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Abstract

Background: Interoception is associated with neural activity in the insula of healthy

humans. On the basis of the somatic symptoms in generalized anxiety disorder (GAD),

especially abnormal heartbeat perception, we hypothesized that abnormal activity

in the insula was associated with interoceptive awareness in patients with GAD.

Methods: We investigated the psychological correlates of interoceptive awareness

in a sample of 34 patients with first‐onset, drug‐naïve GAD and 30 healthy controls

(HCs). Furthermore, we compared blood oxygenation level‐dependent responses

between the two groups during a heartbeat perception task to assess task‐evoked
activity and its relationship with psychological measures. We also examined

between‐group differences in insular subregions resting‐state functional con-

nectivity (rsFC), and its relationship with anxiety severity.

Results: Patients with GAD had significantly higher body perception scores than

HCs. They also exhibited greater task‐evoked activity in the left anterior insula,

left posterior insula, and right anterior insula during interoceptive awareness than

HCs. Left anterior insula activity was positively correlated with body awareness

in patients with GAD, and rsFC between the left anterior insula and left medial

prefrontal gyrus was negatively correlated with somatic anxiety severity.

Conclusions: Investigating a sample of first‐episode, drug‐naïve patients, our study

demonstrated abnormal interoceptive awareness in patients with GAD and that
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this was related to abnormal anterior insular activity during both rest and task.

These results shed new light on the psychological and neural substrates of

somatic symptoms in GAD, and they may serve to establish abnormal interoceptive

awareness as a neural and psychological marker of GAD.
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anxiety, awareness, functional connectivity, functional magnetic resonance imaging (fMRI),

generalized anxiety disorder, insula, interoception

1 | INTRODUCTION

Generalized anxiety disorder (GAD) is characterized by chronic,

excessive anxiety and worry accompanied by somatic symptoms

such as restlessness, muscle tension, palpitation, cardiopalmus, irrit-

ability, and sleep disturbance. The disorder has a lifetime prevalence

of ~5% and is associated with a significant personal and economic

burden (Kujanpaa, Jokelainen, Auvinen, & Timonen, 2017; Munir &

Hughes, 2018). Some behavioral and psychophysiological studies

have reported abnormal interoceptive awareness in patients with

an anxiety disorder (Andor, Gerlach, & Rist, 2008; Chan et al., 2015;

Chan, von Leupoldt, Liu, & Hsu, 2014; Ehlers & Breuer, 1992; Grossi

et al., 2017; Hoehn‐Saric, McLeod, & Zimmerli, 1989; Hu et al., 2012),

which has led to theories that anxiety disorders are fundamentally

disorders of interoception (Domschke, Stevens, Pfleiderer, &

Gerlach, 2010; Khalsa et al., 2018; Mallorqui‐Bague, Bulbena, Pailhez,
Garfinkel, & Critchley, 2016). We recently found that heartbeat

evoked potential is marginally higher in patients with GAD than in

healthy controls (HCs; Pang et al., 2019), suggesting that GAD in-

volves deficient adaptation to interoceptive signals. Nonetheless, the

exact psychological and neural substrates of abnormal interoception

in GAD remain poorly understood.

Behaviorally, interoceptive awareness in patients with GAD was

investigated in two recent studies. One investigation by Ehlers

and Breuer (1992) used the heartbeat perception score of the Mental

Tracking Task as the primary metric of interoceptive awareness in

patients with GAD. They reported greater heartbeat perception in

patients with panic disorder and GAD than in those with major

depression. In contrast, Hu et al. (2012) demonstrated that only

patients with panic disorder had significantly greater heartbeat

perception than HCs, whereas those with GAD did not. Thus, the

role of interoception in GAD remains poorly understood, so the first

goal of the present study was to explore interoceptive awareness at

the behavioral and psychological levels in patients with GAD. To

this end, we recruited a sample of patients with first‐episode,
drug‐naïve GAD. We used the Body Perception Questionnaire

(BPQ) to measure the patients’ interoceptive awareness.

Recent functional neuroimaging studies and meta‐analyses
have shown that the insula is an important locus for interoceptive

awareness in healthy individuals (Avery et al., 2017; Hassanpour

et al., 2016; Hassanpour et al., 2018; Salomon et al., 2018;

Schulz, 2016; Tan et al., 2018; Wiebking et al., 2010; Wiebking,

Duncan, Qin et al., 2014; Wiebking, Duncan, Tiret, et al., 2014).

Usually, the insula includes two subregions: the anterior and pos-

terior insula (Gasquoine, 2014). The anterior insula likely plays a

significant role in interoceptive awareness of the physical self as

a sentient entity (Craig, 2009; Domschke et al., 2010; Seth, 2013).

