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a b s t r a c t 

Our perceptions and decisions are not always objectively correct as they are featured by a bias related to our 

self. What are the behavioral, neural, and computational mechanisms of such cognitive bias? Addressing this 

yet unresolved question, we here investigate whether the cognitive bias is related to temporal integration and 

segregation as mediated by the brain’s Intrinsic neural timescales (INT). Using Signal Detection Theory (SDT), 

we operationalize the cognitive bias by the Criterion C as distinguished from the sensitivity index d’. This was 

probed in a self-task based on morphed self- and other faces. Behavioral data demonstrate clear cognitive bias, 

i.e., Criterion C. That was related to the EEG-based INT as measured by the autocorrelation window (ACW) in 

especially the transmodal regions dorsolateral prefrontal cortex (dlPFC) and default-mode network (DMN) as 

distinct from unimodal visual cortex. Finally, simulation of the same paradigm in a large-scale network model 

shows high degrees of temporal integration of temporally distinct inputs in CMS/DMN and dlPFC while temporal 

segregation predominates in visual cortex. Together, we demonstrate a key role of INT-based temporal integra- 

tion in CMS/DMN and dlPFC including its relation to the brain’s uni-transmodal topographical organization in 

mediating the cognitive bias of our self. 
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. Introduction 

The self is a core feature of our mental life and plays an impor-

ant role in perception, action, and cognition. The mediation of our

ersonal preferences and the cognitive strategies adopted under un-

ertainty are key sources by which the self exerts a bias on our cog-

itive processes ( Amodeo et al., 2021 ; Barton et al., 2021 ; Nijhof et al.,

020 ; Sparks et al., 2016 ; Sui and Humphreys, 2015 ). Humans are

ubjected to such cognitive bias in the sense that self-specific stim-

li are differently treated compared to non-self-specific information

 Sui and Humphreys, 2015 ; Christoff et al., 2011 ; Northoff, 2011 ;

orthoff et al., 2006 ). In particular, self-specific stimuli induce a ben-

fit in response time and precision in diverse tasks ( Jiang et al., 2019 ;

ui et al., 2012 ) and are more easily remembered (for an overview, see
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 Cunningham and Turk 2017 )). On the neural side, several studies

ave linked self-referential processing to the higher-order regions like

ortical midline structures (CMS, ( Frewen et al., 2020 ; Kelley et al.,

002 ; Murray et al., 2012 ; Northoff and Bermpohl, 2004 ; Qin et al.,

020 )), the dorsolateral prefrontal cortex (dlPFC), and the default mode

etwork (DMN, ( Frewen et al., 2020 ; Kolvoort et al., 2020 ; Qin and

orthoff, 2011 ). What are the behavioral, neural and computational

echanisms by which the CMS/DMN mediate the cognitive bias? Ad-

ressing this yet unresolved question is the goal of our study. 

Decision making is a complex process. When we have to make a

ecision, we base our judgment on objectively accurate external crite-

ia but also on more subjective internal criteria like intrasubject pro-

esses or personal preferences for a specific response style or stimulus

ype etc. ( Nakao et al., 2013 , 2019 ; Wolff et al., 2019 ). Signal detec-
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t  
ion theory (SDT) distinguishes between objective and more subjective

riteria influencing the decision in forced choice tasks ( Macmillan and

reelman, 2005 ). The general assumption of SDT is that decisions are

ade against a background of uncertainty, e.g., noise ( Anderson, 2015 );

he goal of the decision-maker is to extract the decision signal from

uch background noise which may lead the participants to introduce

 bias in their decisions. This bias is operationalized in SDT by the Cri-

erion C. In contrast, the sensitivity measure d’ in SDT is an indicator

f the external, objective criteria that indicate the discriminability be-

ween the two stimuli by the participant, thus reflecting a measure of

ccuracy. 

While the dorsolateral prefrontal cortex (dlPFC) is known to be im-

licated in decision making ( Reckless et al., 2013 ; Krain et al., 2006 )

s it mediates executive function ( Dubreuil-Vall et al., 2019 ), working

emory ( Balderston et al., 2020 ) and the self ( Frewen et al., 2020 ), little

s known about the neuro-temporal mechanisms underlying Criterion C

nd Sensitivity d’. Recent studies suggest a link between the Criterion C

nd spontaneous or ongoing activity like in the pre-stimulus neural ac-

ivity of monkeys ( van Vugt et al., 2018 ) and humans ( Iemi et al., 2017 ;

emi and Busch, 2018 ; Limbach and Corballis, 2016 ; Samaha et al.,

020 ). The apparent role of the spontaneous activity in mediating Cri-

erion C suggests that the former’s Intrinsic Neural Timescales (INT)

 Wolff et al., 2022 ) may be involved in mediating the cognitive bias.

he INT are particularly long in the spontaneous activity of the corti-

al midline regions of the default-mode network (DMN) which, inter-

stingly, are key regions in mediating self-specificity ( Kolvoort et al.,

020 ; Wolff et al., 2019 ; Smith et al., 2022 ). Together, these observa-

ions suggest a relationship of INT in CMS/DMN and the dlPFC with the

ognitive bias, that is, the Criterion C. 

The INT are measured by the autocorrelation window (ACW)

hrough determining the degree to which the brain’s activity correlates

ith itself over time ( Wolff et al., 2022 ; Golesorkhi et al., 2021b ; 2021a ;

asson et al., 2015 ; Honey et al., 2012 ; Yeshurun et al., 2021 ). Constitut-

ng temporal windows, the INT play an important role in input process-

ng and cognition driven through temporal integration and segregation

 Wolff et al., 2022 ; Yeshurun et al., 2021 ; Himberger et al., 2018 ). Tem-

oral integration occurs by temporally smoothing different inputs at dif-

erent timepoints into one coherent source of information, e.g., summing

ifferent words to one sentence through a long INT ( Wolff et al., 2022 ;

imberger et al., 2018 ). On the other hand, temporal segregation of

he external stimuli features is mediated primarily by short ACW in uni-

odal sensory regions (i.e. primary visual cortex, etc. ( Golesorkhi et al.,

021b )). Hence, the length of the ACW can be conceived as a proxy of

he balance of temporal segregation and integration ( Wolff et al., 2022 ;

olesorkhi et al., 2021b ; 2021a ; Himberger et al., 2018 ). How such bal-

nce of temporal integration-segregation through long-short INT/ACW

s related to the cognitive bias as measured by the SDT indices (and

pecifically Criterion C) remains yet unclear, though. 

To clarify this relationship, we conducted a combined behavioral,

eural, and computational study. Probing the cognitive bias, we used

 modified version of a well-established task ( Tsakiris, 2008 ) on visual

erception of faces presented in a self-other continuum of different mor-

hed pictures. Given the key importance of timescales with their sup-

osed role in temporal integration-segregation, we presented the task in

wo temporally distinct ways ( Huk et al., 2018 ). Once we presented it in

 discontinuous or discrete way as typical event-related paradigm (sepa-

ate single faces with different degrees of morphing in order to calculate

riterion C and Sensitivity d’ based on the SDT). Additionally, we pre-

ented the same task also in a continuous way with an ongoing sequence

f morphed faces where the participant had to indicate the transition

etween the two faces; this allowed us to specifically test for temporal

ntegration-segregation within the paradigm itself, that is on the psy-

hological level. EEG was recorded during both resting state and task-

elated activity and analysed on both channel and source space regional

evel. Finally, applying a data-driven network model ( Chaudhuri et al.,

015 ), we included computational modeling to further support the as-
2 
umption of different processes in CMS/DMN and sensory regions like

emporal integration and segregation respectively. 

First, we will analyze the behavioral data by extracting the SDT in-

ices and the transitions between self-other faces in both the discon-

inuous and continuous version of our task. We hypothesize a relation

etween the discontinuous and the continuous paradigm, that is a cor-

elation between participants’ bias (Criterion C) in the discontinuous

aradigm with the participants’ behavior in the continuous one. Given

hat the continuous version explicitly probes temporal integration ver-

us segregation, it provides behavioral evidence for the involvement of

emporal integration and segregation in the cognitive bias, i.e., Criterion

, and accuracy, i.e., sensitivity d’. 

