

hange with respect to the value at stimulus onset ( Arazi et al., 2017a ,

017b ; He, 2013 ), 

 𝑇 𝑉 ( 𝑡 ) = 

𝜎𝑜𝑡 ( 𝑡 ) − 𝜎𝑜𝑡 ( 0 ) 
𝜎𝑜𝑡 ( 0 ) 

× 100 (1)

here 𝜎𝑜𝑡 ( 𝑡 ) is the SD of the sEEG signal over trials as function of time

 and 𝜎𝑜𝑡 (0) is the SD over trials at stimulus onset, or 0ms (no differ-

nce between SD at stimulus onset between real and pseudotrials with

 = .065). To determine if there was a difference in the poststimulus

ctivity in the groups split by prestimulus SD, the area under the curve

AUC) between 450 and 550ms was tested (approximate maximum TTV

uenching according to Fig. 2 c). 

In the broadband, a 2 (prestimulus high, prestimulus low) x 2

real trials, pseudotrials) repeated measures ANOVA found a sig-

ificant difference in TTV AUC between low and high prestimulus
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Fig. 1. Standard trial-to-trial variability 

(TTV) calculation and our adjusted method. 

A) TTV is usually calculated by determining 

the standard deviation (SD) at each timepoint 

over all trials, then normalized by subtract- 

ing and dividing by the SD at stimulus onset 

(time = 0ms). From this standard calculation, 

our hypothesis and method of the study re- 

sulted. B) Calculation of prestimulus SD and 

sorting of trials into prestimulus low and high. 

Step 1 – A window prior to stimulus onset 

(500ms in the broadband) was chosen for 

each frequency band. Step 2 - The standard 

deviation of the signal amplitude was calcu- 

lated in each trial. This continuous measure 

( Huk et al., 2018 ) yielded one value per trial. 

Step 3 – These values were then sorted in as- 

cending order. Step 4 – As there were 180 tri- 

als, after sorting trials 1 to 90 were catego- 

rized as prestimulus low SD, while trials 91 to 

180 were categorized as prestimulus high SD 

(median split). Step 5 – In each group - pres- 

timulus low, prestimulus high - which consists 

of 90 trials, TTV was calculated according to 

the methods of ( Wolff et al., 2019c ). Here- 

after, prestimulus low denotes the TTV com- 

puted on the trials with the lower prestim- 

ulus SD (trials 1-90) while prestimulus high 

denotes TTV computed on the trials with the 

higher prestimulus SD (trials 91-180). TTV is 

a discontinuous measure ( Huk et al., 2018 ) as 

it is calculated over trials. 

3 
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Fig. 2. Trial-to-trial variability (TTV) in real and pseudotrials for all frequency bands. a) Real trials (green lines) were from stimulus onset (0ms) while pseudotrials 

(black lines) were from a virtual stimulus during the intertrial intervals. b) The standard deviation (SD) from a prestimulus period was calculated to each real and 

pseudotrial. Those trials with high prestimulus SD were then assigned to the prestim high group, and TTV over all these trials were calculated from them. The same 

was done for the low prestimulus SD. c) TTV in real trials for prestimulus low and high. Left column : Both real and pseudotrials SD over trials (at each timepoint) 

without the normalization to stimulus onset. Center and Right column : Area under the curve (AUC) from 450 to 550ms was calculated and compared (bar plots). TTV 

in pseudotrials with AUC for the same time interval compared. In the broadband, a 2 (prestimulus low, prestimulus high) x 2 (real trials, pseudotrials) repeated 

measures ANOVA on the AUC found an effect of prestimulus ( p < .001) and stimulus ( p < .001). In all bands, a 2 (prestimulus low, prestimulus high) x 2 (real trials, 

pseudotrials) x 5 (bands) repeated measures ANOVA found effects of prestimulus ( p < .001), stimulus ( p = .001), and bands ( p < .001). Gray shaded areas are interval 

of calculation of AUC which is shown in the bar plots. Error bars show standard error. Each curve/bar is the mean of all participants. 
4 
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Table 1 

TTV AUC 2 × 2 repeated measures ANOVA in broadband for all trials. 

Factor Levels df F - value p - value 𝜂p 
2 

Trials Real, Pseudo 1, 19 9.649 .006 .337 

Interval Early, Late 16.601 .001 .466 

Interaction 6.402 .020 .252 

df = degrees of freedom 

𝜂p2 = partial eta squared 
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 F (1,19) = 58.692, p < .001 𝜂p 
2 = .755) and between real and pseu-

otrials ( F (1,19) = 30.294, p < .001, 𝜂p 
2 = .615) ( Fig. 2 c). There was a

arge effect size for both factors. 

Next, to measure the same factors in the individual frequency bands,

 2 (prestimulus low, prestimulus high) x 2 (real trials, pseudotrials)

 5 (theta, alpha, beta, low gamma, high gamma) repeated measures

NOVA was done. As in the broadband, there was a significant effect in

TV AUC of prestimulus ( F (1,19) = 39.288, p < .001, 𝜂p 
2 = .674), trials

 F (1,19) = 14.400, p = .001, 𝜂p 
2 = .431) and frequency bands ( F (2.495,

7.402) = 16.132, Greenhouse-Geisser corrected p < .001, 𝜂p 
2 = .459),

ith a large effect size in all three factors. After these results, the impact

f the interval of the prestimulus SD was examined (see Supplementary

esults). With one prestimulus interval longer than that used above, and

ne shorter, no significant effect of window size was found (Supplemen-

ary Tables 3–5). 

Together our results show the effect of prestimulus variability on

TV: the level of prestimulus SD exerts a strong impact on poststimu-

us variability in both real and pseudotrials. More generally, our well-

ontrolled findings show the strong degree to which intrinsic prestim-

lus SD shapes poststimulus activity, in addition to the effect of the

xternal stimulus. 

.1.1. Poststimulus TTV disambiguates the effect of the stimulus from the 

ngoing spontaneous activity 

Since our results above showed a similar difference between pres-

imulus low and high in pseudotrials as in real trials, we wanted to in-

estigate the effect of the stimulus itself on poststimulus TTV. 

