
Received: August 10, 2021. Revised: October 29, 2021. Accepted: November 2, 2021
© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

Cerebral Cortex, 2021, 1–16

https://doi.org/10.1093/cercor/bhab425

Original Article

It’s in the Timing: Reduced Temporal Precision in Neural
Activity of Schizophrenia
Annemarie Wolff1, Javier Gomez-Pilar2,3, Jianfeng Zhang4,5, Joelle Choueiry1, Sara de la Salle1, Verner Knott1 and Georg Northoff1,6

1University of Ottawa Institute of Mental Health Research, Ottawa, ON K1Z 7K4, Canada
2Biomedical Engineering Group, Higher Technical School of Telecommunications Engineering, University of Valladolid, Valladolid 47011, Spain
3Centro de Investigación Biomédica en Red—Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
4Mental Health Center, Zhejiang University School of Medicine, Hangzhou 310058, China
5College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China
6Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1Z 7K4, Canada
Address correspondence to Annemarie Wolff, 1145 Carling Avenue, room 6433 Ottawa, ON K1Z 7K4. Email: awolf037@uottawa.ca

Abstract

Studies of perception and cognition in schizophrenia (SCZ) show neuronal background noise (ongoing activity) to intermittently
overwhelm the processing of external stimuli. This increased noise, relative to the activity evoked by the stimulus, results in temporal
imprecision and higher variability of behavioral responses. What, however, are the neural correlates of temporal imprecision in SCZ
behavior? We first report a decrease in electroencephalography signal-to-noise ratio (SNR) in two SCZ datasets and tasks in the
broadband (1–80 Hz), theta (4–8 Hz), and alpha (8–13 Hz) bands. SCZ participants also show lower inter-trial phase coherence (ITPC)—
consistency over trials in the phase of the signal—in theta. From these ITPC results, we varied phase offsets in a computational
simulation, which illustrated phase-based temporal desynchronization. This modeling also provided a necessary link to our results
and showed decreased neural synchrony in SCZ in both datasets and tasks when compared with healthy controls. Finally, we showed
that reduced SNR and ITPC are related and showed a relationship to temporal precision on the behavioral level, namely reaction
times. In conclusion, we demonstrate how temporal imprecision in SCZ neural activity—reduced relative signal strength and phase
coherence—mediates temporal imprecision on the behavioral level.
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Introduction
Imagine you are having a conversation with a friend
in a large room, surrounded by others engaged in sim-
ilar conversations. Your friend’s voice is intermittently
drowned out by the ongoing chatter of the background
noise, which rises and falls. This makes it possible for you
to hear only parts of what they are saying. Your friend
asks you questions, but you respond to only some of
them; you can’t hear the others because of the relative
noise in the room.

That, as several studies on sensory perception (Javitt
2009; Sass et al. 2013; Vlcek et al. 2014; Javitt and Freed-
man 2015; Micoulaud-Franchi et al. 2016; Hoptman et al.
2018) and cognition (Schwartz et al. 1989; Birkett et al.
2007) suggest, may be the situation for someone with
schizophrenia (SCZ). Specifically, their brain’s neuronal
background activity (here the ongoing spontaneous
activity is considered to be noise) may intermittently
overwhelm the processing of external stimuli (here the
stimulus-evoked (David et al. 2006) activity is considered
to be signal) from the environment (Yang et al. 2014,
2017); increased background noise (Yang et al. 2014, 2017)
has previously been shown. The ratio of these two factors,
as measured by the signal-to-noise ratio (SNR), would be

lower as a result, which has shown to be the case in
SCZ (Winterer et al. 1999, 2000; Winterer and Weinberger
2004). This neuronal background activity intermittently
drowning out the stimulus—as measured by the SNR (Xia
1998)—hampers the consistency, or temporal precision
(hereafter termed temporal precision), in the processing
of external stimuli or tasks (Andreasen et al. 1999;
Thoenes and Oberfeld 2017) in SCZ participants. As in
our example above, the problem in SCZ may not be one
of accuracy—incorrectly hearing the words—but lack of
precision due to variability in perceiving and responding
to the stimuli (Thoenes and Oberfeld 2017).

Supported by several studies (Andreasen et al. 1999;
Thoenes and Oberfeld 2017) and reinforced by functional
and anatomical evidence (Andreasen and Pierson 2008),
a long-held theory of cognitive processing deficits in SCZ
is that there is (Winterer and Weinberger 2004) mistiming
of information processing at the neural encoding (action
potential) level, which leads to deficits in performance
and behavior (Andreasen et al. 1999). This theory is sup-
ported by findings that SCZ participants show the same
accuracy in their behavior—correct responses to a stim-
ulus—as healthy controls, but significantly lower tem-
poral precision—greater variability of the responses to
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the same stimulus upon repeated presentations includ-
ing an impairment in synchrony (Andreasen et al. 1999;
Thoenes and Oberfeld 2017). For example, a recent meta-
analysis showed no significant effect between patients
and controls over all tasks in accuracy of time perception
(Bolbecker et al. 2014; Thoenes and Oberfeld 2017). A
large effect across all time perception tasks was found,
however, in precision in patients with SCZ. They found
that the deviation from the true time in the time per-
ception tasks was the same in SCZ as healthy controls,
but the SCZ participants’ responses varied significantly
more. What is unclear, however, are the neural correlates
of such temporal imprecision on a behavioral level.

To address this, the goal of our study is to investigate
temporal precision in SCZ on a neural level, linking it
to temporal precision in behavior. Since precision is the
inverse of variance, high variance (low coherence) in
neural activity over trials is equivalent to low precision or
imprecision. Is the neuronal activity in SCZ by itself less
regular and consistent, and consequently less temporally
precise in its neural processing of external stimuli? And
if so, what is the underlying mechanism and how does it
impact behavior? The answers to these two questions are
unclear. Addressing them is of key importance for deter-
mining what underlies temporally imprecise behavior in
SCZ (Kesby et al. 2018; Weele et al. 2019; Abi-Dargham
2020; Frankle and Narendran 2020).

If there is a difference in temporal precision of the
neural activity over trials in SCZ, then we would expect
this to be present in all sensory modalities and tasks.
We therefore investigated two different SCZ data sets
(including healthy controls) in electroencephalography
(EEG) with different task states and sensory modalities
to determine if this finding was wide-ranging or specific
only to one type of task or modality. Aimed at probing
temporal precision on the neural level, we used SNR and
inter-trial phase coherence (ITPC) measures as evidence
to support temporal precision. SNR measures the ratio of
the stimulus evoked activity to the ongoing spontaneous
activity over trials, while ITPC measures the consistency
of the phase of the signal over all trials. Low phase
consistency over trials (high variance) would lead to low
ITPC so low precision—imprecision—of phase over trials.