Next, we extract the ACW of EEG resting and task state activ-

ty in order to establish its link to the SDT indices. We expect the

onger ACW (ACW0) to be implicated in the cognitive bias (Criterion

) while the shorter ACW (ACW5) supposedly mediates discrimination

sensitivity d’). We then also conducted source space reconstruction in

EG. This served to probe whether the cognitive bias, namely Crite-

ion C, is related to the long ACW (ACW0) in the CMS/DMN (as being

losely related to the self; ( Northoff et al., 2006 ; Frewen et al., 2020 ;

in et al., 2020 )) and the dlPFC (as being implicated in decision mak-

ng;(24, 25)), while the sensitivity d’ supposedly is more associated with

horter timescales (ACW5) in sensory regions like primary visual cortex.

oes this uni-transmodal hierarchy of ACW play a role in the temporal

ntegration-segregation of inputs? We probed this question by apply-

ng the temporal input structure of the empirical-behavioral study in

 computational realistic neural network model relying on Chaudhuri

t al. ( Chaudhuri et al., 2015 ). This model reinforces the idea that the

MS/DMN’s neural activity shows high degrees of temporal integration

f distinct inputs across time, while primary visual cortex favors tem-

oral segregation of temporally distinct inputs. Moreover, elimination

f the uni-transmodal hierarchy in the computational model abolishes

ny differences in input processing with regard to different degrees of

emporal integration and segregation. That supports the assumption that

he long ACW in CMS/DMN with its relation to the cognitive bias (Cri-

erion C) is indeed related to temporal integration, that is, the tempo-

al smoothing of temporally parsed inputs or stimuli across time, along

 uni-transmodal hierarchy. Finally, we confirm the specific relation-

hip between ACW and the cognitive bias as a stimulus-unspecific basic

ecision-making process by investigating the ACW – cognitive bias re-

ationship in the dorsolateral prefrontal cortex (dlPFC), as well as in the

usiform face area specialized for the perception of faces ( Kanwisher and

ovel, 2006 ). 

. Methods 

.2. Participants 

Twenty-seven participants (15 women, 12 men, age: 22.18, SD: 4.28,

ange: 19 to 36) were recruited. All of them had a current or history of

sychiatric or neurological disorders and normal or corrected-to-normal

ision. We excluded one participant due to technical problems with EEG

ecordings in rest and task state and another participant was excluded

nly for the task state. Participants performed two morphed face recog-

ition tasks adapted from ( Tsakiris, 2008 ): In the discontinuous task,

ne participant was excluded. In the continuous task, one participant

ad no behavioural data due to a technical problem. Written informed

onsent for each participant was obtained prior to study participation.

he study was approved by the local Research Ethics Board (REB #

018054). 

.3. Materials 

Prior to the experiment, pictures were taken from each of the par-

icipants with a Samsung A50 phone. Participants were asked to show
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a  
 neutral facial expression, mouth closed. The pictures were then pre-

ared in the free and open-source graphics editor GIMP (2.10.12). All

aces were turned to black and white (grayscale) and cut in an oval cir-

le, with only the eyes, nose, and mouth areas remaining on a black

ackground. Then, each face was morphed with a same-sex and same-

ace face from the NimStim facial pictures set ( Tottenham et al., 2009 ).

orphings were realized with the Abrosoft Fantamorph 5 Software in

% steps (from 0% self to 100% self-face). 

.4. Continuous morphing task ( Fig. 1 A left) 

A hundred and one morphed pictures in 1% morphing steps were

xtracted from the continuum between the own and the other’s face. A

ontrol continuum between a famous and an unknown face has also been

reated, leaving us with four morphing conditions based on the order

nd the identity depicted on the pictures. The ‘self’ conditions have the

orphing order ( Amodeo et al., 2021 ) from the ‘self’ face to other face

SO), or from ( Barton et al., 2021 ) other face to ‘self’ face (OS). The

ontrol conditions have a morphing order from a ( Nijhof et al., 2020 )

amous face to an unknown face (FU), or from the ( Sparks et al., 2016 )

nknown face to the famous face (UF). The order of the conditions was

andomised. 

Pictures were presented in a continuous manner to create the expe-

ience of a morphed movie between the two faces. Movie duration was

etween 10 and 15 s and the interstimulus interval varied between 4

nd 6 s. A total of 200 trials, 50 trials per condition in 8 blocks was

resented. Participants were instructed to press a key when they stop

o see the first face and to give another key when they started to see

he second face. Two keypresses are of particular interest as they are

he most self-related: In the morphing order from self to other (SO), the

rst keypress indicates the loss of the own face, while the second key-

ress in the order from other to self (OS) indicates the emergence or

xtraction of the own face. In order to record neuronal activity without

otor activity noise due to a keypress ( Tsuchiya et al., 2015 ), five tri-

ls in each condition were visualized and recorded while no keypress

as given (no-report paradigms). The no-report trials took place before

he report-trials for the half of participants, and afterwards for the other

nes. To ensure that the moment of the keypress was time-independent,

e randomly varied the movie length between 10 and 15 s. In addition,

he intertrial interval was jittered between 4 and 6 s (jittered by 1 s).

his task has been recorded in EEG. 

Such a continuous paradigm structure serves the purpose of prob-

ng for participants’ capacity to integrate or segregate temporally dis-

ointed but sequential inputs, i.e., the morphed self-other faces. Tem-

orally adjacent stimuli like two morphed faces may be temporally in-

egrated/separated entailing separate judgement as self or other; alter-

atively, they may be integrated entailing subsumption of both under

ither self or other. 

.5. Discontinuous signal detection task (Fig. 1A right) 

This task purely served to extract the SDT indices. From the mor-

hed pictures, 13 pictures were selected at a morphing degree from 0%

o 100% self in 10% steps. The middle morphing values (40 to 60%)

re selected in 5% morphing steps to gather a more fine-grained be-

avior in the ambiguous range. Each picture was presented 12 times

n a random order for 200 ms, with a total 156 trials per participant

 Fig. 1 A right). Participants were instructed to classify each of the pic-

ures in ‘self’ pictures (more self than the other) or in ‘other’ pictures

more other than self). No correct response was possible for the 50%

orphing, while morphings above 50% are self-pictures and below 50%

re other-pictures. We analysed the data with Signal Detection Theory

SDT) which offers cognitive bias (Criterion C) and sensitivity (d’) mea-

ures based on the relation of hits and false alarms. 
3 
.6. Resting-state 

Eyes open resting-state was recorded in EEG for 7 min. The partici-

ants were fixating a white cross on a gray background. 

. Data analysis 

.1. Signal detection theory (SDT) 

The discontinuous task was analysed with SDT ( Macmillan and

reelman, 2005 ) because it yields separate indicators for the accuracy in

orm of the cognitive bias Criterion C and sensitivity d’ ( Fig. 1 B). 3.1.1.

riterion C: The criterion C of the signal detection theory ( Macmillan and

reelman, 2005 ) indicates the preference of the participant to report

ather one than the other of the two faces when committing an error

false alarms or misses). It is calculated based on the Hit and False alarm

ate as follows ( Anderson, 2015 ): 

𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝐶 = −0 . 5 ∗ 
(
𝑧 𝐻𝑖𝑡 + 𝑧 𝐹𝐴 

)

Some participants tend to indicate perceiving their own face more

ften than the other’s face (liberal response style with a Criterion C >

), whereas other participants rather see the ‘other’ face than themselves

conservative response style with a Criterion C < 0). Some participants

how no bias (C = 0). 

.1.2. Sensitivity d’ 

d’ is a measure of discriminability and indicates the ability of a par-

icipant to distinguish between two stimuli. In our case, it indicates

ow well the participant distinguished between their own and some-

ne else’s face. It is calculated based on the hit and false alarm rate

 Anderson, 2015 ). 

𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑑 ′ = 𝑧 𝐻𝑖𝑡 − 𝑧 𝐹𝐴 

If the hit rate equals the false alarm rate, d’ = 0 where the partic-

pant is unable to discriminate between the two stimuli. A higher d’

orresponds to less errors and therefore indicates a higher sensitivity

owards the differences between two faces. 

.2. EEG data acquisition and preprocessing 

EEG data was recorded using Ag/AgCl electrodes through a 64-

hannel Brain Vision Easycap (according to the International 10–20 Sys-

em) referenced to the right mastoid. The data was sampled at 1,000 Hz

ith DC recording. The EEG data preprocessing was performed using the

EGLAB toolbox for MATLAB (R2017b; ( Delorme and Makeig, 2004 ),

RID: SCR_007292). The data was downsampled to 500 Hz and fil-

ered with a FIR zero-phase low-pass filter at 50 Hz and a high-pass

lter at 1 Hz. With a custom script, noisy channels (defined as 5 in-

erquartile above or below each channels mean) have been spheri-

ally interpolated before re-referencing to the average. Further, arti-

acts were identified using independent component analysis (ICA) via

he EEGLAB software (infomax) creating 63 independent components.

ext, we used MARA implementation to automatically reject noisy com-

onents ( Winkler et al., 2011 ). 