Activation of the anterior insula when focusing on cardiac inter-

oception has been positively correlated with state and trait anxiety

levels in healthy volunteers (Tan et al., 2018). Moreover, Caseras

et al. (2013) reported that increased anterior insular activity was

associated with interoceptive awareness in patients with the phobia.

However, the anterior insula and its relationship to interoceptive

awareness have not yet been investigated in patients with GAD.

Therefore, the second goal of the present study was to investigate

anterior insular activity during both interoceptive awareness in

task‐evoked activity and resting state in patients with GAD.

Many studies have suggested that GAD is related to dysregu-

lated cognitive processing such as decision making and affective

processes and that the disorder involves impaired connections

among various regions, including the insula, prefrontal cortex (PFC),

amygdala, putamen, striatum, and cingulate cortex (Assaf et al., 2018;

Krain et al., 2006; White et al., 2017). Moreover, the left anterior

insula (the seed‐region under experimental task “anxiety condition”)

exhibits functional connectivity (FC) to some regions during rest,

including the left caudate, inferior PFC, dorsal parietal cortex, and

midline supplementary motor area (SMA; Simmons et al., 2013). This

provides more indirect evidence that anterior insula plays a role

in GAD. It follows that as the insula plays a role in interoceptive

awareness (see above), the abnormal interoceptive awareness seen

in patients with GAD may be related to abnormal insular activity

during both rest and task‐evoked activity.

The current study was conducted to clarify the neural correlates

of interoceptive symptoms in a sample of patients with first‐episode,
drug‐naïve GAD. To this end, participants were subjected to func-

tional magnetic resonance imaging (fMRI) during a well‐validated
heartbeat counting task, in which participants focused on the

sensation of their heartbeat (Wiebking & Northoff, 2015; Wiebking

et al., 2010; Wiebking, Duncan, Qin et al., 2014; Wiebking, Duncan,

Tiret, et al., 2014). In addition, the behavioral level of interoceptive

awareness was measured using the BPQ. On the basis of prior

studies (Caseras et al., 2013; Domschke et al., 2010; Ehlers &

Breuer, 1992; Simmons et al., 2013), we hypothesized that increased

interoceptive awareness at the behavioral level, as well as at the level
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of neural activity within the anterior insula, underlies persistent

pathological anxiety (e.g., patients’ somatic awareness and anxiety

severity). We further hypothesized that activity in the anterior insula

during both task‐evoked activity and rest would be correlated with

patients’ self‐reported somatic awareness (BPQ) and behavioral

measures of anxiety severity (HAMA).

2 | METHODS AND MATERIALS

2.1 | Ethics statement

The present study was approved by the Research Ethics Committee

of Shanghai Mental Health Center, Shanghai, China. The study was

in line with the Declaration of Helsinki. All participants provided

written informed consent.

2.2 | Participants and procedures

Thirty‐four patients with GAD and 30 healthy controls (HCs) were

recruited from September 2014 to May 2016 at our center. All

patients with GAD were seeking help for the first time and were

drug‐naïve upon study entry. One expert psychiatrist confirmed the

diagnosis according to the criteria of the Diagnostic and Statistical

Manual of Mental Disorders, 4th ed. (DSM‐IV); later, two research

doctors further checked the patients' diagnosis using the Chinese

version of the Mini International Neuropsychiatric Interview (MINI;

Si et al., 2009). Patients with both GAD and comorbid disease were

excluded. The inclusion criteria were as follows: (a) age ranging from

18 to 50 years, (b) ≥6 years of education, (c) first‐episode, drug‐naïve
GAD, (d) Hamilton Anxiety Scale (HAMA; Hamilton, 1959) score ≥14,

and (e) Hamilton Depression Scale (HAMD; Hamilton, 1960) score

<14. The exclusion criteria were as follows: (a) intellectual disability,

dementia, and/or other neurological illness, (b) history of head

trauma leading to loss of consciousness, (c) current severe somatic

disease, such as cancer, heart failure, or pneumonia, (d) current

substance abuse or dependence, (e) presence/history of psychotic

disorders, (f) contraindication to magnetic resonance imaging (MRI),

and (g) reported previous episode of GAD.

We recruited HCs from the local area via poster advertisements.

In these participants, we used the MINI to screen for current or past

mental disorders. The inclusion and exclusion criteria for HCs were

identical to those for patients with GAD, except for the presence

of GAD. The HCs were matched closely to the GAD group members

for age, gender, body mass index, estimated intelligence quotient

(IQ), and education duration.