Measured neural activity after stimulus onset, A 𝑚 , is a sum of mul-

iple activities, plus their interaction ( He, 2013 ; Huang et al., 2017 ):

 𝑚 ( 𝑡 ) = A 𝑜 ( 𝑡 ) + A 𝑠 ( 𝑡 ) + 𝐼 𝑜,𝑠 ( 𝑡 ) (3)

here A 𝑜 is the ongoing spontaneous activity at timepoint t , A 𝑠 is the

timulus-related activity, and 𝐼 𝑜,𝑠 is the interaction between the ongoing

pontaneous activity and the stimulus-related activity. As it is not pos-

ible to measure the interaction between A 𝑜 and A 𝑠 ( 𝐼 𝑜,𝑠 ) directly - A 𝑜 

ontinues to change after stimulus onset He (2013) – neural activity was

eplaced with variability over trials (TTV) in order to isolate stimulus-

elated activity ( A 𝑠 ). TTV encompasses the interaction of the ongoing

pontaneous activity with the stimulus-related activity ( 𝐼 𝑜,𝑠 ) within it; it

s measured relative to SD at stimulus onset and measures the variability

ver trials. Therefore, to account for this interaction, the neural activity

as replaced by the variability over trials, or TTV: 

T V 𝑟 ( 𝑡 ) = TT V 𝑝 ( 𝑡 ) + TT V 𝑠 ( 𝑡 ) (4)

here TT V 𝑟 is the TTV measured in the real trials at timepoint t , TT V 𝑝 is

he TTV of the ongoing spontaneous activity as measured in the pseudo-

rials, and TT V 𝑠 is the TTV of the stimulus-related activity (correlations

re neglected). 

To isolate the effect of the stimulus, the broadband TTV in real and

seudotrials were compared separately for prestimulus low and high

 Fig. 2 c). For each timepoint from stim onset (0ms) to 600ms, two re-

eated measures t -tests were calculated with the respective TTV for all

articipants. The two tests were a) prestimulus low in real trials com-

ared to prestimulus low in pseudotrials, and b) prestimulus high in

eal trials compared to prestimulus high in pseudotrials. Therefore, the

TV at timepoint one for all participants (20 patients) in real trials was

ested against the TTV at the same timepoint for all participants in pseu-

otrials. As this was done at each timepoint, it produced a timeseries of

 -values, as was done previously He and Zempel (2013) . 

This p -value timeseries was then corrected for multiple comparisons

enjamini and Hochberg (1995) and plotted ( Fig. 3 a). The time interval

hen the corrected p -value timeseries was less than .05 was considered

he interval during which the stimulus had an impact. We considered it

o as there was a significant difference between the TTV when a stim-

lus was presented and the TTV when no stimulus was presented; we
5 
onsidered the stimulus to have an impact when there was a difference

etween the real trials and the pseudotrials. In prestimulus low, this

imepoint was found to be at 226 ms, while the significance level was

assed at 254 ms in prestimulus high. 

After visualizing the resulting p -value timeseries’, they crossed the

ignificance level at slightly before the 300 ms mark, or the halfway

oint of our poststimulus window. Therefore, the stimulus was consid-

red to have a significant impact on the TTV after the points where the

-value timeseries crossed this significant threshold. 

To verify our finding above in a second way, we divided the poststim-

lus window into two equal intervals (300 timepoints), an earlier one

nd a later one (henceforth termed ‘early’ and ‘late’). To determine the

ffect of prestimulus variability and trials (real, pseudotrials) in these

wo intervals (early: 0-300ms, late: 300-600ms), the AUC during the

wo intervals for each of the four TTV curves were compared ( Fig. 3 b).

n the early time interval, a 2 (prestimulus low, prestimulus high) x

 (real trials, pseudotrials) repeated measures ANOVA found a signif-

cant effect of prestimulus ( F (1,19) = 56.291, p < .001, 𝜂p 
2 = .748)

ut not of stimulus ( F (1,19) = .896, p = .356, 𝜂p 
2 = .045). In con-

rast, the late time interval found a significant effect of both prestimulus

 F (1,19) = 60.795, p < .001, 𝜂p 
2 = .762) and stimulus ( F (1,19) = 39.402,

 < .001, 𝜂p 
2 = .675). 

Next, to isolate the stimulus-related variability quenching (TTV re-

uction), Eq. 4 must be rearranged: 

T V 𝑠 ( 𝑡 ) = TT V 𝑟 ( 𝑡 ) − TT V 𝑝 ( 𝑡 ) (5)

e did this by subtracting the TTV curves at each timepoint t in the

seudotrials ( TT V 𝑝 ) from that in the real trials ( TT V 𝑟 ) in the two time

ntervals ( Fig. 3 b). These TTV curves were titled ‘corrected TTV’ (cTTV)

s the subtraction of the pseudotrials removed - corrected for - the effect

f the prestimulus variability. 

The AUC of the resulting curves were calculated, and the absolute

alue was taken (only the magnitude was of interest, not whether the

TV curve increased or decreased in variability). This allowed us to iso-

ate the change in variability due to the stimulus; it is hypothesized that

ubtracting the pseudotrials effectively removes the variability related

o the ongoing activity ( He, 2013 ; Huang et al., 2017 ). 

A 2 (prestimulus low, prestimulus high) x 2 (early, late) re-

eated measures ANOVA found no significant effect of prestimulus SD

 F (1,19) = .289, p = .597, 𝜂p 
2 = .015) and a significant effect of time

nterval ( F (1,19) = 19.305, p < .001, 𝜂p 
2 = .504). 