.3. Autocorrelation window (ACW) 

The autocorrelation function measures the similarity of a time se-

ies with a time-lagged version of itself. We distinguished, following

olesorkhi et al. (2021b ) and Smith et al. (2022) , ACW5 and ACW0.

e defined ACW5 and ACW0 as the first lag where the autocorrelation

unction (ACF) reaches half of its maximum value (AC = 0.5) or zero

AC = 0.0), respectively ( Honey et al., 2012 ; Murray et al., 2014 ). We

alculated both ACW0 and ACW5 to see the impact of longer (ACW0)

nd shorter (ACW5) windows on the different behavioral indices, i.e., d’

nd C. Similarly, we further defined ACW4 (AC = 0.4), ACW3 (AC = 0.3),
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Fig. 1. A Procedure of the morphing tasks. In the continuous task (left) morphings of faces were shown in form of a smooth video (ordered sequence of faces). 

Participants were asked to indicate when they stop to see the first face and when they started to see the second face. Of particular interest are the two self-related 

keypresses which indicate the loss and the emergence of the own face. On the right is the discontinuous design (right) elaborated to extract Signal detection theory 

(SDT) indexes. Participants were asked to classify randomly presented morphed faces into ‘self’ ( > 50% morphing) or ‘other’ ( < 50% morphing) faces. Identities have 

been made unrecognizable for publication purposes. B Schematic description of the SDT. The Sensitivity d’ indicates how well a participant discriminates between 

the two stimulus types ‘other’ and ‘self’ faces by indicating the distance between the white (other) and the green (self) curve. The Criterion C indicates a favoritism 

to one of the two error types miss or false alarm. This indicator will be used to assess the self – and the other bias. C Simplified representation of the cognitive bias. 
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CW2 (AC = 0.2) and ACW1 (AC = 0.1) to investigate an eventual gra-

ient that links the timescales to the behavioral indices. 

All autocorrelations were calculated on 7 min rest and task state EEG

ata, for each channel (or region of interest (ROI) for eLORETA) before

eing averaged across all electrodes/ROIs to extract one ACW value per

articipant. 

.4. Source localization with eLORETA 

Regions were defined according to the Glasser parcellations

 Glasser et al., 2016 ). Exact Low Resolution Electromagnetic Tomog-
4 
aphy (eLORETA ( Pascual-Marqui et al., 1994 )) was performed by es-

imating the virtual-channel source for each region of the Glasser atlas

n FieldTrip ( Oostenveld et al., 2011 ). The output is a timeseries of es-

imated source level activity for each region. We investigated the core

MN ( Andrews-Hanna et al., 2014 ) consisting of the posterior cingulate

ortex (PCC) and the pregenual anterior cingulate cortex (pACC) be-

ause of its known implication in self-related functioning. As a control

egion not specifically implicated in self-related processing, we choose

he visual primary cortex (V1). We investigated the dorsolateral pre-

rontal cortex (dlPFC) because of its implication in decision making and

he FFA due to its implication in face processing. The precise Glasser-
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arcels used were the following: V1: LV1, RV1. CMS/DMN: LRSC, RRSC,

23d, R23d, Ld23ab, Rd23ab, L23c, R23c, Rp24, Lp24, Ra24, La24,

31a, R31a, L31pv, R31pv. dlPFC: L8C, R8C, L8Av, R8Av, Li68, Ri68,

SFL, RSFL, L8BL, R8BL, L9p, R9p, L9a, R9a, L8Ad, R8Ad, Lp946v,

p946v, La946v, Ra946v, L46, R46, L946d, R946d. Fusiform face com-

lex: LFFC, RFFC. 

.5. Statistical analyses 

Comparisons of the ACW based on the thresholds were performed

ia a repeated measures ANOVA with a Greenhouse-Geisser correction

or sphericity violations. The link between the behavioral and neuronal

easures was obtained via simple Pearson’s correlations. For the math-

matical models describing the gradient between ACW and the behav-

oral variables, the ACW0 was replaced by 0.01 for logarithmic trans-

ormation. The remaining ACW values are their AC value (e.g., 0.1 for

CW1, 0.2 for ACW2 etc.). Inferential analyses were run in JASP or R.

CW was extracted in Python (3.8). SDT indices were calculated in Excel

ollowing the instructions in ( Macmillan and Creelman, 2005 ). 

.6. Computational model 

To further probe the effect of different regions on temporal seg-

egation and integration, we used a computational model based on

 Chaudhuri et al., 2015 ). In essence, this model comprises two differ-

ntial equations: 

𝐸 

𝑑 

𝑑𝑡 
𝑣 𝑖 
𝐸 

= − 𝑣 𝑖 
𝐸 
+ 𝛽𝐸 

[(
1 + 𝜂ℎ 𝑖 

)(
𝑤 𝐸𝐸 𝑣 

𝑖 
𝐸 
+ 𝜇𝐸𝐸 Σ𝑁 

𝑗=1 𝐹 𝐿𝑁 𝑖𝑗 𝑣 
𝑗 

𝐸 

)

− 𝑤 𝐸𝐼 𝑣 
𝑖 
𝐼 
+ 𝐼 𝑖 

𝑒𝑥𝑡,𝐸 

]
+ 

𝐼 

𝑑 

𝑑𝑡 
𝑣 𝑖 
𝐼 
= − 𝑣 𝑖 

𝐼 
+ 𝛽𝐼 

[(
1 + 𝜂ℎ 𝑖 

)(
𝑤 𝐼𝐸 𝑣 

𝑖 
𝐸 
+ 𝜇𝐼𝐸 Σ𝑁 

𝑗=1 𝐹 𝐿𝑁 𝑖𝑗 𝑣 
𝑗 

𝐸 

)

− 𝑤 𝐼𝐼 𝑣 
𝑖 
𝐼 
+ 𝐼 𝑖 

𝑒𝑥𝑡,𝐼 

]
+ 

 is the firing rate, 𝜏 is the intrinsic time constant, I Ext is the external

nput to the system governed by the slope b of the f-I curve. 𝑤 values are

oupling parameters. m is a fixed parameter that controls the strength

f long-range excitatory input. FLN (Fraction of Labeled Neurons) is the

tructural connectivity matrix based on a macaque study ( Markov et al.,

014 ). E and I correspond to excitatory and inhibitory, respectively; i

nd j denote different regions. Solving these differential equations gives

s 29 time series, one per region in the model. We used the exact same

arameters as ( Chaudhuri et al., 2015 ). The hierarchy index ℎ is a sig-

oid function scaled between 0 and 1, increasing from periphery to

ore. First, we used a continuous input of 1 s and plotted activity the

ame way. We also simulated the input as close as the real discontinuous

aradigm in this study. We gave 200 ms inputs with amplitude 1 to the

utermost region (V1) and randomized the inter-stimulus interval (ISI)

etween the mean of the ISI in the study (0.528 s) + − 1SD (0.253 s) and

lotted the resulting neural activity changes in both periphery (V1) and

ore (24c) regions. In a second step, to probe the effect of the hierarchi-

al uni-transmodal topography on temporal segregation and integration,

e eliminated the hierarchy by setting the hierarchical index ℎ to 0.5

or all regions. 

. Results 

.1. Behavioral results 

In the discontinuous self-task ( Fig. 1 A right, see Methods), partici-

ants indicated the predominant facial identity (self or other) of single

andomly presented morphed faces reflecting an event-related paradigm

tructure. The psychometric function ( Fig. 2 B) indicating the proportion
5 
f correct classifications for each morphing degree shows more variabil-

ty in the middle morphings (where the subjective uncertainty is higher)

han in the extreme ones (where the subjective uncertainty is lower).

he Sensitivity index d’ had a mean (SD) of 2.65(0.52) (range: 1.6 to

.79). The cognitive bias Criterion C had a mean (SD) of 0.25 (0.5)

range: − 0.51 to 1.34). 

