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Abstract

The brain is continuously bombarded by external stimuli, which are processed in different input systems. The intrinsic features of
these sensory input systems remain yet unclear. Investigating topography and dynamics of input systems is the goal of our study in
order to better understand the intrinsic features that shape their neural processing. Using a functional magnetic resonance imaging
dataset, we measured neural topography and dynamics of the input systems during rest and task states. Neural dynamics were probed
by scale-free activity, measured with the power-law exponent (PLE), as well as by order/disorder as measured with sample entropy
(SampEn). Our main findings during both rest and task states are: 1) differences in neural dynamics (PLE, SampEn) between regions
within each of the three sensory input systems 2) differences in topography and dynamics among the three input systems; 3) PLE and
SampEn correlate and, as demonstrated in simulation, show non-linear relationship in the critical range of PLE; 4) scale-free activity
during rest mediates the transition of SampEn from rest to task as probed in a mediation model. We conclude that the sensory input
systems are characterized by their intrinsic topographic and dynamic organization which, through scale-free activity, modulates their
input processing.
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Introduction

The human cortex is characterized by a hierarchy along
the lines of unimodal and transmodal regions in the
resting state (Margulies et al. 2016; Golesorkhi et al. 2020,
2021; Ito et al. 2020; Raut et al. 2020). Recent studies
demonstrate that uni- and transmodal regions exhibit
different neural dynamics. Transmodal regions show
long intrinsic neural timescales while the unimodal
regions exhibit shorter timescales (Margulies et al. 2016;
Huntenburg et al. 2018; Ito et al. 2020; Raut et al.
2020; Golesorkhi et al. 2021). However, there is no strict
distinction of uni- and transmodal regions within the
cortex itself. For instance, various sensory input streams
like auditory, visual, and somatosensory systems include
unimodal regions like V1 and primary auditory cortex
while, at the same time, progressing towards transmodal
regions like dorsolateral prefrontal cortex (Taylor et al.
2015; Wengler et al. 2020). Given that the sensory input
systems cut across the uni-transmodal distinction, one
may raise the question for their intrinsic organization,
that is, topography. Do these sensory input systems
exhibit an intrinsic topography that differentiates their
respective regions as well as the different input systems
among each other? Addressing these questions is the

goal of our study. This will help us to better understand
how the different sensory systems encode their inputs
and how that shapes our perception (Golesorkhi et al.
2021).

Sensory input systems are heterogenous within them-
selves. The prototypical example is the visual cortex
that exhibits well-differentiated processing in a stag-
gered manner from V1 over V2, V3, V4 and V5/MT to
even higher cortical regions like dorsolateral prefrontal
cortex (DLPFC) (Hyvärinen and Poranen 1978; Galaburda
and Pandya 1983; Felleman and Van Essen 1991; Morel
et al. 1993; Kaas and Hackett 2000; Chaudhuri et al. 2015;
Vázquez-Rodríguez et al. 2019; Wengler et al. 2020). Two
recent studies (Taylor et al. 2015; Wengler et al. 2020)
suggest staggered pattern within auditory, visual, and
somatosensory input systems in terms of their func-
tional connectivity (Taylor et al. 2015) and intrinsic neu-
ral timescales (INT) (Wengler et al. 2020) during resting
state. This leaves open the intrinsic nature of these pat-
terns in the sensory systems, in which case they should
be present during both rest and different task states (see
also Cole et al. 2016; Ito et al. 2017).

Sensory systems need to be responsive to external
inputs. The neural mechanisms of this responsivity
remain yet unclear, though. It is established that the
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brain operates in a zone of self-organized criticality
(Jensen and Marcelo 1999; Beggs and Plenz 2003;
Chialvo et al. 2008), where it is maximally responsive
to perturbations from outside, that is, external stimuli
or inputs (Tononi et al. 1994; Shanahan 2012; Deco and
Jirsa 2012; Tagliazucchi et al. 2012). Scale-free activity
is a key feature of neural dynamics that reflects the
brain’s degree of criticality, which can be measured by
the power law exponent (PLE) (Linkenkaer-Hansen et al.
2001; Chialvo 2010; He et al. 2010, 2014; Shew and Plenz
2012; Ponce-Alvarez et al. 2018; Korchinski et al. 2021;
Pang et al. 2021). PLE is computed as the slope of the
log–log transformation of the power spectrum across
different frequency ranges (He 2011; Tagliazucchi et al.
2013) like the infraslow frequency range of fMRI (He 2011;
Huang et al. 2017; Scalabrini et al. 2017, 2019; Zhang et al.
2018; Tetereva et al. 2020, see also Linkenkaer-Hansen
et al. 2001). Experiments by Chaudhuri et al. (2018)
show that scale-free nature of neural signal reflects
the criticality in recurrent networks. Criticality and
correspondent power-law structure was also shown by
Expert et al. (2011) in resting state fMRI data. Given that
PLE is an indirect index of criticality, one would expect
it to modulate input processing in the sensory systems’
regions across different stimuli and tasks (Huang et al.
2017; Avramiea et al. 2020; Kim and Lee 2020).