All participants were administered the HAMA, 7‐item General-

ized Anxiety Disorder Scale (GAD7), HAMD, BPQ, and IQ estimation

before brain scanning. Anxiety symptoms were assessed by clinicians

using the HAMA, which has a psychic anxiety subscale and a somatic

anxiety subscale. Anxiety symptoms were also assessed using the

self‐report scale GAD7 (Mossman et al., 2017). IQ scores were

assessed using the Revised Chinese version of the Wechsler Abbre-

viated Scale of Intelligence (Gong & Dai, 1984). Body perceptions

were assessed using the BPQ, which is a translation of the original

version developed by Porges (1993). The BPQ included several

subscales: The awareness subscale comprised 45 items that assessed

the participants’ awareness regarding their body processes; The

stress response subscale comprised 10 items evaluating the partici-

pants’ awareness of their perceived bodily changes due to stress

when in an imagined stressful situation; The autonomic nervous

system reactivity (ANSR) subscale included 27 items assessing the

participants’ own autonomous nervous system reactions; The stress

style subscale (style 1 and style 2) contained 12 items evaluating

how participants responded to stress. Higher BPQ scores indicated

greater self‐reported autonomic reactivity and awareness.

The data of two patients with GAD were excluded from the

analyses because they showed excessive head movement during

MRI. Thus, 32 patients with GAD and 30 HCs were included in

the final analyses. The participants’ demographic characteristics are

listed in Table 1.

2.3 | Task design

We used E‐Prime 2.0 version (Psychology Software Tools Inc.) to

design and administer the experiment. We used fMRI Hardware

System (IFIS‐SA; Invivo Corporation, Orlando, FL) to project the

task stimuli from a liquid‐crystal display projector to the screen.

The stimuli were visible through an adjustable mirror located on the

head coil, which was angled at 45° to the participant's eye line.

The event‐related fMRI design used to investigate interoceptive

and exteroceptive awareness was based on the paradigm of Critchley

and Pollatos’ (Critchley, Wiens, Rotshtein, Ohman, & Dolan, 2004;

Pollatos, Schandry, Auer, & Kaufmann, 2007), which was further

modified by Wiebking et al. (Wiebking & Northoff, 2015; Wiebking

et al., 2010; Wiebking, Duncan, Qin, et al., 2014; Wiebking, Duncan,

Tiret, et al., 2014). The entire experiment included four scanning

runs of 9.6 min, for a total scanning time of 38.4 min. Each scanning

run consisted of three independent conditions—a rest period, an

interoceptive task, and an exteroceptive task‐each of which was

applied 48 times in a pseudorandom sequence. At the beginning

of each scanning session, participants were instructed to listen to

an auditory tone and adjust its volume until it reached the same

perception level as their heartbeat. During the interoceptive condi-

tion, a black heart was presented on a light background for 9–13 s,

and the participants were instructed to silently count their own

heartbeats. During the exteroceptive condition, a black musical

note was presented on a light background for 9–13 s; the participants

were then instructed to listen to the tones that were played

through the scanner loudspeaker and to silently count the number of

tones. During the rest condition, a black cross was displayed on a

light background for 9–13 s; the participants were then instructed

to maintain a relaxed state and to reduce any thinking. These rest

conditions served as the baseline.
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2.4 | fMRI data acquisition

All images were acquired on a 3.0‐T Siemens MAGNETOM Verio

syngo MR B17 scanner equipped with a 12‐channel head coil (Siemens,

Erlangen, Germany). Head motion was limited using foam padding and

scanner noise was reduced using earplugs. The parameters for sagittal

three‐dimensional T1‐weighted images were as follows: repetition

time (TR), 1,900ms; echo time (TE), 2.46ms; inversion time (TI),

900ms; flip angle (FA), 9°; field of view (FOV), 256 × 256mm; matrix,

256 × 256; slice thickness, 1mm (no gap); and 192 sagittal slices.

Four echo‐planar imaging (EPI) scans were obtained for task

fMRI and one EPI scan was obtained for rest fMRI. The sequence

parameters were as follows: TR, 2,000ms; TE, 32ms; FA, 70°; FOV,

240 × 240mm; matrix, 64 × 64; slice thickness, 5 mm; 30 interleaved

transverse slices; voxel size, 3.8 × 3.8 × 5mm.

2.5 | Task data analysis

The task fMRI data were preprocessed using SPM12 (http://www.fil.

ion.ucl.ac.uk/spm). The 247 volumes of each run were corrected

for the time delay between different slices, and all volumes were

realigned to the first volume. Head motion parameters were com-

puted in terms of the estimated translation in each direction and

the angular rotation of each volume on each axis. Each participant

had a maximum displacement of <3mm in any cardinal direction

(x, y, z) and a maximum spin (x, y, z) of <3°. The T1‐weighted images

were linearly co‐registered to the corresponding mean functional

image; the transformed T1‐weighted images were then segmented

into gray matter, white matter, and cerebrospinal fluid. The gray

matter maps were linearly co‐registered to the tissue probability

maps in Montreal Neurological Institute space. The motion‐corrected
functional volumes were spatially normalized to the individual's

T1‐weighted image using the parameters estimated during linear co‐
registration. The functional images were resampled into 3 × 3 × 3mm

voxels. Finally, all datasets were smoothed with a Gaussian kernel of

8 × 8 × 8mm full‐width at half maximum.