Next, for each participant, we calculated the average of the mor-

hing degree at the moment a keypress was given. The descriptive re-

ults are as follows: Loss of self: m = 50.77, SD = 7.88, range = 30.27,

ax = 60.33, min = 30.06; Emergence of other: m = 75.789, SD = 7.001,

ange = 28.31, max = 88.74, min = 60.43; Loss of other: m = 46.59,

D = 7.19, range = 24.38, max = 60.49, min = 36.11; Emergence of

elf: m = 71.8, SD = 8.33, range = 31.75, min = 54.86, max = 86.61;

ig. S1). The simultaneous effect revealed by a repeated ANOVA is sig-

ificant (F(3,75) = 104.467, p < .001, h 2 patial = 0.807; e GG = 0.697), post

oc differences are reported in Fig. S1. We observe no effect specific to

he order of morphing presentation (SO or OS). 

Due to our particular interest in the self, we will specifically focus on

ts loss and its emergence (as obtained by the continuous task). Hence,

e correlated these two keypresses with C and d’ (as obtained in the

iscontinuous task). We see that only the keypress related to the emer-

ence of the self correlated with the Criterion C ( r = 0.486, p = 0.014,

oss: r = − .275; p = .215; Fig. 2 C) but not with the sensitivity d’ (Emer-

ence: r = 0.150, p = .474; Loss: r = − .299, p = .147). This indicates that

n early detection of the own face is linked to a liberal self-bias. A later

elf-emergence is linked to a conservative ‘other’-bias. 

.2. Intrinsic neural time scales in rest and task states 

We assessed the intrinsic neural timescales (INT) by the autocorre-

ation window (ACW; Fig. 3 A). We investigated the topographic maps

f ACW ( Fig. 3 B) which show the expected rostro-caudal gradient

 Golesorkhi et al., 2021b, 2021a ; Kiebel et al., 2008 ) and observe an

verall significantly longer ACW during task compared to rest ( Fig. 3 C),

ndicating a sensitivity of the ACW to external stimuli. 

.3. Relationship of intrinsic neural timescales with behavioral measures 

First, we identify the correlational strength between the different be-

avioral measures (Emergence of Self, Criterion C, Sensitivity d’) with

he ACW via Pearson’s correlations (Table S2a to Table S3b). Next, we

nvestigated the relationship between these different correlations via dif-

erent mathematical functions ( Fig. 4 , for more details see Table S4).

n resting state, the correlation between the moment of the Emergence

f Self is strongest for ACW0 and decays following a logarithmic func-

ion ( p = 0.003). We observe the same evolution for the Criterion C

 p = 0.014). Inversely, an increasing logarithmic function links the d’

o the ACW ( p = 0.0003), with the strongest correlation observed for

CW5. In task state, the relationship of ACW with the Emergence of

elf and Criterion C can be described via a quadratic function ( p = 0.007

nd p = 0.009, respectively). This link is lost (due to one data point) for

ensitivity d’ ( p = 0.1). By taking the difference between rest and task

tate, we confirm the differential correlation gradient between Criterion

 and d’ and confirm the similarity between the Emergence of Self and

riterion C: The rest-task difference of Emergence of Self and Criterion

 follows a quadratic function ( p = 0.023 and p = 0.011, respectively),

hile the rest-task difference of Sensitivity d’ shows a simple linear re-

ationship ( p = 0.0003). No coherent relationship links the ACW to the

oss of self (Fig. S2). 

.4. Source space reconstruction eLORETA in CMS/DMN and V1 

We extracted regional activity via eLORETA for the DMN focusing on

MS/DMN (PCC and pACC) and the primary visual area (V1; see Meth-

ds). ACW was calculated on the extracted DMN regions and correlated

ith d’ and Criterion C ( Table 1 ). The Criterion C is only associated
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Fig. 2. A Sensitivity d’ and Criterion C extracted based on the discontinuous task . Descriptive data of the d’ (left) and Criterion C (right) in a violin plot and a 

ROC space. B Psychometric function of the participant’s responses to the different morphing degrees in terms of identified self (error bars indicate SD) C The strong 

correlation of the Criterion C and the Emergence of self keypress indicates that an early detection of the own face is linked to a self-bias. A later self-emergence is 

linked to an ‘other’-bias. 

Table 1 

Correlations between Criterion C (Crit C) and Sensitivity d’ (Sens d’) in the DMN 

and the primary visual area V1 via the ACW0 (_0) and ACW5 (_5). 

Crit C Sens d’ 

State r p r p 

DMN_0 rest 0.342 0.094 0.207 0.321 

task 0.502 ∗ 0.012 0.188 0.38 

DMN_5 rest 0.308 0.143 0.339 0.106 

task 0.251 0.238 0.242 0.254 

V1_0 rest − 0.043 0.838 0.007 0.973 

task 0.387 0.062 0.11 0.608 

V1_5 rest 0.071 0.735 0.469 ∗ 0.018 

task 0.283 0.191 0.306 0.155 
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ith the ACW0 in the DMN, measured during task-state (DMN-ACW0:

 = 0.502, p = 0.012, Fig. 5 A). Neither the V1 nor the ACW5 elicited

 significant correlation with the Criterion C ( p > .05). The Sensitivity

ndex d’ is only correlated with the ACW5 in the resting state V1 activ-

ty (V1-ACW5: r = 0.469, p = .018, Fig. 5 A). Neither the DMN nor the

CW0 showed significant correlation with the d’ ( p > .05). 

.5. Computational modeling – temporal integration and segregation in 

MS and sensory cortex 

The hierarchy of different regions in the model was defined by a sig-

oid function scaled between 0 and 1 (see methods). First, we applied

he continuous task paradigm on the model to probe temporal segrega-

ion in hierarchically low regions (periphery / V1) and integration in
6 
ierarchically high regions (core / 24c; Fig. 6 , left column). In a second

tep, in order to investigate the effect of the differential hierarchical po-

itions of visual cortex and CMS/DMN in their short and long timescales,

e eliminated the hierarchy in our computational model by assigning

he same hierarchical index to all regions. We now observed similar ac-

ivity in both V1 and midline 24c ( Fig. 6 , right column). 

.6. ACW mediates the bias in decision making in a stimulus-unspecific 

ather than -specific way 

In a next step, we wish to investigate if the link between the cog-

itive bias and the ACW is mediated by the process of decision making

tself operating across different types of stimuli, e.g. stimulus-unspecific,

ather than by the content of the facial stimuli (self vs. other vs. famous

s. unknown), e.g., stimulus-specific. For this, we will first confirm the

ink between the long ACW and the cognitive bias in the dlPFC. Hence,

e extracted the ACW of the dlPFC and found a correlation between

he ACW0 in the dlPFC only with the Criterion C in rest ( r = 0.485,

 = 0.014) and task ( r = 0.530, p = 0.008, Fig. 7 ). This confirms the

ntimate link between the long ACW and the cognitive bias in our de-

isions and supports the association of ACW with the decision-making

rocess itself. The short ACW5 of the dlPFC is exclusively linked to the

ensitivity d’ in rest ( r = 0.420, p = 0.036, Fig. 7 ; Table S5), confirming

he link between the short ACW and sensitivity d’ in the accuracy of

ecision making. 

In a second step, we extracted the ACW during the visualization of

ach face identity (self, other famous, unknown). A repeated measures

NOVA shows no significant differences in the ACW between the facial
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Fig. 3. A Autocorrelation Window (ACW) of two schematic participants (green and red). Indicated are the six degrees of AC (in color from pink to orange) on the 

y-axis, and the duration on the x-axis. The ACW is the lag until a certain correlation value within the overall autocorrelation function is reached. We observe the 

expected rostro-caudal gradient of ACWs. B Topographical maps of the ACW0 and ACW5 in rest and task state averaged across participants. C Boxplots of all six 

ACWs averaged across participants and EEG-channels show a clear rest-task differences. 
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dentity (ACW0: F(3,72) = 1.207, p = 0.313; ACW5: F(3,72) = 0.282,

 = 0.838; see Fig. S3), indicating a certain insensitivity of the ACW

owards the stimuli content. 

We then correlated the ACW of the different facial stimuli with the

riterion C and Sensitivity d’. The ACW0 extracted from each face corre-

ated with the Criterion C ( p < .5; Table S6), confirming an insensitivity

f the ACW towards the facial identity or the stimulus content in relation

o the cognitive bias. 

Finally, we calculated the ACW on activity extracted from the

usiform face area (FFA) and correlated it with the SDT measures. No

ignificant correlations were found ( p > .05; Table S7), indicating that

he FFA is not mediating the link between cognitive bias and ACW. To-

ether, these findings strongly indicate the stimulus-unspecific effects

f ACW on the bias in decision making. 