Yet another measure of brain’s neural dynamics is
Sample entropy (SampEn) that, operating in the time
domain, measures the regularity and predictability of
the signal across time which, like PLE, is well established
(Richman and Moorman 2000; Keshmiri 2020; Cieri et al.
2021) and reproducible (Omidvarnia et al. 2021) in fMRI.
Generally, entropic measures refer to the degree of the
irregularity or unpredictability of signal (Lungarella
and Sporns 2006; Quiroga et al. 2009; Sengupta et al.
2013; Carhart-Harris et al. 2014; Carhart-Harris 2018).
Conceived in this way, SampEn may serve as proxy
for the irregularity/regularity of input and ultimately
information processing along the different regions within
the sensory systems which also correlates with cognition
(Omidvarnia et al. 2021). SampEn may thus index the
degree of the signal’s regularity/irregularity during
inputs processed in the sensory systems in task states.
One would consequently expect that SampEn reflecting
input processing is dependent upon the sensory regions’
degree of criticality, that is, PLE, as that indexes their
responsiveness to external inputs (Huang et al. 2017;
Avramiea et al. 2020; Kim and Lee 2020).

To investigate the neural topography and dynamics
of sensory input systems, we used publicly available
fMRI dataset UCLA Consortium of Neuropsychiatric Phe-
nomics (Poldrack et al. 2016; Gorgolewski et al. 2017),
which includes resting state and six different task data
of 130 healthy control subjects (and different number
of subjects of different psychopathologies, which we did
not investigate in this study). To characterize different
regions of visual, somatosensory, and auditory input sys-
tems, we relied on Wengler et al. (2020), who used genetic

maps, T1/T2w images, and intrinsic neural timescales to
identify and distinguish different regions within these
three input systems (see also Taylor et al. 2015 who
used functional connectivity distance). We here extend
their approaches beyond the resting state by including
different task states, as well as by focusing on neural
dynamics, that is, how its regularity (SampEn) is modu-
lated by neural criticality (PLE). This served the purpose
of probing the intrinsic topography and dynamics of the
three sensory input systems.

We demonstrate distinct neural topography and
dynamics (PLE and SampEn) of the different regions
within each of the three sensory input systems: visual,
auditory and somatosensory. Moreover, we show that
the three sensory input systems differ from each
other in their neural topography and dynamics. As a
third step, we probe the relationship between PLE and
SampEn using correlation and simulation showing that
different PLE regimes modulate SampEn differently
which is well in line with the notion of criticality
(PLE) mediating input responsiveness (SampEn). Finally,
we demonstrate that the degree of scale-free activity,
as indexed by resting state PLE in the sensory input
systems’ regions, takes on a regulatory role for their
input and information processing, that is, predictability
or irregularity as measured with SampEn, by modulating
the latter’s transition from rest to task states. Together,
we demonstrate that different sensory input systems
exhibit an intrinsic topographic organization and neural
dynamics which, during the transition from rest to task
states, is modulated or regulated by their degree of scale-
freeness. This carries important implications for how
these systems encode their input and how that, in turn,
shapes our perception.

Materials and methods
Data acquisition
fMRI data (slice thickness = 4 mm, 34 slices, TR = 2 s,
TE = 30 ms, flip angle = 90◦, matrix 64 × 64, FOV = 192 mm,
oblique slice orientation) were downloaded from open-
access UCLA Consortium for Neuropsychiatric Phe-
nomics LA5c study (Poldrack et al. 2016; Gorgolewski
et al. 2017). Only raw data of healthy controls (n = 130)
were selected for analysis. Details about socio-
demographic characteristics of the sample, detailed MRI
device information, anatomical scan parameters and
information on resting state and 6 tasks can be found
on (Poldrack et al. 2016; Gorgolewski et al. 2017). Briefly,
these tasks consist of an eyes open resting state (REST);
balloon analog risk task (BART), in which subjects were
asked for pumping experimental balloons which either
resulted in an explosion or points and control balloons
which neither exploded nor rewarded; paired associate
memory encoding (PAMENC) and retrieval (PAMRET), in
which subjects were asked for memorization and rate
their confidence in recalling the memorized color; spatial
working memory task (SCAP) in which subjects tried to
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remember places of pseudo-randomly positioned circles;
stop signal task (STOPSIGNAL), in which subjects tried
to not respond to the visual cue when they hear an
auditory signal; and task-switching task (TASKSWITCH),
in which participants were asked for responses to either
shapes or colors of the stimuli. In the paper, we presented
STOPSIGNAL and TASKSWITCH in figures due to space
constraints, but the reader can find all the results
in tables. For the analysis, breath-holding task was
excluded because of its different and short duration (83
sampling points), which does not allow a fair comparison
of the measures (PLE and SampEn) with those obtained
in the rest of the tasks (150 sampling points).