Finally, in the same early and late time intervals, the TTV AUC for all

eal and pseudotrials (prestimulus low and high together) was measured

 Fig. 3 c). This was done to measure the effect of the stimulus only on

oststimulus variability. For this reason, the trials were not divided ac-

ording to prestimulus variability as its effect had been examined above.

he factor being measured was the effect of the stimulus, so the compar-

son between real trials (had a stimulus) and pseudotrials (stimulus was

bsent) was done here. A 2 (real trials, pseudotrials) x 2 (early, late)

epeated measures ANOVA found a significant effect of both stimulus

nd time interval, and a significant interaction between the two factors

 Fig. 3 de, Table 1 ). 

These findings show the effect of the stimulus itself on poststimulus

ariability in two ways. They indicate that the early period of poststim-

lus activity – 0-300 ms - is shaped by both the state-dependent vari-

bility of prestimulus SD and the external stimulus. In the later period
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Fig. 3. Effect of stimulus on trial-to-trial variability. a) Broadband trial-to-trial variability (TTV) in real and pseudotrials. Each curve is the mean of all participants. 

To determine the effect of the stimulus, repeated measures t -tests were done for all data points between the broadband TTV of real and pseudotrials shown in a. The 

p -values – Benjamini-Hochberg corrected for multiple comparisons – were then plotted for all timepoints. The p -values fell below the significance level (.05) just 

before 300ms. b) After the findings in a , the poststimulus period was divided into two equal intervals, 0-300ms and 300-600ms. The area under the curve (AUC) was 

then calculated for all TTV curves in a for both intervals. 2 × 2 repeated measures ANOVAs in each interval found an effect of prestimulus only in the early intervals, 

and of prestimulus and stimulus in the late interval. Right plot: For each timepoint the TTV curve for the pseudotrial was subtracted from that of the real trial. The 

AUC was then calculated, and a 2 × 2 repeated measures ANOVA was done to determine the effect of prestimulus and time interval. No effect of prestimulus was 

found, though an effect of time interval was. c) TTV in all real trials and all pseudotrials. d) Finally, in the same intervals from b , the AUC for TTV in all trials –

not divided by prestimulus low and high – and pseudotrials was compared. An effect of time interval was found, as was stimulus (real and pseudo). e) Finally, the 

difference between the two intervals was calculated, and a significant difference was found. Each bar is the mean of all participants. 

6 
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Fig. 4. Corrected trial-to-trial variability 

(cTTV) and its maximum quenching. a) cTTV 

( b ) is equal to TTV of real trials minus TTV of 

pseudotrials – for prestimulus low and high. c) 

TTV maximum quenching (0–600 ms) for all 

trials, TTV and cTTV. In all real trials (black 

bar, left), max quenching is less than 20%. 

When the trials are divided into prestimulus 

low and high (blue and gray bars, center), the 

maximum quenching differs between them. 

When cTTV is calculated, therefore corrected 

for prestimulus effects by subtracting pseu- 

dotrials ( b ), maximum quenching no longer 

differs between prestimulus low and high 

(green bars, right), though does differ from 

that of TTV in all real trials (black bar, left). 

Each curve/bar is the mean of all participants. 
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Table 2 

sEEG Maximum sEEG quenching in TTV and cTTV repeated measures t-test 

results. 

Curve Prestimulus Mean t -value p -value 

TTV Low -3.69 ± 4.39 6.79 ∗ 1.430 × 10 − 7 † 

High -25.35 ± 13.20 

cTTV Low -37.94 ± 24.59 -0.77 ∗ .449 † 

High -31.92 ± 23.84 

∗ = Degrees of freedom are 38 
† = False Discovery Rate corrected 

Table 3 

Maximum sEEG quenching between TTV and cTTV in all 

trials repeated measures t -test results. 

Curve for all trials Mean t -value p -value 

TTV -18.96 ± 11.38 3.23 ∗ .004 † 

cTTV -34.93 ± 18.94 

∗ = Degrees of freedom are 38 
† = False Discovery Rate corrected 
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300–600 ms - the external stimulus exerts a relatively stronger impact

n poststimulus activity than the ongoing spontaneous variability. 

.2. Poststimulus TTV corrected for prestimulus variability shows greater 

uenching than uncorrected TTV 

To this point, we found that prestimulus variability has a significant

mpact on poststimulus variability. Based on these findings, we next hy-

othesized that if the TTV curves were corrected for prestimulus vari-

bility, the poststimulus differences between prestimulus low and high

ould decrease, and the magnitude of the TTV quenching would in-

rease. As the difference in poststimulus variability was due to prestim-

lus variability if we were to remove this factor – prestimulus variability

the resulting difference after stimulus onset should therefore be gone.

his would be possible using pseudotrials as they serve as a model for the

ngoing spontaneous activity when no stimulus is present ( Huang et al.,

017 ; Wolff et al., 2019c ). 

We therefore tested this by calculating TTV corrected using pseudo-

rials (cTTV), 

 TTV ( 𝑡 ) = TT V 𝑟 ( 𝑡 ) − TT V 𝑝 ( 𝑡 ) (5)

ith TTV r being the curve of the real trials, TTV p being the curve of the

seudotrials, and t being the data point in the timeseries (0 ≤ t ≤ 600).

he poststimulus variability of the real trials would have the effect of

heir prestimulus variability removed by subtracting the poststimulus

ariability of the pseudotrials; the pseudotrials contain only the effect

f the prestimulus variability. 

The maximum quenching (percent change) between stimulus onset

nd 600 ms was measured for three groups of trials: 1) all real trials

ogether (180 trials per curve Fig. 4 ac far left bar); 2) real trials divided

nto prestimulus low and prestimulus high (90 trials per curve, Fig. 4 ac

enter two bars); 3) corrected TTV (cTTV) – real trials TTV minus pseu-

otrials TTV - divided by prestimulus low and prestimulus high (90 trials

er curve, Fig. 4 bc right two bars). All trials together show poststimulus

ariability when prestimulus variability is ignored, separated by pres-

imulus variability shows its effect on poststimulus variability, and cor-
7 
ected maximum quenching shows the effect on poststimulus variability

hen prestimulus variability is accounted for and removed. 