. Discussion 

In the present study, we investigated whether temporal integration

ediates the cognitive bias of self in perception and decision making.
7 
or this, we combined behavioral, neural and computational levels of

nalyses. Using Signal Detection Theory (SDT), we observed the cogni-

ive bias on the behavioral level (Criterion C) with different participants

howing bias towards either the own or other face. Given the nature of

ur paradigm, this implies high temporal integration on the psycholog-

cal level. This was further extended to the neural level by showing that

he cognitive bias is specifically associated with longer INT (ACW0) in

MS/DMN and dlPFC, thus suggesting high temporal integration on the

eural level. This is complemented by computational neural network

odeling showing high degrees of temporal integration of temporally

istinct inputs in specifically CMS/DMN as distinct from visual cortex,

uggesting a strong implication of the uni-transmodal hierarchical to-

ography in the cognitive bias. 

.1. Behavioral analyses 

First, we observed a strong correlation between the cognitive bias

nd the keypress indicating the emergence of the own face. This indi-

ates that an early detection of the own face is linked to a liberal self-
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Fig. 4. Relationship between the neuronal and behavioral measures. Each column represents one behavioral measure (left: Emergence of self; middle: Criterion C; 

right: Sensitivity d’). In resting state (upper), task state (middle) and the rest-task difference (lower). The ACW thresholds (e.g., 0.5 for ACW5) are on the x-axis. The 

y-axis shows the Pearson’s correlation coefficient between the behavioral variable and the different ACWs. In resting state, the curves show a decreasing logarithmic 

evolution for the Emergence of Self and Criterion C but an increasing logarithmic evolution for d’. Similarly in task state, Criterion C and the Emergence of Self 

show a quadratic function, which is non-significant in the d’. Finally, rest-task differences confirm the differential relationship between the ACW with Criterion C 

and Emergence vs. ACW with d’: For Criterion C or the Emergence, we find stronger correlation with the longer ACW0, while the d’ is strongly linked to the shorter 

ACW5. 
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ias. A later emergence is linked to a conservative ‘other’-bias. Together,

hese findings strongly support that temporal integration is a key factor

n mediating the bias Criterion C. We will next demonstrate the key role

f temporal integration in the cognitive bias by investigating the ACW. 

.2. Intrinsic neural timescales 

Employing the different ACWs enabled us to investigate a more fine-

rained temporal resolution. A shorter ACW can be observed in primary

ensory areas like the temporal and occipital channels while a longer

CW is mostly observed in parietal and frontal channels. We expect
8 
horter temporal windows (i.e., ACW5) to represent stronger degrees

f temporal segregation while the long temporal windows of ACW (i.e.

CW0) are more related to high degrees of temporal integration. We

bserve an overall significantly longer ACW during task compared to

est ( Fig. 3 C), indicating a sensitivity of the ACW to external stimuli.

his is well in accordance with its supposed role in input processing

 Smith et al., 2022 ; Golesorkhi et al., 2021b , 2021a ; Zilio et al., 2021 ).

 longer ACW in task than in rest seems to be related to continuous

aradigms which demand stronger temporal integration, while shorter

CW in task than in rest are found in event related paradigms which

re demanding in temporal segregation ( Wolff et al., 2022 ; Smith et al.,
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Fig. 5. A Linking the Sensitivity d’ and Criterion C to the 

cerebral regions via the ACW. The Criterion C is correlated 

with the eLORETA CMS/DMN activity while the Sensitivity 

d’ correlated with the V1 activity. A long ACW0 is linked 

to an other-bias, while a shorter one is associated to an 

self-bias. A longer ACW5 is linked to a better performance 

(d’). 
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022 ). Further, rest and task correlate highly ( r > 0.85) with each other

Table S1), indicating a strongly shared or common neural basis be-

ween rest and task confirming previous data (see ( Smith et al., 2022 ;

olesorkhi et al., 2021b )). 

.3. Relationship of intrinsic neural timescales with behavioral measures 

To demonstrate the implication of temporal integration and segre-

ation on a psychological level, we investigate the link between the

ehavioral measures (self-related keypresses, d’ and Criterion C) and

CW (which is an indicator of temporal integration and segregation

n the neural level ( Wolff et al., 2022 )). Given that both, perception-

ased Criterion C ( van Vugt et al., 2018 ; Iemi et al., 2017 ; Iemi and

usch, 2018 ; Limbach and Corballis, 2016 ; Samaha et al., 2020 ) and self-

onsciousness ( Qin and Northoff, 2011 ; Wolff et al., 2019 ; Davey et al.,

016 ; Huang et al., 2016 ), have been associated with the brain’s spon-

aneous activity, we associated the behavioral variables with both, rest

and task-related ACW. 

Firstly, the Emergence of Self is strongly correlated with the longer

CW (ACW0), indicative of a higher degree of temporal integration. This

onfirms the integrative nature of the continuous task and shows that

t is the emergence, not the loss of the self, that is specifically linked to

emporal integration and long ACW ( Kolvoort et al., 2020 ; Wolff et al.,

019 ; Smith et al., 2022 ). It is to notice that an antagonistic logarithmic

unction describes the association between Criterion C and Sensitivity d’

o the ACW in resting state. While in task state, behavioral and neural

ariables are linked via a quadratic function. The rest-task difference

onfirms the differential role of short and long INT in Criterion C and

ensitivity d’, respectively. 

Together, these findings support the assumption that the Criterion

 is related to higher degrees of temporal integration due to its link

o longer ACW. The longer ACW increases the tendency of temporal

moothing and thus lumping together temporally disjointed inputs like

he morphed faces. In result of its link to shorter ACW, sensitivity d’

s more linked to temporal segregation and the increased capacity to

iscriminate between sequential faces in a temporally precise way. 

.4. Neuroanatomical grounds 

The differentiated implications of the ACW in the cognitive indices is

urther supported and extended on neuroanatomical grounds. The self

s known to be closely associated with the cortical midline structures

CMS) like anterior and posterior cingulate cortex of the default-mode

etwork (DMN) ( Northoff et al., 2006 ; Frewen et al., 2020 ; Qin et al.,
9 
020 ; Northoff, 2016 ) while the dlPFC is known for its role in deci-

ion making. Moreover, the core regions CMS/DMN and dlPF in general

re known to exhibit the longest ACW compared to primary sensory

egions ( Qin and Northoff, 2011 ; Wolff et al., 2022 ; Golesorkhi et al.,

021b , 2021a ; Ito et al., 2020 ; Raut et al., 2020 ). Spontaneous activ-

ty ( Buzsáki, 2006 ) as for instance pre-stimulus activity in these regions

redict the subsequent judgement of stimuli as self-related ( Qin et al.,

016 ). Our data extend these results by showing that the spontaneous

nd task-related activity in these regions mediate the cognitive bias

hrough long INT (ACW0) and temporal integration. 

How is our main finding (longer ACW (ACW0) linked to Criterion

 and shorter ACW (ACW5) linked to Sensitivity d’) represented in

he DMN/dlPFC and the primary sensory regions? In other words, are

he Criterion C and the d’ modulated by the long and short ACW in

MN/dlPFC and primary visual area? Using eLORETA source space re-

onstruction, we observed a similar link of the cognitive bias (Criterion

) with the ACW0 and of the ACW5 with the d’. The topographical spec-

fications through eLORETA show that the cognitive bias Criterion C is

inked to the DMN and the dlPFC, while the discriminability d’ is more

elated to the dlPFC and the primary visual area. 

Together, these results confirm the specific link of the longer ACW0

n the DMN/dlPFC and Criterion C while the shorter ACW5 in dlpFC

nd V1 relates to Sensitivity d’ ( Golesorkhi et al., 2021b , 2021 a;

haudhuri et al., 2015 ). This supports a special role of CMS/DMN and

lPFC in mediating specifically higher degrees of temporal integration

 Golesorkhi et al., 2021 b, 2021a ; Chaudhuri et al., 2015 ) underlying the

ognitive bias in visual perception and subsequent decision making. The

ensitivity d’ instead is linked to the shorter timescales (ACW5) of the

lPFC and the primary visual area favouring temporal segregation over

ntegration. Importantly, the Criterion C is an indicator of a continuum

etween the self- and the other bias. 