First, we investigated the SNR in a dynamic way, that
is, in its time course (rather than in a static way as in
two earlier SNR studies; Winterer et al. 1999, 2000). Such
a dynamic approach makes it possible to link the SNR
with temporal regularity and precision in the neural
processing of an external stimulus. Building on and
extending the earlier findings (Winterer et al. 1999, 2000),
we hypothesized that a reduced SNR in SCZ participants,
in theta specifically, is related to decreased temporal
synchronization compared with healthy subjects. The
theta frequency band (4–8 Hz) is known to have a role
in cognitive functions (Korotkova et al. 2018) such as
spatial coding (Hafting et al. 2008), memory formation
(Berry and Thompson 1978), and anxiety-specific behav-
iors (Gray 1982). Prominent across species (Korotkova

et al. 2018), theta has also shown significant differences
in schizophrenic patients (decreased inter-trial coher-
ence and event-related spectral perturbation) when
compared with healthy controls (Csukly et al. 2014;
Gomez-Pilar et al. 2018; Javitt et al. 2018; Hamilton et al.
2020; Roach et al. 2021).

Secondly, we investigated phase coherence over trials
using ITPC. From these ITPC results, we inferred that
the differences seen between groups were a result of
varying phase offsets across trials when the ITPC was
computed. This was supported mathematically by the
equation for ITPC (equation 4); however, the degree of
phase offsets was unknown. Employing computational
simulation (Einevoll et al. 2019; Fan and Markram
2019), we validated the underlying mechanism of our
findings. As our results measured the ITPC over all
trials and inferred down what the constituents of each
individual trial were, our computational modeling did the
reverse: We simulated each trial with the components
of the signal and the varying of the independent
variable (phase offsets) and then measured the ITPC
up at the level of all trials. The results from both—
the measurement of ITPC—were finally compared. This
linked our results to this modeling which showed a
relation to temporal synchronization of neural activity
relative to the timing of stimulus onset. We hypothesize
reduced ITPC, again specifically in theta (Csukly et al.
2014; Gomez-Pilar et al. 2018; Javitt et al. 2018; Roach
et al. 2021), in SCZ as being related to decreased temporal
synchronization.

Finally, we link SNR and ITPC with each other, as well
as to timing on the behavioral level, that is, reaction
times. We expect reductions in theta and alpha SNR and
theta ITPC to be interrelated (based on their commonly
shared temporal imprecision), which also should impact
temporal precision of reaction times on the behavioral
level.

Materials and Methods
As we hypothesized that participants with SCZ have
weaker stimulus-related signal relative to the back-
ground noise resulting in a lower SNR, this relatively
weak signal would be universal and consistent across all
sensory modalities (visual, auditory, etc.) and all exper-
imental paradigms (perceptual, cognitive, sensory, etc.).
For this reason, we analyzed two separate SCZ datasets
with different experimental paradigms (cognitive cost
conflict, sensory P50) and sensory modalities (visual,
auditory). In addition, one was a report paradigm (i.e.,
respond with a button press) and one was no report (no
response) (Tsuchiya et al. 2015). Moreover, as to minimize
effects of prediction (Lakatos et al. 2013; Rentzsch et al.
2015; Sterzer et al. 2018; Albrecht et al. 2019), stimuli
were presented in a temporally irregular way in these
paradigms, that is, jittered, with variable inter-trial
intervals (ITIs).
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Table 1. Dataset specifications

Label Mod. Type Report Associated Publications

Dataset 1 Vis. Cog. Y Albrecht MA, et al. 2019. Increased conflict-induced slowing, but no
differences in conflict-induced positive or negative prediction error learning
in patients with schizophrenia. Neuropsychologia. 123(di):131–40.

Dataset 2 Aud. Sen. N Choueiry J, et al. 2019. Combining CDP-choline and galantamine, an
optimized α7 nicotinic strategy, to ameliorate sensory gating to speech
stimuli in schizophrenia. Int J Psychophysiol. 145(February):70–82.

Note: Vis., visual; Aud., auditory; Cog., cognitive; Sen., sensory; Y, yes; N, no.

Table 2. Number of trials in analyzed datasets

Dataset Number of trials

Dataset 1 216
Dataset 2 50

Datasets
In this study, two separate datasets were analyzed
(Table 1). One dataset involved analyzing stimuli from a
visual cognitive task with a response (first dataset), while
the other dataset was composed of analyzing stimuli
from an auditory perceptual task with no response
(second dataset). Therefore, there were differences for
the two datasets for modality (visual, auditory), type
(cognitive, sensory), and response (response, no response)
(Table 1). We chose this approach to determine how
generalizable our results were. As per our hypothesis, the
difference in SNR should be true for all tasks, senses, and
paradigms. For that reason, we chose these two sensory
modalities and types of stimuli.

Finally, the dataset with the response allowed us to use
the reaction times to investigate the behavioral signifi-
cance of SNR and ITPC. The dataset without a response
(no-report) allowed us to look at differences without any
data contamination related to the motor or cognitive
aspects of a behavioral response (Tsuchiya et al. 2015).

Once all the EEG data were preprocessed for each
dataset, the number of all trials per participant was
calculated. The participant with the lowest number of
trials determined the total number analyzed in each
participant; that number of trials was then randomly
selected in each participant. Therefore, the data analyzed
for each participant in each dataset were based on the
same number of trials (Table 2).

For both datasets, as detailed in each of the associated
publications (Table 1), all participants provided written
informed consent prior to participation in each respec-
tive study. All study protocols were completed according
to the ethics guidelines of each respective research insti-
tution. In addition, for the use of these datasets in this
study after all participants provided informed consent
for the original studies, research ethics board approval
was obtained (REB-2021002) at the University of Ottawa’s
Institute of Mental Health research, the home institute
of the first and last author.

SCZ Dataset 1

The EEG data for the first dataset (hereafter titled
“Dataset 1”) (Albrecht et al. 2019) were obtained from
the Patient Repository for EEG Data + Computational
Tools (PREDICT) data repository located at predict.cs.
unm.edu. Dataset 1 comprised EEG task data from 44
schizophrenic patients (22 medicated with clozapine, 22
medicated with a second generation antipsychotic) and
31 healthy controls (Supplementary Table 1). EEG data
were recorded with 64 channels using a Brain Vision
cap and amplifier system (Brain Vision Gmbh). Details
can be seen at the dataset’s associated published paper
(Albrecht et al. 2019).

The task consisted of a visual cognitive Cost Conflict
task. There was a training and testing phase of the task,
though only training trials were analyzed in this study.
During each trial, one of four unique simple shapes
(star, oval, rectangle, hexagon) in color (blue, yellow)
was presented. They were told to respond by pressing a
button (left, right) to get a reward of 1 point (+1) within a
response window of 850 ms. Incorrect responses resulted
in no reward (0)—zero points awarded—and responses
beyond the 850 ms response window were punished by
removal of three points (−3). Only the first 500 ms after
stimulus onset (0–500 ms) were analyzed in this study.

Of the four stimuli, one (A) was rewarded at a rate of
100% regardless of which button the participant pressed
(left, right); they were always awarded +1. The second
stimulus (D) was rewarded at a rate of 0% regardless of
which button the participant pressed; they were always
rewarded +0. The two remaining stimuli were reinforced
at 50% on average, but this depended on the conflict (con-
gruent, incongruent). Stimulus B was reinforced at a rate
of 100% on congruent trials and 0% on incongruent, while
the opposite was true for stimulus C (0% for congruent,
100% for incongruent).