Our results supported our hypothesis. A repeated measures t -test

participants provided data to both levels) found a significant differ-

nce in the maximum quenching in TTV, but not cTTV ( Table 2 ). The

ifference in quenching between prestimulus low and high disappeared

hen TTV was corrected for prestimulus SD. 

Lastly, to compare quenching in TTV to cTTV when all trials were

ombined (180 trials), the maximum quenching in these two curves was

easured. A repeated measures t -test found a significant difference be-

ween TTV ( Fig. 4 c center two bars) and cTTV ( Fig. 4 c right two bars)

aximum quenching ( Table 3 ), with greater quenching in the cTTV. 

Finally, to replicate our TTV and cTTV findings in the sEEG data, we

id the same analysis (with standard EEG preprocessing) (see Supple-
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Fig. 5. Behavioral relevance of prestimulus SD shown in EEG dataset. A) Real trials in each frequency band were split into thirds based on the prestimulus SD and 

the reaction times for the top and bottom third were extracted. The mean was calculated. A repeated measures t -test was done to compare the mean reaction times 

of prestimulus low and high. There was a significant effect of prestimulus SD in the theta and alpha bands ( p = .032, .032, Benjamini-Hochberg FDR corrected). Each 

bar is the mean of all participants. B) In these two bands only, the TTV AUC (450-550ms) was Pearson correlated with mean reaction times. In the alpha band, the 

TTV AUC of prestimulus low had a significant correlation with mean reaction time ( p = .013), but the prestimulus high did not ( p = .226). 
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entary Results). We found the same results, with greater quenching in

he cTTV data than in the TTV data calculated in the standard way. 

.3. In sum, these findings show that correction for prestimulus SD and its 

ngoing variability yields larger TTV quenching when compared to TTV 

easured in the standard way, with no correction 

.3.1. Significant effect of prestimulus variability on reaction times in the 

heta and alpha frequency bands 

Finally, we wanted to determine if there was behavioral relevance

or prestimulus variability, and if reaction times correlated with post-

timulus TTV. With the EEG data used for replication (see Supplemen-

ary Results), the mean reaction time from the trials with the lowest and

ighest third (bottom and top 60 trials) of prestimulus variability was

alculated for the broadband and each frequency band ( Fig. 5 a). 

Repeated measures t -tests found a significant difference in the

ean reaction times in the theta ( t (19) = 2.31, p = .032) and alpha

 t (19) = 2.59, p = .032) bands. There was no significant difference in

he broadband, beta, and low gamma bands ( p = .528, .554, .494 re-

pectively). 
8 
Next, to correlate the standard TTV AUC measured (see Supplemen-

ary Figure 5 and Results) in these two significant frequency bands

theta, alpha) with the mean reaction times, two-tailed Spearman cor-

elations were done. None of the correlations were significant (theta:

 low 

= .191 and p high = .191; alpha: p low 

= .264 and p high = .273). 

However, when the same correlations were done between the AUC

rom the cTTV (Supplementary Fig. 6) and the reaction times, the cor-

elation was significant between the alpha band and the prestimulus

ow group ( r = -.597, p = .013, linear fit R-squared = .2514, linear fit

um of squares due to error = 7.278 × 10 5 ) ( Fig. 5 b). This was not sig-

ificant in the prestimulus high group ( r = -.597, p = .013, linear fit

-squared = .0082, linear fit sum of squares due to error = 6.745 × 10 5 )

r either of the theta correlations ( p low 

= .581 and p high = .130). 

Finally, to test whether 1) the correlation between cTTV AUC and

eaction time were significantly different in prestimulus low and high,

nd 2) whether these correlations were different between cTTV AUC

nd regular TTV AUC, Fisher’s r -to- z transformation was done ( He et al.,

008 ). This found that there was a difference between prestimulus low

nd prestimulus high in the correlation with reaction time and cTTV
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UC ( p = .246), and a difference in the correlations between reaction

ime of cTTV and TTV ( p low 

= .344, p high = .936). 

In sum, we show that prestimulus SD not only shapes poststimulus

ctivity, but also associated behavior in a complex cognitive task, espe-

ially in the alpha band. 

. Discussion 

We investigate the impact of the ongoing dynamics, e.g. prestimulus

D, on poststimulus activity as measured with TTV in intracranial elec-

rophysiological recordings (sEEG). First, we show that prestimulus SD

mpacts poststimulus activity in real trials as we observed differences in

he latter between prestimulus high and low trials. This served as a basis

or our second main finding: the late poststimulus period (300-600ms)

hows a greater impact of the external stimulus (relative to the ongo-

ng dynamics) than the early poststimulus period (0-300ms) (where the

mpact of the ongoing dynamics dominates). 

Next, we found that when corrected for prestimulus SD – subtract-

ng the TTV of the pseudotrials from the TTV of the real trials - the

aximum quenching of poststimulus variability was the same in trials

ith low or high prestimulus variability; this reflects the impact of the

xternal stimulus itself independent of the ongoing dynamics. In con-

rast, that was not the case when TTV calculation was not controlled for

restimulus variability, that is, standard TTV curves. This indicates the

elevance of accounting for prestimulus SD in the analyses of stimulus-

elated activity when averaging over trials; controlling for the ongoing

restimulus dynamics is thus key in isolating the effect of the stimulus

tself. 

Finally, we replicate all sEEG findings in a separate scalp-recorded

EG dataset ( Wolff et al., 2019c ) with a report paradigm ( Tsuchiya et al.,

015 ). This also allowed us to show the behavioral relevance of pre-

oststimulus variability, specifically in the alpha band, by shaping reac-

ion time. 

Together, the main result of our study is that stimulus-related activity

s highly dynamic as it blends and is composed of two components: 1)

ctivity evoked by the stimulus, therefore from an external source; 2) the

ngoing dynamics, i.e., variability carrying over from the prestimulus

eriod to the poststimulus period. This carries major implications for our

nderstanding of stimulus-related activity as we show that the influence

f the ongoing dynamics dwarfs the influence of the stimulus itself. 