We observed that a self-bias is linked to short ACW0, while long

CW0 are associated with an other-bias. This is in line with the find-

ngs by Smith et al. (2022) who, in a different paradigm, demon-

trate that ACW0 is associated with self-related processing. Moreover,

orthoff et al. (2021) demonstrate that an abnormally long ACW is re-

ated to the basic self-disturbance in schizophrenia. Together, these find-

ngs support the key role of especially the longer ACW (ACW0) for me-

iating the bias, e.g., Criterion C, including self-bias or self-specificity as

istinguished from the shorter ACW (ACW5) which mediates accuracy

d’). 

Is the ACW a stimulus-specific indicator of the facial identity pre-

ented in the stimuli (self vs. other vs. famous vs. unknown) rather

han being part of the decision processes itself operating in a stimulus-



A. Wolman, Y. Çatal, A. Wolff et al. NeuroImage 268 (2023) 119896 

Fig. 6. Computational modeling of input processing. Top row depicts the hierarchical structure which scales the effect of local and long-range activity (left) vs. the 

absence of this hierarchy (right). A Continuous task paradigm: When a hierarchy of intrinsic neural timescales apply, the input leads to an extended and expanded 

neural activity in 24c, whereas it is more or less of the same duration in V1 (left). The elimination of hierarchy renders both regions the same (right). B Discontinuous 

task paradigm: Similarly to the continuous task, the neural activity of the peripheral region V1 shows temporal segregation whereas the core region 24c predominantly 

integrates different inputs (left). The elimination of hierarchy gives us very similar input processing in both V1 and 24c (right). 
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nspecific way? To answer this question we correlated the ACW of

he fusiform face area (FFA), known by its role in facial processing

 Kanwisher and Yovel, 2006 ) with Criterion C and Sensitivity d’. No link

etween the SDT measures and the ACW in the FFA was found. Further,

e extracted the ACW during the visualization of each face identity (self,

ther famous, unknown) and no significant difference between them has

een shown. 

Together, these results show that the ACW mediates the cognitive

ias on a basic stimulus-unspecific neuronal level of the decision making

tself operating across the different facial stimuli. This supports our as-

umption that the ACW mediates the stimulus-unspecific temporal pro-

essing of all stimuli by providing a temporal envelop for them which,
 t  

10 
s per our results, shapes our decision-making process featured by cog-

itive bias and sensitivity d’. 

.5. Computational mechanisms 

The large-scale computational model of the dynamical hierarchy of

imescales ( Chaudhuri et al., 2015 ) gave us the possibility to probe

he effect of different timescales on input processing in our specific

ask structure (continuous and discontinuous paradigms). Based on our

LORETA results, we were particularly interested to probe temporal

egregation in hierarchically low regions (periphery / V1) and integra-

ion in hierarchically high regions (core / 24c). Our findings emphasize
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Fig. 7. Correlation between the ACW in the dlPFC with the cognitive bias (upper) and sensitivity d’ (lower). A long ACW0 is linked to an other-bias, while a shorter 

one is associated to a self-bias. A longer ACW5 is linked to a better performance (d’). 
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hat the temporal hierarchy proposed by Chaudhuri pertains in our task

tructure. This confirms the implication of temporal segregation in sen-

ory regions like V1 in the processing of disjoint external inputs in a

emporally (and objectively) accurate way, related to the sensitivity.

n the other hand, the cortical midline region 24c integrates different

emporally disjoint inputs along with baseline activity which was shown

o be related to self, thus showing a high degree of temporal integration

nd self bias. 

Once we eliminated the hierarchy in our computational model by

ssigning the same hierarchical index to all regions, we now observed

imilar activity in both V1 and midline 24c. This suggests that the differ-

nt degrees of temporal integration and segregation as well as extension

uring input processing in unimodal regions like V1 and transmodal

idline regions like 24c are, at least in part, related to their differential

ierarchical positions in the brain’s overall uni-transmodal topography.

emporal integration-segregation may thus be an intrinsic feature of the

rain’s uni-transmodal topography rather than being primarily related

o the extrinsic or external input of the paradigm; for that reason, it

ay remain independent of the specific task, e.g., task-unspecific. Given

t  

11 
hat these differential phenomena of temporal integration and segrega-

ion in uni- and transmodal regions disappear when abolishing the hi-

rarchy in our model, we suppose, albeit tentatively, a key role of the

rain’s uni-transmodal topographic organization in mediating the cog-

itive bias (Criterion C) through the INT. 

.7. Limitations 

One potential limitation of our study is the novel use of ACW0 as

istinct from ACW5 including their association with distinct cognitive

eatures, namely sensitivity d’ and Criterion C. However, two previ-

us studies ( Smith et al., 2022 ; Golesorkhi et al., 2021b ) also demon-

trated differential association of ACW5 and ACW0 with neural, e.g., to-

ographic distinction of transmodal DMN vs unimodal sensory regions,

nd psychological, e.g., self-continuity, features. This is well in line with

ur observation of especially the longer variant (ACW0) in trans-modal

MS/DMN being associated with Criterion C. 

Yet another potential issue in our study concerns temporal integra-

ion. While especially the longer variant, ACW0, strongly suggests high
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egrees of temporal integration ( Wolff et al., 2022 ), we did not show it

n a more direct way in our empirical EEG data. However, various in-

irect lines strongly suggest temporal integration to be the main mech-

nism. First, especially the continuous version of our paradigm with

he sequential self-other face morphing required temporal integration

nd segregation: if two sequential faces are associated with one and the

ame person, e.g., self or other, the two temporally distinct inputs (or

timuli/faces) must be integrated across their distinct time points. If,

n contrast, they are attributed to distinct persons, e.g., self and other,

hey must be segregated. Temporal integration is thus required on the

sychological level of the paradigm itself. Second, we demonstrate tem-

oral integration on the computational level in our simulation where

MS/DMN, unlike visual cortex, do indeed integrate temporally parsed

nputs into one activity change. 

Additionally, we would like to mention that the CMS/DMN is known

o be recruited in self-processing but that the association with this region

oes not necessarily engender self-specific processing ( Frewen et al.,

020 ). Further studies would be necessary to confirm this link and to

xtend the knowledge to probe for self-relatedness in our own study. 

One may wonder why a majority of participants present an other-

ias instead of a self-bias, as per self-prioritization effect. We have to

onsider that our task is primarily a task about bias in decision making

ith subjects being forced (due to the morphed nature of the faces) to

ake mistakes as measured by the Criterion C. This has been described

s self-related processing ( Northoff et al., 2006 ; Northoff, 2016 ). Within

hat given framework, the bias or error can occur either with respect

o other or self which is described as self-referential processing or self-

rioritiziation ( Sui and Humphreys, 2015 ). Our study and its paradigm

perate primarily on the first level, the level of self-related processing as

perationalized by the Criterion C, the bias, rather than on the second

evel of self-referential processing (as the typical trait adjective tasks).

herefore, we do not see our results in contradiction to the self-reference

ffects as that operates on the level of self-referential processing rather

han self-related processing as target in our study. 

Finally, we demonstrate the importance of topographic hierarchy for

emporal integration. That, however, was shown only in an indirect way,

hat is, by abolishing the uni-transmodal hierarchy in our computational

odel. Future studies in for instance patients with CMS/DMN lesions are

arranted that relate different degrees of uni-transmodal topographic

ierarchy with different degrees of both temporal integration and cog-

itive bias. 