Preprocessing and ROI selection
Five minutes (150 consecutive time points, TR = 2 s)
from resting state (REST), balloon analog risk task
(BART), periodic associate memory encoding/retrieval
(PAMENC/PAMRET), spatial working memory task (SCAP),
stop signal task (STOPSIGNAL) and task-switching task
(TASKSWITCH) were selected for analysis. Preprocessing
steps were implemented in Analysis of Functional
Neuroimages software (AFNI; Cox 1996). The procedure
is following: 1) discarding first two frames of each fMRI
run; 2) slice-timing correction; 3) despiking; 4) spatial
alignment of fMRI data to time frame with minimum
calculated motion; 5) spatial alignment of fMRI data
to skullstripped anatomical data that was aligned to
MNI152 stereotactic space; 6) resampling to 3 × 3 × 3 mm
isometric voxels; 7) scaling each voxel time series to
have a mean of 100 to reflect percent signal change;
8) temporal band-pass filtering (0.01 Hz < f < 0.2 Hz) to
reduce low-frequency drift and high-frequency respi-
ratory/cardiac noise, while at the same time undesired
components were removed through regression of linear
and nonlinear drift, head motion and its temporal
derivatives, binarized FD time series, and mean time
series from the white matter (WM) and cerebrospinal
fluid (CSF) to control for non-neural noise. The WM and
CSF masks were eroded by one voxel to minimize partial
voluming with gray matter (Jo et al. 2010). Global signal
regression was not performed to avoid introducing non-
existent correlations and losing correlations due to global
signal, which is shown to have physiological relevance
(Gotts et al. 2013; Zhang et al. 2019, 2020; Scalabrini et al.
2020; Damiani et al. 2021).

After preprocessing, the quality control files generated
by afni_proc.py were thoroughly inspected and those
specific tasks from the subjects with excessive motion
and artifacts were discarded. Furthermore, those tasks
with more than 10% of the time points with motion
above 3 mm were also discarded. This left us with the
following number of subjects for each task: 108 for REST
and SCAP, 107 for BART, STOPSIGNAL and TASKSWITCH,
75 for PAMENC and PAMRET.

Then, we averaged time series from the following
regions of interest (ROIs) defined by HCP-multimodal
parcellation atlas (Glasser et al. 2016): for visual system:

v1, v2, v3, mt, v4, v6, v7, 8a, 46; for sensory system: 3b,
3a, 1, 2, 5m, 7b, 7a, 8a, 46; for auditory system: a1, lbelt,
mbelt, pbelt, ri, a4, a5, 8a, 46. These three sensory systems
including their regions are based on Wengler et al.
(2020). They determined these orderings by selecting the
ordering that was best predicted by T1w/T2w and cortical
thickness values from 4 candidate orderings that were
based on previous anatomical studies (Hyvärinen and
Poranen 1978; Galaburda and Pandya 1983; Felleman and
Van Essen 1991; Morel et al. 1993) for each system. They
also included and determined two additional prefrontal
cortex regions known to be downstream projections of
the auditory, visual, and somatosensory cortices: area
8a and area 46 (Felleman and Van Essen 1991; Kaas and
Hackett 2000).

Calculation of power-law exponent and sample
entropy
Power-law exponent (PLE) of time series was calculated
using Dynameas toolbox (https://github.com/SorenWT/
dynameas) based on MATLAB software (version R2019).
Briefly, power spectral density (PSD) of frequencies in
the range of 0.01–0.2 Hz were estimated using Welch’s
method (Welch 1967). PLE is defined as the slope of
the regression line that fits the power versus frequency
representation, both in logarithmic scale (He 2011; Tagli-
azucchi et al. 2013). To test for the validity of this fitting,
we performed three control analyses:

1) To test the goodness of fit for scale invariance, we
adapted a goodness of fit test for testing power-law
distributions (Clauset et al. 2009) that was used in
various fMRI studies (He 2011; Tagliazucchi et al.
2013; Scalabrini et al. 2017). For each ROI in REST,
1000 time series of fractional Gaussian noise (fGn)
with the same length and standard deviation of the
averaged time series of subjects (Stoev 2021) were
generated. fGn is a model of stationary scale-free
dynamics (Beran 1994). PLE values for each syn-
thetic fGN time series were calculated. Kolmogorov–
Smirnov statistic was used to measure the distance,
D, between its log power-log frequency plot and
its own best-fit linear-regression line. The P-value
is defined as the fraction of synthetic time series
with Ds that are larger than the original D of the
fMRI time series (Clauset et al. 2009). The larger
the P-value, the more plausible the fGn model is
for representing the original fMRI time series, and
the better the fit of the original data to a scale-free
distribution. The hypothesis that the fMRI signal is
scale-free was ruled out if P < 0.05. Results can be
found in Supplementary Results 2.

2) For a confirmatory analysis, we calculated Hurst
exponent, with detrended fluctuation analysis (H-
DFA) as a control measure and calculated its corre-
lation with PLE (Linkenkaer-Hansen et al. 2001; He
2011). H-DFA is defined as the slope of the least-
squares line between log(time points) and logarithm
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of the root-mean square fluctuation of detrended
and integrated time series, log(F(n)) (Peng et al. 1995).
As a measure in the time domain, H-DFA comple-
ments the spectral measure PLE and describes the
scale-invariant properties of a self-similar signal.
We correlated the H-DFA values with PLE values
(Supplementary Results 2—Table 1).

3) Lastly, we did the same analyses using median fre-
quency (MF, described below), which is another mea-
sure in spectral domain, instead of PLE. The use of
MF is further justified with the very high correlation
found between PLE and MF (Supplementary Results
1—Tables 4 and 5). In this paper, we only report the
results from PLE and SampEn in tables and figures,
but the results for MF can be found in Supplemen-
tary Results 2.

To further confirm PLE, an additional measure of the
frequency domain was included by measuring median
frequency (MF). MF describes the frequency that divides
the power spectrum in two parts of equal area (Schwilden
et al. 1985; Schwender et al. 1996; McDonald et al. 1999;
Bachiller et al. 2015; Verrusio et al. 2015; Huang et al.
2018; see also Golesorkhi et al. 2020 for measuring MF
in fMRI). MF was calculated with the PSD previously
estimated using built-in MATLAB function medfreq. It is
defined as the frequency which divides the area under
the PSD curve into two halves (Schwilden et al. 1985;
Schwender et al. 1996; McDonald et al. 1999; Bachiller
et al. 2015; Verrusio et al. 2015; Huang et al. 2018).

SampEn was introduced by Richman and Moorman
(2000) as a variant of approximate entropy with two
important advantages over it: independence with the
length of the data and reduction of the bias caused by
self-matching (Richman and Moorman 2000; Cieri et al.
2021). This entropic measure can be used for quantifying
the irregularity and unpredictability of short and noisy
time series. It can be seen as counting repeated patterns,
more repetitions meaning more ordered structures with
less entropy (higher predictability). To calculate Sam-
pEn in a given time series, SampEn procedure need to
first divide it into consecutive segments of length m
(pattern length). Then, the algorithm assesses whether
the maximum absolute Chebyshev distance between the
corresponding components of each pair of vectors is
less than or equal to a tolerance r (similarity criterion),
considering similar patterns when it is met. The same
process is repeated for segments of length m + 1. The
conditional probability that the segments of length m
maintain similarity when increasing said segments by
one sample, m + 1, is then calculated. Finally, SampEn
value is estimated as the negative natural logarithm
of such conditional probability (Richman and Moorman
2000; Keshmiri 2020). Importantly, the higher SampEn
values, the lower the self-similarity in the times series
and, consequently, more unpredictability and irregular-
ity. For this paper, we set m as 2 and r as 0.5, following

previous studies (McDonough and Nashiro 2014; Omid-
varnia et al. 2021).

Despite the validation analyses by Omidvarnia et al.
(2021), the usage of SampEn in fMRI data can be criticized
due to the thermal noise component in the fMRI signal
(Liu 2016). To further establish the validity of SampEn in
fMRI, we performed two analyses.

1) First, we randomly scrambled the BOLD time series
of every subject in our 23 regions. This surrogate
data enabled us to confront the question of ran-
domness due to noise. We compared SampEn values
in these surrogate data with our original SampEn
values using a t-test. In every task and ROI, original
SampEn values were much lower than the surrogate
values. Results can be found in Table 1 of Supple-
mentary Results 3.