Participants completed four blocks of trials and each
block contained at least 20 correct responses for each
stimulus. In the training phase, the block order was
as follows: 1) the ITI was a fixation cross presented
for 1000 ms; 2) the stimulus was presented until they
responded or for a maximum of 850 ms; 3) a short 170 ms
fixation cross (±10 ms, jittered); 4) feedback (+1, 0, −3)
was presented for 1000 ms. In the testing phase, the
feedback was not provided.

For the analysis, only the training trials were used as
the behavioral data (reaction times) were better for them
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than for the test data. Once all the EEG data were prepro-
cessed, the number of all training trials per participant
was calculated. The participant with the lowest number
of trials determined the total number analyzed in each
participant as that number of trials was then randomly
selected in each participant. Therefore, the data analyzed
for each participant were based on the same number of
training trials.

SCZ Dataset 2

The second dataset (hereafter titled “Dataset 2”) (Choueiry
et al. 2019) consisted of 26 participants with a clinical
diagnosis of SCZ according to DSM-IV criteria, and 25
healthy controls (Supplementary Table 1). SCZ partici-
pants were clinically stable for at least 3 months and
had been on a stable antipsychotic regimen for at least 4
weeks at the time of participation (for further details
of participants, please see Supplementary Materials).
Exclusion criteria were diagnosis of other medical
illness, treatment with clozapine, head injury with
loss of consciousness in past 6 months, and hearing
impairment. Of the 26 participants, 16 were smokers and
8 nonsmokers (<100 smoked cigarettes in lifetime, zero
tobacco product consumption in preceding year). Study
procedures and participant recruitment were done in
compliance with the Research Ethics Board of The Royal
Ottawa Mental Health Care Group and the University of
Ottawa.

The EEG recording was done using a Brain Vision (Brain
Products, Gmbh, Munich, Germany) 30 electrode Easy-
Cap, software (Recorder) and amplifier (Quickamp). The
electrodes were placed according to the 10/20 interna-
tional system (Jurcak et al. 2007) with additional elec-
trodes placed around the eye (above/below, left/right) to
record vertical and horizontal ocular activity. The online
reference was placed between FPz and Fz and the elec-
trode impedance was kept below 5 kΩ throughout the
recording session.

Participants were presented a P50 paradigm, though
only the first of the paired stimuli were analyzed in
this study (S1 of an S1–S2 pairing). The stimulus was
an “a” vowel (170 ms long, 140 Hz) presented binaurally
through headphones at 80 dB (SPL). The two stimuli were
presented with 500 ms between them. Therefore, only
the first 500 ms of the trial was analyzed to remove any
influence of the second stimulus.

In this study, two identical P50 paradigm and EEG
recording sessions were completed by each participant,
one after the administration of a placebo and the other
after the administration of cytidine diphosphocholine
(CDP-choline) and galantamine. The order of the ses-
sions was counterbalanced. Only the EEG data from the
placebo session were analyzed in this study; thus, there
was no effect of a pharmacological agent.

EEG Preprocessing
All EEG data preprocessing was completed using EEGLAB
(v2019) (Delorme and Makeig 2004), which required

MATLAB (The MathWorks) v2018a, including the use
of the Optimization, Statistics, and Signal Processing
Toolboxes. To ensure that our finding with the SNR was
due to neuronal noise only and not any artifacts from
the hardware or recording of the EEG data, we employed
a rigorous preprocessing regime to remove as many
artifacts from the EEG data as possible prior to beginning
analysis (see Supplementary Table 2 for details).

Raw EEG data were imported to EEGLAB and were
resampled to 500 Hz (if the raw data had a sampling rate
of 1000 Hz) using their anti-aliasing resample function.
The continuous data were then low- and high-pass FIR
filtered from 1 to 80 Hz. The data were then visually
inspected. Flat electrode channels were removed if they
were flat longer than 5 s (see Supplementary Table 2
for the numbers of all artifacts removed). Next, noisy
channels were removed if they had the following prop-
erties: correlation of mean over 5 s of less than 0.85 with
other channels (Bigdely-Shamlo et al. 2015); mean value
over 5 s greater than 4 standard deviations (SD) from
the mean of all channels. The EEG data were then re-
referenced to the average activity of all channels, and the
removed channels were spherically interpolated. Clean-
line (Mullen 2012) at 60 Hz was then used to remove line
noise. The parameters were sliding window length and
step of 4 s (no overlap), default smoothing factor of 100,
default P value of 0.01 for detecting significant sinusoid,
and an FFT default padding factor of 2.

The continuous data were then epoched from 800 ms
before stimulus onset to 1100 ms after stimulus onset,
with no baseline correction. All stationary artifacts,
specifically eye movements, were reduced using inde-
pendent component analysis and the Multiple Artifact
Rejection Algorithm (Winkler et al. 2011, 2014). After the
removal of these final artifacts, the EEG data were re-
referenced to the surface Laplacian (Carvalhaes and De
Barros 2015), a spatial filter, in order to allow for greater
spatial specificity of the data.

Event-Related Potentials and Electrode Choice
with Topoplots
Before plotting the event-related potentials (ERPs), the
epochs in the data were baseline corrected with a
baseline of 400 ms before stimulus onset to stimulus
onset (−400 to 0 ms). ERPs were the mean of trials
for all stimuli for each dataset (Table 2) and each
electrode. After visualizing the data with a butterfly
plot (Supplementary Fig. 1a) for all electrodes, one early
(<200 ms) interval of 40 ms was chosen for the topoplots
(Supplementary Fig. 1b). This interval was 116–156 ms
for Dataset 1 and 88–128 ms for Dataset 2.

We first made butterfly plots that visualized the mean
of all trials for each electrode (Supplementary Fig. 1a).
An early (<250 ms) 40 ms time interval in which the
activity of all individual electrodes diverges was chosen
for visualization in the topoplots based on these butterfly
plots. The mean ERP activity of this time interval (116–
156 ms for Dataset 1, 88–128 ms for Dataset 2) for all
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electrodes was then calculated and plotted as topoplots
(Supplementary Fig. 1b). From these topoplots, but also
from previous studies (Csukly et al. 2014; Hamilton et al.
2020; Roach et al. 2021) which found significant deficits
in SCZ in the theta band (maximal in the frontal region),
two electrodes were chosen in each data set. One in the
primary sensory cortices (PO8 for visual paradigm and
Cz for auditory paradigm respectively), and one in the
frontal cortex (AFp9 and Fp1 respectively) as our hypoth-
esis specified a significant difference in the theta band,
and this frequency band is maximal in the frontal region.
The electrode in the primary sensory cortices was chosen
as this was early sensory activity, while the electrode
in the frontal cortex was chosen as a result of previous
SCZ findings (Egan et al. 2001; Weinberger et al. 2001;
Winterer and Weinberger 2004; Rolls et al. 2008; Csukly
et al. 2014; Weele et al. 2019) in frontal cortical activity,
and as our hypotheses centered on frontal theta activity
specifically. ERPs were plotted for these two electrodes
and the area under the curve (AUC) was calculated and
statistically compared.