. Conclusion 

In conclusion, we demonstrate the key role of temporal integration

or our cognitive bias in perception and decision making. We demon-

trate temporal integration on the behavioral level using signal detec-

ion theory that allows distinguishing Criterion C (bias) and sensitiv-

ty d’ (accuracy). This is complemented on the neural level by showing

hat the cognitive bias is related to longer INT (ACW0) of especially the

MS/DMN and dlPFC. The involvement of temporal integration and the

ni-transmodal topography is substantiated by computational modeling

howing high degrees of temporal integration of temporally parsed in-

uts in the neural response of specifically transmodal CMS/DMN and

lPFC (as distinct from unimodal primary visual cortex). Together, we

emonstrate that the cognitive bias in perception and decision making

s intimately linked to the intrinsic neural timescales as based on the

rain’s uni-transmodal topographical organization. 

ignificance statement 

Every day humans take decisions which are frequently characterized

y a cognitive bias. We demonstrate the key role of temporal integra-

ion in this bias in perception and decision making on a behavioral level

sing signal detection theory. Neurally, the cognitive self-bias is related

o longer Intrinsic Neural Timescales of especially the cortical midline
12 
tructures (CMS) of the default mode network (DMN). The involvement

f temporal integration in CMS/DMN is further substantiated by compu-

ational modeling showing high degrees of temporal integration of tem-

orally parsed inputs in the neural response of specifically CMS/DMN

as distinct from primary visual cortex). Together, we demonstrate that

he cognitive bias in perception and decision making is intimately linked

o the longer intrinsic neural timescales in core regions. 

eclaration of Competing Interest 

The authors declare no conflicts of interest. 

redit authorship contribution statement 

Angelika Wolman: Methodology, Software, Validation, Formal

nalysis, Investigation, Resources, Writing – original draft, Writing –

eview & editing, Visualization. Yasir Çatal: Software, Formal analy-

is, Writing – original draft, Writing – review & editing, Visualization.

nnemarie Wolff: Resources, Software, Validation, Writing – review

 editing. Soren Wainio-Theberge: Software, Writing – review & edit-

ng. Andrea Scalabrini: Methodology, Validation, Writing – review &

diting. Abdessadek El Ahmadi: Software, Formal analysis, Validation,

riting – review & editing. Georg Northoff: Methodology, Validation,

onceptualization, Writing – original draft, Writing – review & editing,

isualization, Supervision, Project administration, Funding acquisition.

ata Availability 

Data will be made available on request. 

cknowledgment 

This research has received funding from the European Union‘s Hori-

on 2020 Framework Program for Research and Innovation under the

pecific Grant Agreement No. 785907 (Human Brain Project SGA2).

.N. is grateful for funding provided by UMRF, uOBMRI, CIHR and PSI.

e are also grateful to CIHR, NSERC, and SSHRC for supporting our tri-

ouncil grant from the Canada–UK Artificial Intelligence (AI) Initiative

he self as agent–environment nexus: crossing disciplinary boundaries

o help human selves and anticipate artificial selves‘ (ES/T01279X/1)

together with Karl J. Friston from the UK). 

upplementary materials 

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.neuroimage.2023.119896 . 

eferences 

modeo, L., W.iersema, J.R., Brass, M., N.ijhof, A.D., 2021. A comparison of self-bias

measures across cognitive domains. BMC Psychol. 9, 132 . 

.nderson, N.D., 2015. Teaching signal detection theory with pseudoscience. Front. Psy-

chol. 6 . 

.ndrews-Hanna, J.R., Smallwood, J., S.preng, R.N., 2014. The default network and self–

generated thought: component processes, dynamic control, and clinical relevance: the

brain’s default network. Ann. N. Y. Acad. Sci. 1316, 29–52 . 

.alderston, N.L., et al., 2020. Patients with anxiety disorders rely on bilateral dlPFC ac-

tivation during verbal working memory. Soc. Cogn. Affect. Neurosci. 15, 1288–1298 .

arton, T., C.onstable, M.D., Sparks, S., Kritikos, A., 2021. Self-bias effect: movement

initiation to self-owned property is speeded for both approach and avoidance actions.

Psychol. Res. 85, 1391–1406 . 

uzsáki, G., 2006. Rhythms of the Brain. Oxford University Press

10.1093/acprof:oso/9780195301069.001.0001May 27, 2022 . 

haudhuri, R., Knoblauch, K., Gariel, M.-.A., Kennedy, H., Wang, X.J., 2015. A large-s-

cale circuit mechanism for hierarchical dynamical processing in the primate cortex.

Neuron 88, 419–431 . 

hristoff, K., Cosmelli, D., Legrand, D., Thompson, E., 2011. Specifying the self for cogni-

tive neuroscience. Trends Cogn. Sci. 15, 104–112 . 

.unningham, S.J., T.urk, D.J., 2017. Editorial: a review of self-processing biases in cog-

nition. Q. J. Exp. Psychol. 70, 987–995 . 

.avey, C.G., Pujol, J., H.arrison, B.J., 2016. Mapping the self in the brain’s default mode

network. Neuroimage 132, 390–397 . 

https://doi.org/10.1016/j.neuroimage.2023.119896
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0001
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0002
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0003
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0004
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0005
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0006
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0007
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0009
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0010
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0011


A. Wolman, Y. Çatal, A. Wolff et al. NeuroImage 268 (2023) 119896 

D  

 

D  

 

F  

G  

G  

G  

 

H  

H  

H  

H  

 

H  

I  

 

I  

I  

 

J  

K  

K  

K  

K  

 

 

K  

 

L  

 

M  

M  

M  

M  

 

N  

 

 

N  

 

N  

N  

N  

N  

 

N  

N  

O  

 

P  

 

Q  

Q  

Q  

 

R  

R  

 

S  

S  

S  

S  

 

S  

T  

T  

T  

v  

W

W  

W  

Y  

Z  
elorme, A., Makeig, S., 2004. EEGLAB: an open source toolbox for analysis of single-trial

EEG dynamics including independent component analysis. J. Neurosci. Methods 134,

9–21 . 

ubreuil-Vall, L., Chau, P., Ruffini, G., Widge, A.S., Camprodon, J.A, 2019. tDCS to the

left DLPFC modulates cognitive and physiological correlates of executive function in

a state-dependent manner. Brain Stimul 12, 1456–1463 . 

rewen, P., et al., 2020. Neuroimaging the consciousness of self: review, and conceptu-

al-methodological framework. Neurosci. Biobehav. Rev. 112, 164–212 . 

.lasser, M.F., et al., 2016. A multi-modal parcellation of human cerebral cortex. Nature

536, 171–178 . 

olesorkhi, M., et al., 2021a. The brain and its time: intrinsic neural timescales are key

for input processing. Commun. Biol. 4, 970 . 

olesorkhi, M., Gomez-Pilar, J., Tumati, S., Fraser, M., Northoff, G., 2021b. Temporal

hierarchy of intrinsic neural timescales converges with spatial core-periphery organi-

zation. Commun. Biol. 4, 277 . 

asson, U., Chen, J., H.oney, C.J., 2015. Hierarchical process memory: memory as an

integral component of information processing. Trends Cogn. Sci. 19, 304–313 . 

.imberger, K.D., Chien, H.-.Y., H.oney, C.J., 2018. Principles of temporal processing

across the cortical hierarchy. Neuroscience 389, 161–174 . 

.oney, C.J., et al., 2012. Slow cortical dynamics and the accumulation of information

over long timescales. Neuron 76, 423–434 . 

uang, Z., Obara, N., Davis, H.(Hap), Pokorny, J., Northoff, G., 2016. The temporal struc-

ture of resting-state brain activity in the medial prefrontal cortex predicts self-con-

sciousness. Neuropsychologia 82, 161–170 . 

uk, A., Bonnen, K., H.e, B.J., 2018. Beyond trial-based paradigms: continuous behavior,

ongoing neural activity, and natural stimuli. J. Neurosci. 38, 7551–7558 . 

emi, L., B.usch, N.A., 2018. Moment-to-moment fluctuations in neuronal excitabil-

ity bias subjective perception rather than strategic decision-making. eNeuro 5

ENEURO.0430-17.2018 . 

emi, L., Chaumon, M., C.rouzet, S.M., B.usch, N.A., 2017. Spontaneous neural oscillations

bias perception by modulating baseline excitability. J. Neurosci. 37, 807–819 . 

to, T., H.earne, L.J., C.ole, M.W., 2020. A cortical hierarchy of localized and distributed

processes revealed via dissociation of task activations, connectivity changes, and in-

trinsic timescales. Neuroimage 221, 117141 . 

iang, M., et al., 2019. Cultural orientation of self-bias in perceptual matching. Front.

Psychol. 10, 1469 . 

anwisher, N., Yovel, G., 2006. The fusiform face area: a cortical region specialized for

the perception of faces. Philos. Trans. R. Soc. B Biol. Sci. 361, 2109–2128 . 

.elley, W.M., et al., 2002. Finding the self? An event-related fMRI study. J. Cogn. Neu-

rosci. 14, 785–794 . 

.iebel, S.J., Daunizeau, J., F.riston, K.J., 2008. A Hierarchy of Time-Scales and the Brain.

PLoS Comput. Biol. 4, e1000209 . 

.olvoort, I.R., Wainio-Theberge, S., Wolff, A., Northoff, G., 2020. Temporal integration

as “common currency ” of brain and self - scale-free activity in resting-state EEG

correlates with temporal delay effects on self-relatedness. Hum. Brain Mapp. 41,

4355–4374 . 