2) We calculated the effect size (eta-squared) of our
ANOVAs of SampEn values between nine regions
in each system and between three systems using
measures of effect size toolbox (https://github.com/
hhentschke/measures-of-effect-size-toolbox). All
the analyses yielded moderate to strong effects
(Supplementary Results 3—Tables 2 and 3).

Simulation for the relationship between
power-law exponent and sample entropy
To assess the mathematical relationship between PLE
and SampEn, we generated 1000 instances of colored

noise obeying power law of P = 1
/

f β where f is fre-

quency, β is the slope of the power spectrum and P is the
power of that respective frequency using built-in Matlab
function dsp.ColoredNoise from β = −2 to 2 with equal
spacing. Dsp.ColoredNoise uses the algorithm by Kasdin
(1995) that filters white noise with for β > 0 PLE of each
simulation is calculated the same way as the real data,
between 0.01 and 0.2 Hz. We calculated PLE and SampEn
in simulations to see the effect of PLE on SampEn in an
extended range. For confirmation, we also calculated MF
(Supplementary Results 2—Fig. 1).

Mediation model
To analyze the relationships between these measures, a
mediation model (Hayes 2009) was performed with the
CANLAB mediation toolbox for MATLAB (Wager et al.
2008, 2009). First, we used PLE at rest as mediator, Sam-
pEn at task as dependent variable and SampEn at rest as
independent variable. Significance of direct and indirect
effects and 95% confidence intervals were computed
using 10 000 bootstrap samples. Variance explained (Var-
Exp) is defined as indirect effect (ab) divided by total
effect (c) (78). Then, we built the same model with Sam-
pEn at rest as mediator, PLE at rest as independent vari-
able and PLE at task as dependent variable. We repeated
same analyses using MF instead of PLE (see Supplemen-
tary Material).
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Statistics
All statistical analyses were done in MATLAB using
the Statistics and Machine Learning Toolbox. Normality
and homoscedasticity were assessed with Kolmogorov–
Smirnov and Bartlett’s tests, respectively. Differences
within and between input systems were tested using
one-way ANOVA. Pearson test was used for the rela-
tionship between measures. Differences between r-
values coming from correlations were compared with
Fisher’s r-to-z transformation (Sheskin 2004). All P-
values were corrected for multiple comparisons using
Bonferroni method. Asterisks in the tables indicate level
of significance (∗: P < 0.05, ∗∗: P < 0.01, ∗∗∗: P < 0.001).

Results
In the main paper, we only report REST, STOPSIGNAL and
TASKSWITCH results in the figures due to size limita-
tions unless stated otherwise. The reader can find the
results of all the tasks in the Supplementary Results 1
and all the analyses for MF in Supplementary Results 2.

Different neural dynamics between the regions
within each of the three input systems
To understand the input systems themselves in a more
detailed way, we searched for the differences between
regions within each of the three input systems respec-
tively. For this, we used one-way ANOVA of nine levels
over regions for PLE and SampEn (and MF) and applied
this to each of the input systems and every state (rest,
tasks). We obtained significant differences for each of
the input systems with respect to the two measures
(PLE and SampEn) and all states (rest, tasks) (see Fig. 1,
Supplementary Results 1—Table 1 for other tasks, and
Supplementary Results 2—Table 2 for MF). The audi-
tory input system, relative to the other two input sys-
tems, showed the highest F-values for the differentia-
tion among its regions (For REST PLE [F(8,963) = 24.510,
P < 0.001], for REST SampEn [F(8,963) = 10.975, P < 0.001]).
Of note, STOPSIGNAL was the task that differed most
between regions for both PLE [F(8,963) = 27.106; 16.104;
11.406 for auditory, somatosensory and visual respec-
tively, all three P-values < 0.001] and SampEn [10.441,
14.240, 5.875 for auditory, somatosensory and visual, all
P-values < 0.001]. Together, these findings suggest that
different regions within the input systems themselves
statistically differ from each other in their scale-free
dynamics (PLE) and signal regularity/irregularity (Sam-
pEn), which holds in both rest and task.

Different neural dynamics between the three
input systems
To understand the input systems in a more detailed way,
we wanted to see if the three input systems differ in
their neural dynamics and signal regularity/irregularity,
that is, in terms of PLE and SampEn during rest and task
states.