.1. Poststimulus trial-to-trial variability is relative to the ongoing 

ynamics and the stimulus, especially in the later period 

Our finding of a difference in TTV between real trials with pres-

imulus low and high variability is consistent with previous studies

 He, 2013 ; Huang et al., 2017 ); activity at stimulus onset, either high or

ow, has a differential impact on poststimulus activity. We extend these

ndings by showing that this difference was found not only in the real

rials, but also in the pseudotrials when no stimulus is present. The dif-

erence found in the pseudotrials is strong evidence of the effect of the

ngoing dynamics on poststimulus activity. 

The earlier period (0–300 ms) in stimulus-related activity saw a

reater influence of the ongoing prestimulus variability than the exter-

al stimulus, as seen in Fig. 3 bde. The difference in TTV between low

nd high prestimulus was significant in this early period while the dif-

erence between real and pseudo was not. This changed in the later time

nterval; there were significant differences between both low and high

restimulus, and real and pseudotrials. Of note, differences between real

nd pseudotrials were slightly different in the prestim low compared to

igh trials. This difference should be the sole aim of a future paper,

ut it does support previous findings on nonadditive interactions of the

restimulus state on the poststimulus activity ( He, 2013 ; Huang et al.,

017 ). 

Again, as done above, when the real trials were corrected for prestim-

lus SD using pseudotrials in this context, the early interval difference
9 
etween low and high prestimulus disappeared. It also did in the later

nterval. This last finding again supports our idea of the substantial im-

act of the prestimulus dynamics as measured with SD on poststimulus

ctivity. While the findings in Fig. 3 show the different temporal course

f both prestimulus SD and the external stimulus in shaping stimulus-

elated activity, the later poststimulus period (300–600 ms) shows a

arger impact of the stimulus on TTV compared to the earlier period

before 300 ms). 

Together, we demonstrate that the two components identified as

haping poststimulus-induced activity - ongoing dynamics and the ex-

ernal stimulus - differ in their temporal course. The ongoing variability

xerts stronger effects in the early period while the impact of the exter-

al stimulus is stronger in the later period. It remains to be seen whether

he time course of the external stimulus is modulated by diverse stimuli

r cognitive requirements related to the said stimulus; this should be a

ocus of future studies. 

.2. Neurophysiological substrate of prestimulus and its ongoing variability 

SEEG recordings acquire the activity of local field potentials (LFPs),

hich measure membrane-potential derived fluctuations in the extra-

ellular space ( Buzsáki et al., 2012 ). Changes in the LFP of the brain

ave been shown to be mediated by synchronization after action po-

ential burst hyperpolarization – a burst of fast neuronal spikes is often

ollowed by the hyperpolarization of the membrane - which can be large

nd contribute to the extracellular field ( Pachitariu et al., 2015 ). 

A relevant study of LFPs in gerbils ( Pachitariu et al., 2015 ) found

hat in desynchronized cortical states low frequency fluctuations are

uppressed. This, in turn, allows individual neurons to spike indepen-

ently with measured activity being more reliable and consistent over

rials, and responses to stimuli being faster than in synchronized states.

n contrast, in a synchronized cortical state the extracellular space shows

trong low frequency LFPs fluctuations with high variability in activity

ver trials and slower responses to stimuli than in the desynchronized

tate. 

These results on the population level are consistent with ours on

 more macroscale. Using sEEG, we, as in their study, measured LFPs

hich, together with their cellular and population observations, pro-

ides a neurophysiological basis for our findings on a wider level. What

hey described as the desynchronized state in their population-based

FPs corresponds to our more macroscale-based high prestimulus vari-

bility; it is associated with stronger poststimulus TTV quenching over

rials and faster reaction times in the theta and alpha bands. Similarly,

heir synchronized state finds its equivalent on the more macroscale

evel in our prestimulus low variability which had less TTV quenching

nd slower reactions times. Due to such correspondence, we infer that,

n a cellular level, our high prestimulus variability possibly reflects a

esynchronized state that exhibits a higher degree of independent spik-

ng and firing of individual neurons, in comparison to the low prestim-

lus synchronized state. This inference remains tentative, however, and

equires a combined investigation of population firing rates and LFPs in

umans. 

.3. Limitations 

Firstly, though sEEG electrodes are placed in different locations

nd regions of the brain, we here did not explicitly analyse the spa-

ial and regional differences. We could observe regional differences in

TV which were largely in accordance with previous data ( He 2013 ,

uang et al. 2017 ). However, as the placement of electrodes in sEEG

ere dependent upon the pathology of the individual patient (epilep-

ic focus), we here refrained from analyzing the spatial distribution and

ifferences in a more pronounced way. 

Secondly, it should be mentioned that Arazi et al ( Arazi et al., 2017a )

bserved the TTV peak to be slightly earlier - between 200 and 400 ms

fter stimulus onset - than the TTV peak in the current dataset which
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ccurred between 500ms to 800 ms. Though it cannot be verified here, it

ay be related to differences in stimulus type and length; they presented

hort visual stimuli for roughly 100ms while we presented verbal stimuli

asting for about 700ms in the sEEG data and long (2s) complex visual

timuli with responses in the replication EEG data. 

Thirdly, the prestimulus SD impact on poststimulus activity may

ave a more cognitive rather than dynamic interpretation, as has been

hown in recent studies ( Groot et al., 2021 ; Madore et al., 2020 ). For

nstance, one may assume that prestimulus SD reflects the prediction or

nticipation of the upcoming stimulus as is consistent with predictive

oding Friston (2010) and recent results on prestimulus alpha ( Cao et al.,

017 ). However, our sEEG no-report paradigm did not include any self-

eneration of the stimuli and presented self and non-self stimuli ran-

omly and with a jitter. This makes any prediction or anticipation (pre-

ictive coding) in the prestimulus period unlikely. Therefore, we assume

hat the prestimulus SD and its impact on poststimulus TTV are more dy-

amic than cognitive in nature. 