Based on visual inspection of the topoplots and previ-
ous SCZ results found in the frontal cortex (Egan et al.
2001; Weinberger et al. 2001; Winterer and Weinberger
2004; Rolls et al. 2008; Csukly et al. 2014; Weele et al.
2019), and as done in a previous study (Arazi et al. 2017),
two electrodes were chosen from the frontal cortex and
the sensory cortices. The ERPs for these two electrodes
were plotted and the AUC for the ERPs in the same
interval was calculated (Supplementary Fig. 1c). All sub-
sequent analyses were done with the specified electrode
from the frontal cortex (AFp9 for Dataset 1, Fp1 for
Dataset 2).

SNR and Cross-correlation Delay Analysis
SNR was calculated according to the methods of Xia
(1998). As we wanted to have a time-resolved SNR mea-
sure, instead of taking the mean over the full time inter-
val of interest (0–500 ms), it was measured at each time-
point between stimulus onset and 500 ms. The interval
of interest was 500 ms as the stimulus in the second
dataset was a paired P50 auditory stimulus, with 500 ms
between tones. The second tone was presented 500 ms
after stimulus onset of the first tone; we only analyzed
data from the first tone in this study.

Specifically, signal was calculated as

Xi = (
ti − 〈

b
〉)2 (1)

where tiis the mean value over trials at timepoint i

between stimulus onset (0 ms) and 500 ms and
〈
b
〉

is

the mean of the mean baseline over trials from −400 ms
to stimulus onset. The noise was then calculated as

ηi = (ti)
2 (2)

where tiis the mean value over trials at timepoint
i between stimulus onset and 500 ms. Finally, the SNR

was the ratio of the two, converted to decibels

Φi = 10 × log10

(
Xi

ηi

)
(3)

Finally, the mean of the SNR was calculated in a slid-
ing window. The window length was 76 ms with a 50%
overlap.

To verify that our results were not due to length of
sliding window or the size of the overlap, we did the same
analysis with an additional window length (100 ms) and
overlap (90%) (Supplementary Fig. 2). We found the same
results as described above. In addition, we measured the
SNR AUC in the later time interval with the same window
length and overlap to see if our significant results were
in both time intervals (Supplementary Fig. 3). We did not
find significant differences in the later time interval;
therefore, our significant findings in the AUC of the SNR
curves are confined to the early time interval and are not
due to our choice of window length or overlap.

Inter-trial Phase Coherence
ITPC was computed using complex Morlet wavelets
according to:

ITPCtf =
∣∣∣∣∣n−1

n∑
r=1

e
iktfr

∣∣∣∣∣ , (4)

where n is the number of trials, r is the trial number,
eik is Euler’s formula providing the complex polar repre-
sentation of a phase angle k on trial r at time-frequency
point tf, and the absolute value bars indicate the length
of the average vector. Complex Morlet wavelets were
computed for the full epoch length (−800 to 1100 ms)
between 1 and 80 Hz. The wavelets were composed of
3–10 logarithmically spaced cycles and 158 points in the
frequency range (80 – 1 Hz is 79 Hz, and two points per
Hz = 158 points).

A recent paper (Van Diepen and Mazaheri 2018) used
simulations to show that differences in amplitude and/or
power can affect the measure of phase, specifically in
ITPC. They showed that lower amplitude leads to lower
values of ITPC even though amplitude and phase are
mathematically independent. We found differences in
ERPs between groups in our data. ERPs, however, are
baseline corrected while the trials with which ITPC is
calculated are not. We therefore did a secondary analysis
to determine if the median and standard deviation (SD) of
the amplitude (0–500 ms) of the non-baseline corrected
data—used to calculate the ITPC—differed between
groups. For all datasets and groups, Mann–Whitney U
tests found no significant difference in median or SD
of amplitude between the SCZ participants and the
healthy controls (Supplementary Table 4 for statistics).
Therefore, the differences found in ITPC between the
groups were not due to differences in amplitude.
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ITPC Simulations
The ITPC simulations were based on a simple sine wave,
which would replicate the ERSP results common to both
groups and datasets. As this increase in theta power
lasted only several hundreds of milliseconds (was not
continuous), we decided that our simulations would have
a transient oscillation with peaks in the theta range of 4–
8 Hz (Supplementary Fig. 5b, far left plot). The base sine
wave is

∼base = A sin
(
2π ft + Δθr

)
, (5)

where A is the amplitude of the wave (here equal to 1),
f is the frequency of the transient oscillation (4–8 Hz in
increments of 1 Hz), and t is the timepoint in the trial. Δθ

is the phase shift, which is the independent factor being
varied in these simulations. The phase shifts ranged from
0 (no phase shift) to 2π (complete phase shift) with five
levels (0, π/2, π , 3π/2, 2π ). Finally, r, which is multiplied
by the phase shift, is a number between 0 and 1, which
is randomly generated for each trial. This creates some
differences between trials for each phase shift.

For a transient oscillation, a Gaussian kernel in the
time domain is applied to the sine wave, thereby allowing
for the sine wave during a specified time window rather
than continuously. The Gaussian kernel (�) is defined as

� = e
−(t−p)2

2s2 (6)

Where t is the timepoint, p is the peak time of the
Gaussian kernel, and s is its width. In our simulations,
the Gaussian kernel had a peak at 175 ms after stimulus
onset and a full-width at half-maximum (FWHM) of
150 ms (Supplementary Fig. 5b, middle left plot). It was
applied to the sine wave, and so the combination of these
two components results in a transient increase of theta
power after stimulus onset like that seen in the ERSP
results of our actual data (Supplementary Figs 5a and 7).

Finally, we added two types of noise to the sine
wave in order to make the simulations more real-
istic: 1) pink noise, which has a 1

f power spectrum
(Supplementary Fig. 5b, far right plot) with an exponen-
tial decay of 50; 2) white noise, which has a flat power
spectrum (Baker and Richard 2019; Guevara Erra et al.
2019; Qu et al. 2019; Aghababaiyan 2020).

To determine which of the phase-shifted simulations
had the closest ITPC distance to the actual data, the
Euclidean distance (d2) was measured as

d2
as = (

xa − ys
) (

xa − ys
)′ (7)

where xa is the vector of the actual ITPC and ys is the
vector of the simulated ITPC. The simulation with the
smallest value of d2 was considered to be the simulation
closest to the actual data.

To approximate Dataset 1, 38 (mean of 31 CON and
44 SCZ) single channels (one channel represents one
participant) and 216 trials were simulated. For Dataset 2,
26 participants with one channel each and 50 trials were
simulated. The mean ITPC of all trials and participants
was then done (Fig. 5d). The mean ERSP was also calcu-
lated to verify the transient increase in theta power after
stimulus onset (see Supplementary Fig. 7).