For this, we did one-way ANOVA of three levels over
systems for PLE and SampEn comparing the three
systems with each other for each measure and state
(rest, tasks) (Fig. 2, Supplementary Results 1—Table 2
for ANOVAs and 3 for post-hoc comparisons as well as
Supplementary Results 2—Tables 3 and 4 for MF results).
ANOVA’s indicated significant differences between the
three input systems for all measures and states (except
PLE in STOPSIGNAL and SampEn in PAMRET). For
PLE, the highest F value was at REST, [F(2,24) = 9.968,
P < 0.001], while for SampEn, PAMENC showed highest
F [F(2,24) = 9.740, P < 0.001], closely followed by REST
[F(2,24) = 9.450, P < 0.001]. At post-hoc comparisons,
auditory system differed from the other two in almost
all states, showing lower PLE, higher MF and higher
SampEn than both visual and somatosensory input
systems. Together, these results show that the three
input systems differ from each other in their neural
dynamics and signal regularity/irregularity. The fact
that this pattern is present in both rest and task
indicates that it reflects an intrinsic neural dynamics
and topographical organization of the input systems
themselves irrespective of their state (rest or task).

Relationship between PLE and SampEn
To further analyze the relationship between PLE and
SampEn, we used both empirical and simulated data.
First, PLE and SampEn measures were correlated in
innermost (region 46) and outermost (regions a1, v1
and 3b) regions (Fig. 3 top panel, Supplementary Results
1—Tables 4 and 5). The rationale for choosing the
extremes and not all the regions together is to avoid the
hierarchical trends between regions that could affect the
correlations. We found that there is a significant negative
correlation between PLE and SampEn in all the regions
regardless of rest or task states. These findings were
reinforced by additional analyses investigating correla-
tion between median frequency (MF) with both PLE and
SampEn (MF-PLE and MF-SampEn) (see Supplementary
Results 1—Tables 4 and 5).

After analyzing the empirical data, we were interested
in extending our findings to a wider range of PLE values in
order to verify that the linear trend observed in the local
region of the empirical data is maintained or not. For that
purpose, we synthetically generated 1000 colored noise
signals with different slopes between β = −2 to 2 (i.e. PLE
values between −2 and 2, respectively), corresponding
to different types of colored noises (see bottom panel in
Fig. 3). In this way, it is possible to observe the relation-
ship between PLE and SampEn in a wider range of PLE
values that reflect different kinds of noise (pink, purple,
white).

We observed two different behaviors in two scale-free
structures. On the one hand, when the signal is close to
purple noise (PLE ∼ −2) with more power in the higher
frequencies, SampEn and PLE show positive significant
correlation (r = 0.23). On the contrary, around a pink noise
frequency structure (PLE ∼ 1) with more power in the
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Figure 1. Differentiation in the neural dynamics of the input systems. Top: Raincloud plots and results of one-way ANOVA between regions’ PLE and
SampEn values in auditory, somatosensory and visual systems, respectively, showing clear differentiation between regions in all three systems. Bottom:
The regions in each system shown on a cortical surface.

lower frequencies, PLE and SampEn show a clear negative
significant relationship (r = −0.76). Interestingly, there is a
transition region in which the relationship between both
variables are nearly flat (r = −0.07) and nonsignificant.
This region corresponds with a signal structure similar
to white noise (PLE ∼ 0), that is, when the scale-free struc-
ture of the power spectrum is absent. That is in line with
the ideas about criticality in the brain (Tononi et al. 1994;
Jensen and Magnasco 1999; Beggs and Plenz 2003; Chialvo
et al. 2008; Chialvo 2010; Deco and Jirsa 2012; Shanahan
2012; Tagliazucchi et al. 2012; Korchinski et al. 2021), as
we discuss later.

This simulation analysis confirms that the relation-
ship between PLE and SampEn is not due to measure-
ment methods, but reflects an intrinsic dynamic rela-
tionship of the brain’s neural activity. In particular, as
the Figure 3 shows, locally (that is, within a limited range
of PLE values) the relationship between PLE and SampEn
can be considered linear. However, in an extended range
as probed in the simulation, this linearity is lost as the
local linearity is embedded within a more global non-
linearity. The empirical data of the neural signal appear
to be restricted to the region with pink noise, that is,
positive PLE where the scale-free structure is maximum
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Figure 2. Differences in the neural dynamics between the input systems. Bar plot showing the results of one-way ANOVA between the three systems’
PLE and SampEn values and their post-hoc comparisons. The results indicate clear difference between three systems with the auditory system showing
highest SampEn and lowest PLE whereas the visual system has highest PLE and lowest SampEn.

as indexed by the strong negative correlation of PLE with
SampEn in both simulated and empirical data.

Mediation model between PLE and SampEn for
the transition from rest to task states
Together, our ANOVA, correlation and simulation find-
ings suggest differential, but related roles of PLE and
SampEn during input processing. Probing their relation-
ship further, we employed a mediation model to the
empirical data. Given previous findings of PLE determin-
ing the critical threshold, that is, the point where the
potential for change is at maximum, (Linkenkaer-Hansen

et al. 2001; Shew and Plenz 2012; Ponce-Alvarez et al.
2018; Pang et al. 2021), we hypothesized that PLE at rest
would mediate the relationship of SampEn from rest
to task.