. Conclusion 

To address how the ongoing prestimulus dynamics impact the effect

f the external stimulus, we investigate the impact of prestimulus SD on

oststimulus TTV in an intracranial sEEG data set. Our pre-poststimulus

ariability analyses found two main findings: 1) poststimulus variability

eduction, e.g. TTV quenching, is stimulus-driven and relative to the

restimulus dynamics, as measured through prestimulus variability; 2)

he effect of the stimulus is higher in the later poststimulus period (300–

00 ms) than the earlier (0–300 ms) where the prestimulus dynamics

nfluence dominates. These results were replicated in a separate EEG

ataset and task, which also found that real trials with high prestimulus

ariability in the theta and alpha bands had faster reaction times. Our

ndings show that stimulus-related activity is blended, being composed

f a) the effects of the external stimulus, and b) the effects of the internal

ngoing spontaneous variability, with the second dwarfing the influence

f the first. 

. Methods 

.1. sEEG data and analyses 

.1.1. Experimental paradigm 

The experimental paradigm presented to the patients was comprised

f two auditory stimuli: the subjects’ own name and a paired unknown

erson’s name (in their native language, Chinese) are spoken by the

ame familiar voice ( Huang et al., 2018 ; Lipsman et al., 2014 ; Qin et al.,

012 ). The duration of each name was less than 800 ms. The average

oot Mean Square (RMS) decibel level was less than -20 dB, with the

aximum RMS difference between the two names less than 1 dB. Dur-

ng this no-report paradigm, participants were presented with 180 trials

n total, 90 with their own name and the same number of another name.

he intertrial interval (ITI) between trials was 3–3.75 s, randomly jit-

ered by 0.25 s – this allowed us to minimize anticipation or prediction

ffects in our analysis of stimulus-related activity as to focus on its dy-

amic rather than cognitive components. 

.1.2. Prestimulus SD 

Temporal variability as defined here is the moment-to-moment

hange in a neural signal ( Garrett et al., 2013 ), which in this paper

s the timepoint-to-timepoint change. Temporal signal variability mea-

ures the distributional width of the timepoints ( Garrett et al., 2013 ;

aschke et al., 2021 ). 

As our aim of the paper was to examine the relationship between pre-

nd poststimulus variability, with poststimulus variability measured by

rial-to-trial variability (TTV), we needed an appropriate measure of

restimulus variability. TTV is calculated in the time-domain (standard

eviation at each timepoint across all trials), so our prestim temporal
10 
ariability measure should likewise be in the time domain. The most

imple and widely known of these measures was standard deviation ac-

ording to the literature ( Garrett et al., 2013 ), so we chose standard

eviation. 

The SD was calculated according to Eq. 2, then SD values were sorted

n ascending order – the first trial had the lowest prestimulus SD, the

ast trial had the highest - and the median value was calculated ( Fig. 1

tep 3). Trials below the median were assigned to the low prestimulus

roup and those above the median to the high prestimulus group, with

0 trials in each. 

The time interval for the prestimulus variability calculation varied

ccording to frequency band due to the various period lengths of each

and. They were: broadband = -500 to 0 ms; theta = -1000 to 0 ms;

lpha = -400 to 0 ms; beta = -200 to 0 ms; low gamma = -100 to 0 ms;

igh gamma = -50 to 0 ms. To ensure that this window did not affect

he results in the TTV AUC, two alternate windows were also calculated

nd the TTV AUC computed and statistically tested ( Table 1 ). 

.2. sEEG data and analyses 

.2.1. Subjects 

Twenty patients (25.13 ± 5.57 years; mean ± SD; 8 female) with

rug-resistant epilepsy who underwent sEEG exploration in the depart-

ent of Neurosurgery of Huashan Hospital (Shanghai, China) from

eptember 2016 to May 2017 were included in this study. SEEG is

 long-established invasive evaluation method for patients with drug-

esistant epilepsies ( Parvizi and Kastner, 2018 ). All patients had com-

rehensive presurgical evaluations, including a detailed medical history,

calp EEG, magnetic resonance imaging (MRI), and positron emission

omography (PET) scans prior to sEEG exploration. The choice of the

natomical location of electrodes was based on results from the presur-

ical evaluation and was made by a team of clinicians independent of

he present study. 

The study was approved by the research ethics committee of

uashan Hospital, at Fudan University, and all aspects of the study were

erformed according to their relevant guidelines and regulations. Writ-

en informed consent was obtained from the patients, or their guardians,

or participation in this study. 

.2.1.1. sEEG recording. The surgical plans were made by stereotac-

ic neuronavigational software (iPlan Cranial 2.0, Brainlab AG) and

he procedures were carried out as previously documented ( Gonzalez-

artinez, 2016 ). Double dosage enhanced T1 images were obtained

o identify the blood vessels first then the Leksell stereotactic frame

Elekta) was applied to localize the coordinates of the electrodes. In-

racerebral multiple contacts electrodes (HKHS, Beijing, China), with a

iameter of 0.8 mm and 8–16 contacts, were applied during the surgery

hich was performed under local anesthesia. The length of each con-

act was 2 mm with 1.5 mm between contacts. Post-implantation CT

cans were performed the day after implantation surgery to 1) exclude

ntracranial hematoma, and 2) localize the location of each contact. 

The sEEG signals were recorded on a Nihon Kohden 256-channel EEG

ystem (EEG-1200C) with a sampling rate of either 1 or 2 kHz, and hard-

are filtered between 0.01 Hz and 600 Hz. The signals during recording

ere referenced to white matter in the brain which was defined by the

linicians. 

SEEG is minimally contaminated by artifacts such as swallowing,

ye movement, muscle movement, etc., compared to scalp EEG, so it

s not prone to artifacts related to gaze position, electrode offset vari-

bility, and movement ( Parvizi and Kastner, 2018 ) (see for instance

razi et al. 2017a and b for excellent control of those factors in EEG).

his makes sEEG an ideal tool to record and measure specific variability

easures such as TTV. 