Reaction Times and Correlations
The behavioral relevance of SNR was examined by split-
ting the trials according to their reaction times. For each
participant, all trials were ordered according to the reac-
tion time of the response in each trial. The fastest and
slowest 40% of trials were then chosen, and from these
trials, the SNR was calculated. The middle 20% of trials
according to reaction time were discarded. This resulted
in one SNR curve for fast trials and one for slow trials for
each participant. The AUC of the curve in the same time
intervals was then calculated and compared statistically.
The ITPC of the fast and slow trials was also calculated,
and the results for each participant from 150–400 ms and
1–2.5 Hz were extracted and statistically compared.

The correlations were Spearman two-tail correlations,
and the model fit was a linear model (polynomial 1) using
MATLAB function fit. To take a dimensional approach,
we did this across all participants without separating
them into groups. To ensure, however, that our significant
correlations were not due to the statistical differences
between the two groups, we also correlated the variables
separately for each group (Supplementary Fig. 9). This
showed that our significant correlations were not a result
of the differences between SCZ and CON.

Multiple Linear Regression Analyses
To determine if ITPC and SNR AUC predicted reaction
times, a multiple linear regression in each experimental
group was conducted. After preprocessing of the data, the
participant with the lowest number of trials was 216. So
that all participants had this same number, the regres-
sion analysis randomly selected 216 trials for each par-
ticipant. The reaction times of these randomly selected
trials were sorted and divided into three intervals (72
trials each). The slowest 72 trials were thus grouped
together and the mean reaction time calculated, and the
corresponding EEG data from these trials were likewise
grouped. The same occurred for the other two intervals.
From these EEG data in each interval, the ITPC and SNR
were computed (at electrode AFp1). The data for each
grouping, and for each participant, between stimulus
onset (0 ms) and 200 ms were extracted, and between 1
and 8 Hz for the ITPC. These intervals were chosen as it
was this range of time and frequencies where our previ-
ous results had been found. The mean of this time (and
frequency interval) was then computed. This produced
three values—one for each interval—for each participant
and for each measure.
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As these measures are computed over trials, a linear
regression at the level of each individual participant was
not feasible. The values for each experimental group
were therefore combined. For each linear regression, one
participant had three datapoints, one for each reaction
time interval (slowest, middle, fastest).

The multiple linear regression was computed in MAT-
LAB using function fitlm. The predictors were the ITPC
AUC and the SNR AUC. The response (predicted variable)
was the mean reaction time.

Statistics
Statistical testing between the healthy control group and
the experimental group for each measure was done via
the nonparametric Mann–Whitney U test. The reason for
this was that the results were not normally distributed
and were independent (healthy controls, experimental
group).

To control for multiple statistical tests, the false dis-
covery rate (Benjamini and Hochberg 1995) was applied
to all statistical tests. Therefore, all P values reported
below have been corrected for multiple comparisons.

Results
Early SNR and ITPC Is Lower in SCZ, with Longer
Temporal Delays between SNR Signals in the
Theta and Alpha Bands
We started our analysis by computing ERPs in all
electrodes (64 in Dataset 1, 32 in Dataset 2) according to
a recent publication (Arazi et al. 2017) (Supplementary
Fig. 1). Based on the butterfly charts and topoplots, we
selected the time intervals and electrodes (one in the
frontal area, one in the primary sensory area, so occipital
for Dataset 1 and central for Dataset 2) (see Arazi et al.
2017 for similar methods, see Methods section for details,
and see Supplementary Fig. 1 for locations). The AUC was
significantly different in SCZ compared with healthy
controls in both datasets (Dataset 1: Zfrontal = 2.082
and pfrontal = 0.037, Zoccipital = 2.426 and poccipital = 0.031;
Dataset 2: Zfrontal = 2.044 and pfrontal = 0.041, Zcentral =−2.082
and pcentral = 0.041). These ERPs were able to confirm the
well-known findings (Javitt 2009; Javitt and Freedman
2015; Javitt et al. 2018) of impaired early response to
external stimuli/tasks in SCZ participants.

We focused our subsequent analyses on the frontal
electrodes because of previous studies (Egan et al. 2001;
Weinberger et al. 2001; Winterer and Weinberger 2004;
Rolls et al. 2008; Csukly et al. 2014; Weele et al. 2019) and
our theta-centered hypothesis; our use of the surface
Laplacian reference (Carvalhaes and De Barros 2015;
Cohen 2015) meant that EEG activity in these frontal
electrodes provided information on activity localized
beneath these electrodes in the frontal cortex, more so
than if the average reference was used.

We next calculated the SNR in a 200-ms sliding win-
dow as it measures the power of the signal relative to the
background activity (noise) over time. The time interval
of interest was just after stimulus onset (early in the

trials) to capture the rapid change in neural activity due
to stimulus onset.

Lower AUC in the SNR curves of specific frequency
bands (broadband, theta, alpha) was found for the SCZ
participants (Dataset 1: Zbroadband = 2.932 and pbroadband =
0.005, Ztheta = 3.642 and ptheta < 0.001, Zalpha = 2.028 and
palpha = 0.043; Dataset 2: Zbroadband = 2.088 and pbroadband

= 0.045, Ztheta = 2.107 and ptheta = 0.045, Zalpha = 2.301 and
palpha = 0.037) (Fig. 1b). In Dataset 2, there was also a sig-
nificantly lower AUC for SCZ participants in the gamma
band (Zgamma = 2.007, pgamma = 0.045). This difference
was not found in any of the other bands (Dataset 1:
plow beta = 0.358, phigh beta = 0.663, pgamma = 0.784; Dataset
2: plow beta = 0.727, phigh beta = 0.262) or in the later time
interval (Supplementary Fig. 3).

When we plotted the mean SNR curves of all partici-
pants for each group (Supplementary Fig. 4 upper plot),
we noticed clear peaks and troughs in the healthy con-
trol group. These were far less clear in the SCZ partici-
pants. To look more closely at this, we plotted the SNR
curves for each participant in both groups to determine
if the synchrony between curves differed within a group
(Supplementary Fig. 4 lower plot). We hypothesized that
the reason for the more flat mean curve in the SCZ group
was due to differences in timing in SNR curves between
participants; this would lead to a flatter curve when the
mean of all participants was computed.

Therefore, to search for differences in the dynamic
course, we calculated cross-correlation of SNR between
participants in each group. This delay analysis, or
synchrony between participants within each group, was
quantified by cross-correlating the SNR curve for each
participant with all other participants in their group
(see Methods for details and Fig. 2a). This was only
done for the theta and alpha bands as these were the
bands in which significant differences were found in
the SNR AUC. We hypothesized that there would be
longer delays, therefore less synchrony, between partic-
ipants in the SCZ group when compared with healthy
controls.

Our statistical analysis comparing the delays between
both groups in each dataset provides evidence to support
this hypothesis. We found significantly longer delays
between the SCZ participants in the theta and alpha
bands in both datasets (Dataset 1: Ztheta = −3.273 and
ptheta = 0.002, Zalpha = −2.017 and palpha = 0.044; Dataset
2: Ztheta =−2.271 and ptheta = 0.046, Zalpha =−1.987 and
palpha = 0.047) (Fig. 2b). The SCZ participants, therefore,
showed less synchrony with the other patients in their
SNR curves in these two bands; the SNR curves of SCZ
participants were less aligned than those of the healthy
controls. The SCZ participants had lower interindividual
temporal precision—higher variability—than the healthy
controls.