First, we used PLE at rest as mediator, SampEn at
rest as independent variable and SampEn at task as
dependent variable. After that, we used SampEn at rest
as mediator, PLE at rest as independent variable and PLE
at task as dependent variable. We did the same analy-
ses with MF instead of PLE as control analyses. While
all the analyses were statistically significant showing
partial mediation, when we used SampEn as mediator,
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Figure 3. Relationship between PLE and SampEn. Top 4 panels show correlation of PLE and SampEn in empirical data, in the outermost regions (a1, 3b,
v1) and innermost region (region 46). This selection is made to ensure that the trends in regions of a system won’t affect correlations. Bottom left panel
shows the scatterplot with the simulated data of the synthetic signals generated with a model of noise with different slopes (−2 to 2). 1000 pink noise
signals were generated and the PLE and SampEn were computed as in empirical data. Bottom right upper panel shows.

the VarExp values reduced. Details of all the results can
be found in Supplementary Results 1—Tables 6 and 7
for PLE mediating SampEn and SampEn mediating PLE,
Supplementary Results 2—Tables 5 and 6 for MF medi-
ating SampEn and SampEn mediating MF respectively,
as well as in Figure 4 (we could only report auditory
system values for due to size limitations). These results

suggest that temporal dynamics (PLE) mediate signal
regularity/irregularity of information processing (Sam-
pEn).

To see if this decrease in VarExp when we used SampEn
as mediator is significant, we did a t-test between
VarExps by PLE as mediator and VarExps by SampEn
as mediator (Fig. 4). We used Kolmogorov–Smirnov test
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Figure 4. Mediation models and their comparison. On top left, PLE at rest mediating SampEn change from rest to task, on top right, SampEn at rest
mediating PLE change from rest to task. Both figures are in the auditory system. Bottom: Comparison between the two measures in the role of mediators.
T-test between VarExp values show that VarExp significantly decreases when we use SampEn as mediator, instead of PLE.

and Bartlett’s test to see if the VarExp values come from
a standard normal distribution and VarExp when PLE is
mediator and VarExp when SampEn as mediator have
equal variances, respectively and saw significant results
for the first (P < 0.001 for both) and non-significant
results for the second (P > 0.05) test. Then, we applied
a t-test and found that VarExp when PLE (mean = 0.326,
SD = 0.080) is mediator is significantly higher than VarExp

when SampEn is mediator (mean = 0.158, SD = 0.074)
(t(34) = 6.585, P < 0.001, SD = 0.077). We did the same
analysis using MF instead of PLE too (P-values for Kol-
mogorov–Smirnov test were <0.001, for Bartlett, >0.001,
VarExp when MF as mediator (mean = 0.360, SD = 0.107)
was found to be significantly higher than SampEn
as mediator (mean = 0.148, SD = 0.089) (t(34) = 6.487,
SD = 0.098).
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Discussion
Intrinsic topography and dynamics of sensory
systems
Previous findings show a neural hierarchy throughout
the whole cortex along the lines of unimodal and trans-
modal regions. Generally, unimodal regions (“periphery”)
show less functional connectivity among each other
and shorter intrinsic neural timescales than transmodal
regions (“core”) (Honey et al. 2012; Chaudhuri et al. 2015;
Margulies et al. 2016; Golesorkhi et al. 2020, 2021; Ito et al.
2020; Raut et al. 2020). The strict distinction of uni- versus
transmodal regions may be put into doubt, though, when
considering sensory input systems. For instance, the
auditory system includes both unimodal regions like
primary auditory cortex as well as transmodal regions,
such as the DLPFC (Taylor et al. 2015; Wengler et al. 2020).

We observed that the regions within each of the three
input systems, that is, visual, somatosensory, and audi-
tory differed from each other in their dynamics. Notably
this applied to both PLE and SampEn during both rest
and all six task states; that is indicative of the intrinsic
nature of the topographic differences within the input
systems. This was extended further when comparing the
different sensory input systems with each other in both
their topography and dynamics. Together, these findings
suggest an elaborate intrinsic topographic and dynamic
organization within the input systems as well as key
differences between them.

Criticality regulates the irregularity of
information processing in sensory input systems
We observed significant correlation of PLE with SampEn.
The higher the PLE, the lower the SampEn. To the authors’
knowledge, this association between these measures is
a novel finding that raises further questions about the
effect of scale-freeness on input and thus information
processing. That was further explored in simulation and
mediation model.