A. Wolff, L. Chen, S. Tumati et al. NeuroImage 238 (2021) 118160 

5

 

m  

a  

c  

n  

F

5

 

t  

s  

w  

a  

s  

t  

r  

b

 

m  

H  

W  

P  

w  

c  

p  

r

 

t  

m  

i  

0

9  

1

 

a  

m  

m  

e  

b  

c

5

 

p  

p  

c  

f  

c  

m  

b  

f  

n

5

 

t  

(  

2  

y

 

t  

e  

t  

c  

d

5

 

s  

a  

f  

0  

e

5

 

t  

d  

p  

l  

t  

m  

p  

i  

d  

h

5

 

s  

t  

r  

T  

(  

s  

c  

o  

t  

p  

s

 

d  

a  

4  

p

5

5

 

d  

2  

r  

r  

(  

p  

I

 

c  

B  

c  

s  

E  

t  

o  

p  

l  

w  

t

 

t  

±

.2.2. Electrodes localization 

Electrodes were auto segmented from post-implanted computed to-

ography (CT) images ( Qin et al., 2017 ). The post-implantation CT was

ligned to preoperative MRI images and contacts were calculated and re-

onstructed. The locations of these contacts were checked manually with

euronavigational software. Finally, the contacts were labeled based on

reesurfer’s parcellation of the MRI. 

.2.3. sEEG preprocessing 

Before any data analysis was performed, the timeseries of each con-

act was examined by an epileptologist who classified contacts as either

eizure or non-seizure. To start, as the data for some of the participants

as recorded at a sampling rate of 2 kHz while others were recorded

t 1kHz, all the former were resampled to 1 kHz using MATLAB’s re-

ample function which includes an anti-aliasing filter. The events for the

ask were then imported, superfluous channels (ECG, EMG, etc) were

emoved, and the contacts previously determined to be seizure contacts

y the epileptologist were also removed. 

To follow the preprocessing steps of the literature closely, the same

ethods of two recent sEEG publications ( Daitch and Parvizi, 2018 ;

elfrich et al., 2018 ), were followed exactly. In MATLAB (The Math-

orks, v2012) and according to the methods of Daitch ( Daitch and

arvizi, 2018 ), we calculated the power spectrum for each contact as

ell as the mean power over all contacts. If the mean power of a given

ontact was ≥ ± 5 SDs of the mean power across all contacts for a given

articipant, that contact was removed from the data (median = 2 ± 1.2,

ange = 0–5). 

Next, the remaining contacts were two-way zero-phase FIR notch fil-

ered at 50Hz and harmonics (100 Hz, 150 Hz), and rereferenced to the

ean of all remaining contacts. The signal was then bandpass filtered us-

ng a two-way, zero-phase FIR non-aliasing filter in the following bands:

.1–1 Hz, 1–4 Hz, 4–8 Hz, 8–13 Hz, 13–30 Hz, 30–70 Hz, 70–80 Hz, 80–

0 Hz, 90–100 Hz, 100–110 Hz, 110–120 Hz, 120–130 Hz, 130–140 Hz,

40–150 Hz, 150–160 Hz, 160–170 Hz, and 170–180 Hz. 

The instantaneous amplitude for each band was then computed by

pplying the Hilbert transform (MATLAB function hilbert ) and taking its

odulus. Each datapoint for each contact was then normalized by the

ean activity of each contact to partially correct for the 1/ f nature of

lectrophysiological signals. The signal for each band was then recom-

ined into one signal by taking the mean of all bands per timepoint per

ontact. 

.2.4. Event-related potentials confirm neural response to stimuli 

The green curve (shaded area is standard error) is the mean over all

articipants for all real trials while the black curve is the same for the

seudotrials. To statistically compare the two curves, the area under the

urve (AUC) using the trapezoidal method was computed. This was done

rom stimulus onset (0ms) to 304ms as it was at 304ms that this mean

urve reached 0 𝜇V. A Wilcoxon signed rank non-parametric repeated

easures test on the AUC was done and found a significant difference

etween the real and pseudotrials ( Z = 3.659, p = 2.536 × 10 − 4 ). There-

ore, this visualization and statistically significant difference confirms a

eural response to the no-report sensory stimuli. 

.2.5. Stimulus-responsive contact classification 

From the preprocessed data, a high-pass two-way zero-phase FIR fil-

er was applied at 70Hz. This left the signal with high frequency band

HFB) gamma between 70-180Hz. The data was then epoched from -

000ms to 2000ms, with a baseline of -200 to 0ms applied to ERP anal-

sis ( Helfrich et al., 2018 ). 

We determined which contacts were stimulus responsive according

o the methods of Helfrich ( Helfrich et al., 2018 ). Briefly, a contact was

xcluded from all subsequent analyses when the average HFB response

o the stimulus was below a z -score of ± 1.5 for 10% (50 samples) of

onsecutive timepoints between stimulus onset (0 ms) and 500 ms (me-

ian = 125 ± 37, range = 45–182 contacts removed per participant). 
11 
.2.6. Event-related potentials (ERPs) 

Event-related potentials (ERPs) were calculated to confirm a re-

ponse to the stimuli (or its absence in pseudotrials) and for control

nalysis (see below). As for all other analyses, the data was epoched

rom -2000 ms to 2000 ms and was baseline corrected from -200 to

 ms. The mean of all trials (180) over all contacts was calculated for

ach participant. 

.2.7. TTV in different frequency bands 

The frequencies of the sEEG between 0.1 and 70 Hz was selected as

he broadband for TTV calculation. Moreover, the continuous signal was

ecomposed into the following frequency bands using a two-way zero-

hase FIR filter: theta = 4–8 Hz, alpha = 8–13 Hz, beta = 13–30 Hz,

ow gamma = 30–70 Hz, and high gamma = 70–180 Hz. Afterwards,

he filtered signals were epoched. The prestimulus SD, including the

edian split and high/low grouping, and TTV was computed (as ex-

lained above) for each band according to the findings of previous stud-

es ( Arazi et al., 2017b ; Wolff et al., 2019c ). Thus, the filtering of the

ata was done prior to epoching, and the determination of prestimulus

igh/low SD groups was done separately for each band. 