.rain, A.L., W.ilson, A.M., Arbuckle, R., C.astellanos, F.X., M.ilham, M.P., 2006. Distinct

neural mechanisms of risk and ambiguity: a meta-analysis of decision-making. Neu-

roimage 32, 477–484 . 

imbach, K., C.orballis, P.M., 2016. Prestimulus alpha power influences response criterion

in a detection task: prestimulus alpha power influences response. Psychophysiology

53, 1154–1164 . 

.acmillan, N.A., C.reelman, C.D., 2005. Detection Theory: a User’s Guide, 2nd Ed. May

22, 2022 . 

.arkov, N.T., et al., 2014. Anatomy of hierarchy: feedforward and feedback pathways in

macaque visual cortex. J. Comp. Neurol. 522, 225–259 . 

.urray, J.D., et al., 2014. A hierarchy of intrinsic timescales across primate cortex. Nat.

Neurosci. 17, 1661–1663 . 

.urray, R.J., Schaer, M., Debbané, M., 2012. Degrees of separation: a quantitative neu-

roimaging meta-analysis investigating self-specificity and shared neural activation be-

tween self- and other-reflection. Neurosci. Biobehav. Rev. 36, 1043–1059 . 

akao, T., et al., 2013. The degree of early life stress predicts decreased medial prefrontal

activations and the shift from internally to externally guided decision making: an ex-

ploratory NIRS study during resting state and self-oriented task. Front. Hum. Neurosci.

7 . 
13 
akao, T., et al., 2019. From neuronal to psychological noise – Long-range temporal cor-

relations in EEG intrinsic activity reduce noise in internally-guided decision making.

Neuroimage 201, 116015 . 

.ijhof, A.D., S.hapiro, K.L., Catmur, C., Bird, G., 2020. No evidence for a common self-bias

across cognitive domains. Cognition 197, 104186 . 

orthoff, G., et al., 2006. Self-referential processing in our brain —A meta-analysis of imag-

ing studies on the self. Neuroimage 31, 440–457 . 

orthoff, G., 2011. Self and brain: what is self-related processing? Trends Cogn. Sci. 15,

186–187 . 

orthoff, G., 2016. Is the self a higher-order or fundamental function of the brain? The

“basis model of self-specificity ” and its encoding by the brain’s spontaneous activity.

Cogn. Neurosci. 7, 203–222 . 

orthoff, G., Bermpohl, F., 2004. Cortical midline structures and the self. Trends Cogn.

Sci. 8, 102–107 . 

orthoff, G., S.andsten, K.E., Nordgaard, J., K.jaer, T.W., Parnas, J., 2021. The self and its

prolonged intrinsic neural timescale in schizophrenia. Schizophr. Bull. 47, 170–179 . 

ostenveld, R., Fries, P., Maris, E., Schoffelen, J.M., 2011. FieldTrip: open source software

for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput.

Intell. Neurosci. 2011, 1–9 . 

.ascual-Marqui, R.D., M.ichel, C.M., Lehmann, D., 1994. Low resolution electromagnetic

tomography: a new method for localizing electrical activity in the brain. Int. J. Psy-

chophysiol. 18, 49–65 . 

in, P., et al., 2016. Spontaneous activity in default-mode network predicts ascription of

self-relatedness to stimuli. Soc. Cogn. Affect. Neurosci. 11, 693–702 . 

in, P., Northoff, G., 2011. How is our self related to midline regions and the default-mode

network? Neuroimage 57, 1221–1233 . 

in, P., Wang, M., Northoff, G., 2020. Linking bodily, environmental and mental states

in the self —A three-level model based on a meta-analysis. Neurosci. Biobehav. Rev.

115, 77–95 . 

.aut, R.V., et al., 2020. Organization of propagated intrinsic brain activity in individual

humans. Cereb. Cortex 30, 1716–1734 . 

.eckless, G.E., Bolstad, I., N.akstad, P.H., A.ndreassen, O.A., Jensen, J., 2013. Motivation

alters response bias and neural activation patterns in a perceptual decision-making

task. Neuroscience 238, 135–147 . 

amaha, J., Iemi, L., Haegens, S., B.usch, N.A., 2020. Spontaneous brain oscillations and

perceptual decision-making. Trends Cogn. Sci. 24, 639–653 . 

mith, D., Wolff, A., Wolman, A., Ignaszewski, J., Northoff, G., 2022. Temporal continuity

of self: long autocorrelation windows mediate self-specificity. Neuroimage, 119305 . 

parks, S., C.unningham, S.J., Kritikos, A., 2016. Culture modulates implicit ownership-in-

duced self-bias in memory. Cognition 153, 89–98 . 

ui, J., He, X., H.umphreys, G.W., 2012. Perceptual effects of social salience: evidence

from self-prioritization effects on perceptual matching. J. Exp. Psychol. Hum. Percept.

Perform. 38, 1105–1117 . 

ui, J., H.umphreys, G.W., 2015. The Integrative Self: how Self-Reference Integrates Per-

ception and Memory. Trends Cogn. Sci. 19, 719–728 . 

ottenham, N., et al., 2009. The NimStim set of facial expressions: judgments from un-

trained research participants. Psychiatry Res. 168, 242–249 . 

sakiris, M., 2008. Looking for myself: current multisensory input alters self-face recog-

nition. PLoS ONE 3, e4040 . 

suchiya, N., Wilke, M., Frässle, S., Lamme, V.A.F., 2015. No-report paradigms: extracting

the true neural correlates of consciousness. Trends Cogn. Sci. 19, 757–770 . 

an Vugt, B., et al., 2018. The threshold for conscious report: signal loss and response bias

in visual and frontal cortex. Science 360, 537–542 . 

inkler, I., Haufe, S., Tangermann, M., 2011. Automatic classification of artifactual ICA–

components for artifact removal in EEG signals. Behav. Brain Funct. 7, 30 . 

olff, A., et al., 2019. The temporal signature of self: temporal measures of resting-state

EEG predict self-consciousness. Hum. Brain Mapp 40, 789–803 . 

olff, A., et al., 2022. Intrinsic neural timescales: temporal integration and segregation.

Trends Cogn. Sci. 26, 159–173 . 

eshurun, Y., Nguyen, M., Hasson, U., 2021. The default mode network: where the id-

iosyncratic self meets the shared social world. Nat. Rev. Neurosci. 22, 181–192 . 

ilio, F., et al., 2021. Are intrinsic neural timescales related to sensory processing? Evi-

dence from abnormal behavioral states. Neuroimage 226, 117579 . 

http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0012
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0013
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0014
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0015
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0016
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0017
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0019
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0021
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0022
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0023
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0024
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0026
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0027
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0028
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0029
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0030
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0031
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0032
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0033
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0034
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0035
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0036
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0037
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0038
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0039
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0040
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0041
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0042
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0043
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0044
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0045
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0046
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0047
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0048
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0049
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0050
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0051
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0052
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0053
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0054
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0055
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0056
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0057
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0058
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0059
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0060
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0061
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0062
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0063
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0064
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0065
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0066
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0067
http://refhub.elsevier.com/S1053-8119(23)00045-9/sbref0068

	Intrinsic neural timescales mediate the cognitive bias of self - temporal integration as key mechanism
	1 Introduction
	2 Methods
	2.2 Participants
	2.3 Materials
	2.4 Continuous morphing task (Fig. 1A left)
	2.5 Discontinuous signal detection task (Fig. 1A right)
	2.6 Resting-state

	3 Data analysis
	3.1 Signal detection theory (SDT)
	3.1.2 Sensitivity d’

	3.2 EEG data acquisition and preprocessing
	3.3 Autocorrelation window (ACW)
	3.4 Source localization with eLORETA
	3.5 Statistical analyses
	3.6 Computational model

	4 Results
	4.1 Behavioral results
	4.2 Intrinsic neural time scales in rest and task states
	4.3 Relationship of intrinsic neural timescales with behavioral measures
	4.4 Source space reconstruction eLORETA in CMS/DMN and V1
	4.5 Computational modeling - temporal integration and segregation in CMS and sensory cortex
	4.6 ACW mediates the bias in decision making in a stimulus-unspecific rather than -specific way

	5 Discussion
	5.1 Behavioral analyses
	5.2 Intrinsic neural timescales
	5.3 Relationship of intrinsic neural timescales with behavioral measures
	5.4 Neuroanatomical grounds
	5.5 Computational mechanisms
	5.7 Limitations

	6 Conclusion
	Significance statement
	Declaration of Competing Interest
	Credit authorship contribution statement
	Acknowledgment
	Supplementary materials
	References