The simulation showed three different types of rela-
tionships in different power-law structures. If we look
only at a single zone, we see a linear relationship between
PLE and SampEn (be it positive in the purple noise, neg-
ative in the pink noise or non-relationship in the white
noise). However, when we look at the whole range of
PLE, we can see the three types of relationships clearly
which together form a non-linear relationship (Fig. 3).
These different types of PLE-SampEn relationships may
be related to the differences in the power of slower
and faster frequencies. In that case, one would expect
that median frequency, as an index of the slow-fast
frequency balance in the power spectrum, shows similar
non-linear relationship. This was indeed the case in our
simulation (see Supplementary Results 2—Fig. 1). That is
further supported by the fact that the significant corre-
lation between PLE and SampEn is nonsignificant when
abolishing the slow-fast scale-free nature of the power
spectrum in our simulation by generating white noise
(where the power of slow and fast frequencies are equal).

We consequently assume that pink noise with its scale-
free structure of slow-fast frequency power asymmetry
where the slower frequencies are more powerful is key
in the regulatory role of PLE’s modulation of SampEn
as index of input responsiveness. In line with the ideas
about criticality in the brain (Tononi et al. 1994; Hen-
rik and Marcelo 1999; Beggs and Plenz 2003; Chialvo
et al. 2008; Chialvo 2010; Deco and Jirsa 2012; Shanahan
2012; Tagliazucchi et al. 2012; Korchinski et al. 2021),
result supports that the maximal change of SampEn,
thus, effective information processing, requires a brain-
like environment with a particular slow-fast structure
in the power spectrum. Together, this suggests a pre-
dominantly task-unspecific intrinsic dynamic, where the
sensory regions’ degree of criticality (PLE) modulates the
degree of regularity/irregularity of its information pro-
cessing (SampEn).

The regulating role of PLE in our results is well com-
patible with its role in determining the critical point. The
brain may operate on a neural dynamic spectrum that
may be closer or less close to its critical point with that
position indicated by the PLE (Linkenkaer-Hansen et al.
2001; Chialvo 2010; He et al. 2010, 2014; Shew and Plenz
2012; Ponce-Alvarez et al. 2018; Korchinski et al. 2021;
Pang et al. 2021). Recent findings show that the degree
of criticality (as indexed by PLE) modulates the range of
possible changes in other task-related neural measures
like alpha (Kim and Lee 2020), trial-to-trial variability and
amplitude (Huang et al. 2017; Avramiea et al. 2020). Our
findings extend this by showing that PLE also modulates
signal regularity/irregularity, that is, SampEn, during task
states.

Given that the regions (and subjects’) closeness to
criticality is key for the degree of activity changes during
input processing, one may assume that the PLE pro-
vides a region- and subject-specific baseline or threshold
(see also Huang et al. 2017; Scalabrini et al. 2017, 2019;
Northoff et al. 2020a, 2020b). That in turn may account
for the observed differences between regions and ulti-
mately their distinct neural hierarchies within all three
sensory input systems.

This relationship was further probed in mediation
model where we used PLE as mediating variable for the
transition of SampEn from rest to task. This yielded a
partial mediation effect which was significantly higher
for PLE as mediating variable than SampEn as mediating
variable. Again, this was demonstrated for all tasks
and all three sensory systems. Together, this suggests a
predominantly task-unspecific intrinsic dynamic where
the sensory regions’ degree of criticality (PLE) modulates
the degree of regularity/irregularity of its information
processing (SampEn).

We show distinct neural topographic and dynamics
within and between the three main sensory input sys-
tems, visual, auditory, and somatosensory. As this holds
during both rest and task states, we suppose that such
topographic dynamics are intrinsic features thus sup-
porting the more general assumption of uni-transmodal
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hierarchy across the whole cortex. Moreover, our results
suggest that scale-free activity (PLE) may be key in regu-
lating input and information processing in a non-linear
way by modulating its regularity/irregularity (SampEn)
during the transition from rest to task states.

Together, our results demonstrate an intrinsic topogra-
phy and dynamics of sensory input systems. This raises
the question whether their intrinsic topographic and
dynamic features are related to corresponding spatial
and temporal stochastics in both input stochastics and
perception. In that case, spatial topography and tem-
poral dynamic may be manifest in analogous ways on
both neural and psychological levels as their “common
currency”; this supports the recently introduced concept
of “Spatiotemporal Neuroscience” (Northoff et al. 2020a,
2020b).

Supplementary Material
Supplementary material can be found at Cerebral Cortex
online.
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