.2.8. Real and pseudotrial TTV 

The TTV as calculated above includes both a) the effect of the

timulus on the ongoing variability, and b) the ongoing variability

hat transfers from the prestimulus interval to the poststimulus pe-

iod (see Eq. 3 below). To disentangle stimulus-related effects within

TV from those of the ongoing variability, we calculated ‘pseudotrials’

 Huang et al., 2017 ; Wolff et al., 2019c ). Based on fluctuations of the

pontaneous activity, the pseudotrials were selected from the ITI pre-

eding each stimulus; specifically, we marked -1500ms (1500ms before

nset of the real stimulus) as the virtual stimulus onset and investigated

he subsequent 800ms (same duration as the real trials) period as the

seudotrial. In contrast, the real trials were defined as 0 to 800ms of the

timulus-related epoch. 

Both real and pseudotrial TTV were calculated in the same way as

escribed above (Results, Eq. 1 ). To determine if the prestimulus vari-

bility had a significant effect on the poststim TTV, the AUC between

50-550ms was calculated using the MATLAB function trapz which em-

loys the trapezoidal method of integration. 

.3. EEG data and preprocessing for replication 

.3.1. EEG paradigm 

To replicate the findings in the sEEG data, the same analyses were

one in a separate dataset with a moral judgement task ( Wolff et al.,

019b ) (20 participants, 11 females, mean age = 29.9 ± 11.3 years,

ange of 19–55 years) in scalp EEG. The data was recorded on Neu-

oscan’s 64 channel Quik-Cap with parameters detailed previously

 Wolff et al., 2019b ). Written informed consent was obtained from all

articipants prior to participation (REB# 2009018, University of Ottawa

nstitute of Mental Health Research). 

The task employed here was the externally-guided decision-making

ontrol task explained in detail elsewhere ( Wolff et al., 2019c , 2019b ).

riefly, participants were presented with a black screen divided verti-

ally by a white line. On either side of the center line, two-dimensional

tick people were presented, with the numbers on either side varying.

ach stimulus contained a total of twelve people, however the ratio be-

ween the left and right sides differed and was presented for two sec-

nds. The ITI’s were jittered at 5 s, 5.5 s and 6s and randomized. The

articipants’ task was to judge whether there were more people on the

eft side of the screen than the right side. Each participant was presented

ith four stimuli repeated 45 times each, therefore 180 trials in total,

he same number as in the sEEG task. 

Participants responded by a button press (the YES button was coun-

erbalanced across participants) with the mean reaction time being 761

 198ms and a range of 391 to 1111ms. 
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.3.2. EEG preprocessing and pseudotrial insertion 

Preprocessing of the data was done according to standard steps for

ask-related EEG data ( Wolff et al., 2019c , 2019a ). The preprocessing for

he EEG data was done in MATLAB (The MathWorks, v2018b) with the

ptimization, Statistics and Signal Processing Toolboxes using EEGLAB

 Delorme and Makeig, 2004 ) version 14. 

To begin, data was resampled to 500 Hz using EEGLAB’s resample

nti-aliasing function. The data was then low- and high-pass filtered us-

ng a two-way zero-phase FIR filter at 0.5 Hz and 70 Hz respectively

High Gamma was excluded). Data were then visually inspected. Chan-

els flat longer than 5s, those that had less than 0.8 correlation with

eighboring channels or line noise ± 4SD compared to other channels

ere removed (mode = 2, range 0 to 3). The data was then referenced

o the average of all channels, as was done in the sEEG preprocessing.

o remove 60Hz electrical noise activity, EEGLAB function CleanLine,

hich uses a multi-taper sliding window approach to remove electrical

ine noise, was used. 

Data was epoched similarly to the sEEG data (described above) and

ndependent component analysis (ICA) reduced stationary artifacts with

he Multiple Artifact Rejection Algorithm ( Winkler et al., 2014 , 2011 ). 

Identical to methods previously stated ( Wolff et al., 2019c ), pseudo-

rials were inserted into the EEG blocks. This was done in the ITI pre-

eding the real stimulus, specifically the onset of the pseudotrial was set

.5s prior to the onset of the actual stimulus. This allowed for a mini-

um of 1s between the pseudo and real trial. 

.3.3. Reaction time data and behavioral relevance 

To determine if there was a significant difference in reaction time

etween trials with prestimulus high or low variability, the prestimulus

D of trials were split into three groups (triple-split). The corresponding

eaction times from the top and bottom third (ascending SD values 1–

0 and 121–180) for each frequency band were then extracted and the

ean of each group was computed. A repeated measures t -test was done

or each frequency band to compare the mean reaction times between

he low and high prestim. 

To correlate the TTV AUC in the difference curves described above

TTV real trials minus TTV pseudotrials), the reaction times for the me-

ian split based on the prestimulus SD were extracted and the mean

as computed. A two-tailed Spearman’s correlation (some of the distri-

utions were non-normal) between these mean reaction times and the

TV AUC was done for both the prestimulus high and low. To support

his correlation, a linear polynomial curve was fit to the data using MAT-

AB v2018b’s fit function (fitType = ‘poly1’). Finally, to contrast these

esults with those from the TTV curves that were not corrected for pres-

imulus variability, the same analysis was done with the TTV AUC from

he real trials. 

.4. Correlation and statistics 

All statistics were computed either in SPSS v24 or MATLAB v2018b

sing the Statistics Toolbox, and the significance level for all tests was

05. To control for multiple comparisons, the False Discovery Rate by

enjamini-Hochberg Benjamini and Hochberg (1995) was applied to the

 -values of all statistical tests (See the result sections for more detailed

tatistics). 

Repeated measures t -tests and ANOVA’s were used as all participants

ontributed to both/all levels (real trials/corrected trials/pseudotrials,

restimulus low/prestimulus high, etc). All assumptions of ANOVA’s

ere met prior to calculating the statistical test. 
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