The SNR delay finding which relates to timing between
participants (within a group) led us to hypothesize
that there was a difference between groups in phase
synchronization within each individual participant to
the stimulus at onset. This would require measuring
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Figure 1. SNR in all frequency bands. (a) Calculation of SNR according to the methods of Xia (1998). The mean of all non-baseline corrected trials was
first calculated between stimulus onset (0 ms) and 500 ms. To calculate the signal, the mean of the baseline interval (400 ms before stimulus onset to
stimulus onset) was first subtracted from each timepoint, then each timepoint was squared. To calculate the noise, each timepoint was squared. The
signal was then divided by the noise at each timepoint and was multiplied by 10 log10 to convert the units to decibels (dB). (b) SNR was calculated in a
sliding window (length = 76 ms, overlap = 50%) for the broadband and each individual frequency band (broadband = 1–80 Hz; theta = 4–8 Hz; alpha = 8–
13 Hz; low beta = 13–20 Hz; high beta = 20–30 Hz; gamma = 30–80 Hz.). An early time interval was chosen (Dataset 1 = 70–270 ms; Dataset 2 = 0–200 ms;
gray patch) and the AUC was calculated and statistically tested (bar plots). The AUC was significantly lower in SCZ in the broadband and in theta and
alpha in both datasets. In Dataset 2, the SNR AUC in SCZ was lower in the gamma band also. All P values are corrected for multiple comparisons using
Benjamini–Hochberg false discovery rate (FDR).

temporal precision over trials within each participant
and comparing the two groups. To measure this, we
calculated ITPC. ITPC measures the phase angle coher-
ence over all trials at each time point and frequency,
so the consistency over trials. In contrast to the delay
analysis, this measure looks at timing within each
participant over all their trials. From our results showing
less synchrony between SCZ participants, so lower
interindividual temporal precision, we hypothesized
that SCZ participants would have lower ITPC, so lower
intraindividual temporal precision soon after stimulus
onset, especially in the lower frequency bands.

Our ITPC results support this hypothesis. We found sig-
nificantly lower phase coherence in the theta band just
after stimulus onset (0–122 ms) in both datasets (Dataset
1: Ztheta = 3.287 and ptheta = 0.003; Dataset 2: Ztheta = 2.384
and ptheta = 0.017) (Fig. 3a–c). In Dataset 1, we also found
significantly lower phase coherence in the delta band
early in the trial in SCZ participants (Zdelta = 2.749 and
pdelta = 0.009).

Therefore, our analyses found lower SNR in the broad-
band, theta, and alpha bands in the early time interval.
We also found 1) lower interindividual temporal preci-
sion in the SCZ group—higher delays between SCZ partic-
ipants—in the theta and alpha bands; 2) lower intraindi-
vidual temporal precision in the SCZ participants—lower
consistency in phase over trials in each SCZ participant—
also in the theta and alpha bands (delta was omitted as
the time windows allowed for too few datapoints in this
frequency band with long cycles). These findings were
consistent in both datasets.

ITPC Computational Simulations Reveal
Temporally Imprecise Phase Shifting in SCZ
After our above results, we posited that this difference in
delays and ITPC was due to more irregular phase shifting
in the SCZ participants. This would lead to differences
in temporal precision (consistency, or the inverse of vari-
ance) with respect to the stimulus and likely lead to
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Figure 2. SNR cross-correlation delay analysis in theta and alpha bands. (a) We did a cross-correlation of the SNR curve in the theta and alpha bands
for each participant with all other participants in their group. For example, participant 1 in the SCZ group had their theta and alpha SNR signals cross-
correlated with that of participants 2, 3, 4, etc. of the SCZ group. The time at maximum cross-correlation (time at black dashed lines) was determined.
The absolute value of this time (in ms) then constituted the time delay between the two SNR signals being cross-correlated: For example, a delay of
7 ms between participants 1 and 2 of the SCZ group. (b) Time delays between groups were statistically compared. The time delays in the CON group
were found to be significantly shorter than those in the SCZ group in both bands and both datasets. All P-values are corrected for multiple comparisons
using Benjamini–Hochberg FDR.

lower SNR in the early time interval. The SCZ partici-
pants would have irregular phase shifting in each trial,
so over trials this would result in lower phase consis-
tency within each participant, and higher delays between
participants.

To demonstrate this relationship between delays and
phase shifting with ITPC directly, we decided to do com-
putational simulations which only varied the degree of
phase shifting. We would simulate a set of data with
multiple trials in which there was no phase shifting
(negative control), a set with complete phase shifting
(positive control), and three sets between the two. From
these simulated datasets—in which the “ground truth,”
or known properties, of the sine waves would be known—
the ITPC would be measured using the same methods as
shown previously. The results of the simulations would
then be compared with our actual results. This link to
the actual results would allow us to infer the amount of
phase shifting in each of the groups, thus quantifying the
phase shifting differences between the SCZ participants
and the healthy controls.

To model our simulations as close as possible on our
actual data, we looked at the event-related spectral

perturbation (ERSP) of our actual data (Supplementary
Figs 5a and 7). In both groups of both datasets, the
common ERSP results showed a poststimulus increase
in theta power (also supported by theta findings in
SCZ; Başar and Güntekin 2013; Csukly et al. 2014) after
stimulus onset. There were other changes in power seen
(beta, high delta increase in Dataset 1; high delta increase
in Dataset 2), but these varied between the two datasets.
Consequently, this brief increase in theta power is the
basis for the sine waves in our simulations (see Materials
and Methods for details). Therefore, the simulations were
as close to the actual data as possible.

When inspecting the simulations, the poststimulus
ITPC in the theta band is highest with no phase shift
(far left plot) and decreases in the plots to the right. As
expected, the lowest ITPC was in the far right plot which
had a phase shift of 2π . These results were consistent
in Datasets 1 and 2, regardless of the number of tri-
als, though the level of ITPC does vary. Next, from the
actual ITPC data (Fig. 4c), the ITPC for each participant
at stimulus onset at 6 Hz was calculated (Fig. 4d). From
this ITPC at 6 Hz, the Euclidean distance (d) to the ITPC
values at stimulus onset and 6 Hz for each simulation
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Figure 3. ITPC in SCZ. (a) ITPC is calculated based on the phase angle at a specific timepoint and frequency (here shown as 6 Hz at stimulus onset or
0 ms) for all trials. The dark gray lines in the polar phase plot represent the phase angle for each trial (216 trials so 216 phase angles). In low ITPC (left),
there is no preferred phase, so the distribution of phase angle is uniform, or spread evenly around the circle. In contrast, in high ITPC (right), there is
a greater proportion of the phase angles in one part of the circle and not phase angles at another part; the distribution is nonuniform so not evenly
spaced around the circle. The red bar (difficult to see in the low ITPC case) signifies the ITPC resulting from the individual gray lines. The longer the
red bar, the higher the ITPC (shown at right scatter plot), with a maximum of 1. (b) ITPC in both datasets for the first 500 ms after stimulus onset. After
visualizing the contour plots, data from two areas in Dataset 1 (theta and delta bands) and one area in Dataset 2 (theta band) (c) were extracted (black
rectangles). (i) Polar histograms (each bin = 20◦) measuring percent of participants preferred (mean) phase angle at 6 Hz and stimulus onset in bins. For
example, if the top of a bar touches the 20% radius, then 20% of the participants in that group have a preferred phase angle in that bin. (ii) The data
extracted in a/b were statistically compared, with lower phase coherence found in the SCZ participants in both datasets.

was measured. The lowest of these, thus the smallest
Euclidean distance, indicated the phase shift closest to
the actual data.

In Dataset 1, this was a phase shift of 3π
/

2 (d = 0.928)

for the healthy controls and 2π (d = 0.869) for the SCZ
participants (see Supplementary Table 3 for the other
Euclidean distances). In Dataset 2, this was a phase shift

of π
/

2 (d = 0.972) for the healthy controls and π (d = 1.187)

for the SCZ participants.
This showed that the simulation closest to the actual

data had greater phase shifting, so lower ITPC, in the SCZ

groups of both datasets. Therefore, the simulations were
able to demonstrate and link the actual data to phase
shifting. They were able to illustrate that there was more
irregular phase shifting in the SCZ groups than in the
CON groups.

SNR and ITPC Correlate Significantly but Do
Not Predict Reaction Times in SCZ and Are Lower
in Slow and Fast Trials in SCZ
Next, we determined the relationship between SNR and
ITPC. To link the two measures, we correlated theta phase
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Figure 4. Simulation of ITPC with five levels of phase shifting. (a) The phase shifts described in the middle right plot of (b) have direct effects on the phase
coherence over trials, which is what ITPC measures. In the top row, one participant in the simulation was randomly chosen to visualize the phase angle
at stimulus onset at 6 Hz for each level of phase shift. The dark gray lines in each polar plot represent that phase angle for one trial; there are 216 trials,
so 216 gray lines. The thick yellow line is the preferred phase angle resulting from all the trials and the ITPC; the longer the line, the more consistent
the phase angle over all trials and the higher the ITPC. The far left plot (‘No Phase shift’) has no phase shift, therefore the highest ITPC and longest thick
yellow line. This decreases across the plots to the far right plot with the lowest ITPC and shortest thick yellow line. As the ITPC decreases, the phase
angles for all trials become more uniform and spread out around the circle in the polar plot. In the second row, each polar plot contains data from all
participants and is a histogram which measures the percentage of participants whose preferred phase angle falls within that bin. When a bin touches
the 80% radial line, then the preferred phase angles of 80% of the participants occurred at that phase angle. This occurs in the far left plot; bars become
shorter and more numerous, so the preferred phases become more spread around the circle, in the more right plots. (b) The resulting ITPC plots of the
simulations. The first row constitutes 38 participants (mean of 31 CON and 44 SCZ) of one channel each and 216 trials, the same parameters of Dataset
1. The second row constitutes 26 participants with one channel each and 50 trials, which are the same parameters of Dataset 2. The poststimulus
ITPC in the theta band is highest in the far left plot (no phase shift) and decreases in the plots to the right, with the lowest in the far right plot which
has a phase shift of 2π . (c) Actual ITPC data from both datasets (top row: Dataset 1; bottom row: Dataset 2). The preferred phase angle and ITPC
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coherence after stimulus onset with SNR AUC using
Spearman correlation, and fit linear curves (Fig. 5a). This
was done only in the bands where we found significant
differences in SNR AUC, so in broadband, theta, and
alpha (hereafter termed “relevant bands”).

We found significant correlations and fits in all rele-
vant bands in both datasets (Dataset 1: ρbroadband = 0.681,
pbroadband < 0.001, R2 = 0.464; ρtheta = 0.512, ptheta < 0.001,
R2 = 0.262; ρalpha = 0.481, palpha < 0.001, R2 = 0.231; Dataset
2: ρbroadband = 0.803, pbroadband < 0.001, R2 = 0.645; ρtheta = 0.860,
ptheta < 0.001, R2 = 0.740; ρalpha = 0.536, palpha < 0.001,
R2 = 0.287).

Finally, our last question concerned the behavioral
relevance of SNR: Is there a difference in SNR and early
phase coherence between groups in fast and slow trials?
To answer this question, we computed SNR curves for
both groups in the fastest and slowest 40% of trials
(pfast RT = 0.119, pslow RT = 0.028) (Fig. 5b). This was only
done in Dataset 1 as Dataset 2 was a no-report paradigm
(Tsuchiya et al. 2015) and therefore had no responses and
reaction times.

We found lower SNR AUC in SCZ participants in
both the fast and slow trials, as well as lower ITPC and
decreased difference between fast and slow trials. In the
fast trials of Dataset 1, SCZ participants had lower SNR
AUC and early phase coherence than healthy controls
(ZSNR = 1.985, pSNR = 0.047; ZITPC = 2.265, pITPC = 0.047)
(Fig. 5c–f ). This same finding was seen in the slow trials
(ZSNR = 2.168, pSNR = 0.047; ZITPC = 1.972, pITPC = 0.049).
When the difference in phase coherence between fast
and slow trials was calculated for each group (fast—
slow), we found a significantly smaller difference in the
SCZ participants than the healthy controls (Z = 2.027,
p = 0.049) (Fig. 5g). These results show that SCZ partici-
pants had less difference between fast and slow trials in
early phase coherence compared with healthy controls.

Finally, to determine if the linear relationship between
two predictors (ITPC AUC and SNR AUC) and the response
variable (mean reaction time) differed between exper-
imental groups, a multiple linear regression was done
for each group independently (Fig. 5h,i). In the healthy
controls, a significant regression equation was found
(F(2,90) = 6.21, P = 0.003) with an R2 of 0.121. Thus, the
predicted mean reaction time of a healthy participant is
equal to 0.484 s – 0.003 s (ITPC AUC) + 0.012 s (SNR AUC),
where ITPC AUC is measured in coherence·ms and SNR
AUC is measured in dB·ms. Of note, SNR is measured in
decibels (dB), which are negative in our results (see Fig. 1).
Both ITPC (β =−0.003, P = 0.009) and SNR AUC (β = 0.012,
P = 0.014) were significant predictors of mean reaction
time in healthy participants.

In contrast, no significant regression equation in the
SCZ participants was found (F(2,129) = 1.76, P = 0.177)
with an R2 of 0.027. Neither ITPC (β = −0.002, P = 0.097)
nor SNR AUC (β = −0.002, p = 0.616) were significant pre-
dictors of mean reaction time in SCZ participants.

Therefore, our results suggest that 1) the greater the
theta phase coherence just after stimulus onset, the
larger the SNR AUC in the early interval in the relevant
bands; 2) SNR and ITPC are behaviorally relevant; and
3) ITPC and SNR AUC predict reaction time in healthy
controls but not in SCZ participants.

Discussion
Findings on sensory perception (Javitt 2009; Sass et al.
2013; Vlcek et al. 2014; Javitt and Freedman 2015;
Micoulaud-Franchi et al. 2016; Hoptman et al. 2018)
and cognition (Schwartz et al. 1989; Birkett et al. 2007)
in SCZ suggest that the brain’s neuronal background
activity (Winterer and Weinberger 2004) intermittently
overwhelms the processing of external stimuli (Yang
et al. 2014, 2017). This impedes consistency and temporal
precision in external stimulus processing (Andreasen
et al. 1999; Thoenes and Oberfeld 2017), which manifests
in increased variability in behavioral responses and
ultimately in deficits in cognition and behavior.

Building on previous results in static SNR (Winterer
et al. 1999; Winterer and Weinberger 2004), our first main
finding extends these by 1) showing group differences
in SNR in two different SCZ datasets with different sen-
sory modalities and experimental paradigms; 2) isolating
differences in SNR to the early time interval just after
stimulus onset; 3) isolating SNR differences to the broad-
band, theta, and alpha bands. In addition, our SNR cross-
correlation analysis found significantly longer delays,
therefore less synchrony, between participants in the SCZ
group in the theta and alpha bands. Again, this was found
in both SCZ datasets.

Lower theta ITPC in SCZ participants is our second
main finding. From our SNR results and the lower syn-
chrony between the SNR curves in the SCZ group as
measured through delays, we hypothesized that lower
phase coherence over trials was likely in these patients,
as was found in a previous study (Lakatos et al. 2013).
Our ITPC results support this hypothesis, and our com-
putational simulations show that higher phase shifting
leads to lower ITPC. Lower phase coherence over trials
fits with the rhythmic versus continuous mode results
and hypothesis of Lakatos et al. (2013), and the impaired
precision (higher variability over trials) found in SCZ par-
ticipants related to timing (Thoenes and Oberfeld 2017).

for each participant at stimulus onset at 6 Hz were calculated in the actual data. (d) The Euclidean distance between the calculated ITPC values and
the ITPC values in each of the simulations was measured. (e) The ITPC of the phase shift simulation which was closest to the actual ITPC data was
determined as that of the lowest Euclidean distance, so the closest. This showed that the simulation closest to the actual data had greater phase
shifting, so lower ITPC, in the SCZ groups of both datasets. Therefore, the simulations were able to link the actual data to phase shifting, showing that
there was greater phase shifting in the SCZ groups than in the CON groups. Blue rectangles = actual data; yellow rectangles = simulations; gray dashed
rectangles = methods.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhab425/6454659 by guest on 07 D

ecem
ber 2021



It’s in the Timing Wolff et al. | 13

Figure 5. ITPC and SNR correlation and their behavioral relevance. (a) Linear model fits (polynomial = 1) between ITPC and SNR AUC in both datasets
for the frequency bands found to be significant in the earlier analysis (broadband, theta, alpha). The Spearman correlations were all significant (R2

values in plots). (b) Difference in mean reaction times for the fastest and slowest 40% of trials between the SCZ and CON groups. (c) From the fastest
and slowest 40% of trials, the SNR in a sliding window was calculated. (d) The SNR AUC was significantly lower in the SCZ group for both the fast and
slow trials. (e) ITPC of fast and slow trials for each group. (f ) Extracted ITPC values between 1–2.5 Hz and 150–400 ms after stimulus onset. In both fast
and slow trials, SCZ participants had significantly lower ITPC than the healthy controls. (g) When the difference between the ITPC in the fast and slow
trials was calculated (fast – slow), there was less of a difference in the SCZ participants than the healthy controls. (h) All trials were divided into three
groups according to reaction times (slow, middle, fast), and SNR and ITPC were calculated in the corresponding EEG data. Results were then extracted
for each participant in both SNR (0–200 ms) and ITPC (0–200 ms, 1–8 Hz) for each reaction time group (3 groups). In a multiple linear regression model for
each experimental group, both SNR AUC and ITPC AUC were significant predictors of mean reaction time in the healthy controls (CON, left plot, black
markers). This was not the case in the SCZ participants (right plot, blue markers). (i) Partial regression leverage plots for each multiple linear regression
model.
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For the first time, we were able to link the decreased
ITPC in SCZ participants to decreased SNR as we showed
through correlations and linear fits.

Together, our findings strongly support our overar-
ching expectation, namely that SCZ participants show
temporal imprecision on the neural level, and how it
mediates temporal imprecision on the behavioral level.
If found to be specific to SCZ, this creates the possibility
that, if confirmed in larger cohorts, temporal imprecision
of SNR and ITPC may serve as biomarker for SCZ and
subsequently be used clinically in differential diagnosis
of SCZ.

When considering our above described results, several
important limitations must be considered. Firstly, we
investigated SNR only—not its components, signal and
noise—and only one variation (Xia 1998) of the measure.
A second, slightly different method of measuring SNR
(Winterer et al. 1999), and its decomposition into the two
components (Winterer et al. 2004), should be done in a
future study to delve further into the specifics of differ-
ences in SNR related to SCZ. Our findings of differences
in SNR in the SCZ group could be due to differences in
signal, noise, or both and must be investigated further.
In addition, our method of SNR calculation (Xia 1998)
considered evoked activity as signal; however, consider-
ing evoked and induced activity (David et al. 2006) as
signal should be investigated in a future study. Next, par-
ticipants in the experimental groups were all medicated,
thus having a confounding factor that was accounted
for by co-variation. Unfortunately, we were limited in
this by the availability of appropriate datasets and the
impossibility of clinical patients without medications;
a future study in a large-scale dataset, preferably with
some nonmedicated experimental group participants,
should be done to verify our results found here.

Next, the experimental paradigm in Dataset 1, the Cost
Conflict task, is a complex cognitive task. For this reason,
our findings could be confounded by various factors,
including the cognitive demand of the task itself. We
mitigated for this by analyzing only the first 500 ms
of each trial even though participants had 850 ms to
respond to the stimuli. Furthermore, the possibility of our
results being due to the cognitive demands of the task
is undermined by our replication of results in Dataset 2,
which had a simple auditory stimulus without response.

The third limitation relates to methodological consid-
erations for ITPC. ITPC is more likely to show results
in lower frequencies than in higher frequencies as the
phase cycles are longer in lower frequencies. Therefore,
this analysis may have failed to detect true ITPC in higher
frequencies, in addition to our findings in theta and delta.

Conclusion
Our general aim of this study was to investigate temporal
imprecision in SCZ on the neural level and link it to
temporal imprecision in behavior. We show reduction
in the dynamics, that is, temporal synchronization of

two neural measures, namely SNR and ITPC, which hold
across different task states in SCZ. Reductions in both
SNR and ITPC relate to each other (as presumably based
on the shared temporal imprecision) and mediate timing
on the behavioral level, namely slow and fast reaction
times. Together, our findings strongly support that SCZ is
characterized by diagnosis-specific temporal imprecision
on the neural level and its relation to corresponding tem-
poral imprecision on the behavioral level. Our findings
provide evidence for the use of temporal imprecision in
SNR and ITPC serving as potential biomarker.

Supplementary Material
Supplementary material can be found at Cerebral Cortex
online.
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