At the single‐subject level, three regressors of interest (fixation,

heartbeats, and pure tones) were modeled using SPM12 and con-

volved with the canonical hemodynamic response function. The voxel

time series were high‐pass filtered at 1/128Hz to account for non‐
physiological slow drifts in the measured signal. They were then

modeled for temporal autocorrelation across scans with an auto-

regressive model.

2.6 | Resting fMRI preprocessing and FC calculation

The resting‐state fMRI data were preprocessed using SPM12 and

DPABI (V3.1; http://rfmri.org/dpabi). The first 10 volumes of

TABLE 1 Demographic and clinical
characteristics

HC GAD t p Cohen's d

Sample size (n) 30 32 – – –

Age (years) 31.0 (6.4) 33.1 (8.3) 1.086 .282 −0.28

Gender (Male/Female) 17/13 21/11 χ2 = 0.524 .603 –

Educated years 13.5 (2.4) 14.0 (2.1) 0.875 .385 −0.22

Body Mass Index (kg/m2) 23.2 (3.5) 21.8 (3.1) −1.642 .106 0.42

Estimate IQ 105.6 (11.6) 103.2 (10.1) −0.868 .389 0.22

HAMA‐somatic 0.2 (0.5) 8.7 (3.5) 13.501 <.001 −3.4

HAMA‐psychic 0.7 (1.1) 12.5 (2.7) 23.034 <.001 −5.7

HAMD 0.3 (0.7) 10.4 (3.1) 17.844 <.001 −4.5

GAD7 2.1 (2.9) 12.9 (4.0) 12.101 <.001 −3.1

BPQ‐total scores 166.9 (31.8) 220.6 (35.0) 6.304 <.001 −1.6

BPQ‐awareness 61.8 (13.5) 86.2 (17.5) 6.124 <.001 −1.6

BPQ‐stress response 16.2 (6.6) 26.2 (6.6) 5.959 <.001 −1.5

BPQ‐ANSR 34.3 (7.6) 43.5 (11.3) 3.734 <.001 −1.0

BPQ‐stress style1 20.0 (4.8) 24.8 (3.8) 4.367 <.001 −1.1

BPQ‐stress style2 5.2 (2.0) 7.2 (2.5) 3.369 .001 −0.9

Note: Subjects demographics and clinical data were presented as mean (standard deviation) for

quantitative data.

Abbreviations: ANSR, autonomic nervous system reactivity; BPQ, Body Perception Questionnaire;

GAD, generalized anxiety disorder; HAMA, Hamilton Anxiety Scale; HAMD, Hamilton Depression

Scale; HC, healthy control; IQ, intelligence quotient.
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these data in each participant were discarded to ensure that the

fMRI signal had reached equilibrium and that the participants

had adapted to the scanner noise. The remaining 155 volumes

were then corrected for the acquisition time delay between

slices. Derived realignment was used to correct potential rigid

head motion with thresholds (translational or rotational motion

parameters lower than 3 mm or 3°). We also calculated frame‐
wise displacement (FD) to reflect the mismatch between

volume and volume head position (Power, 2017; Power, Barnes,

Snyder, Schlaggar, & Petersen, 2013; Power, Schlaggar, &

Petersen, 2015). The FD was obtained from the derivatives of the

rigid‐body realignment estimates. We deleted spike volumes, as

well as the volumes immediately before and after them when

the FD of the specific volume exceeded 0.5. Several nuisance

covariates were regressed out from the data, namely, six motion

parameters and their first temporal derivatives, as well as the

average signals of ventricular and white matter. A band‐pass
filter with a frequency from 0.01 to 0.08 Hz was applied after

this. The following normalized and smoothing steps were the

same as those used to process the task fMRI data.

Seed‐based FC was calculated using the REST toolbox (V1.8;

http://restfmri.net). Seeds were defined as regions showing abnormal

activation in the heartbeats > pure tones contrast. For heartbeats >

pure tones contrast, the patients with GAD demonstrated

elevated activity in several regions, the insula were identified using

Neuromorphometric atlas and then selected as masks to carry out

seed‐based FC.

2.7 | Statistical analysis

To analyze task data, we conducted the following three two‐
sample t tests to identify the main effects in SPM12: heart-

beats > fixation, pure tones > fixation, and heartbeats > pure

tones. The main effects measured in the above contrasts were

compared between HCs and patients with GAD, with age and

gender as covariates.

To analyze FC, a two‐sample t test was performed to test for

group differences in seed‐based FC between HCs and patients with

GAD, with age and gender as covariates.

To analyze task fMRI and FC, we used the Monte Carlo si-

mulation (AlphaSim program in the REST toolbox) to perform

multiple comparisons with a correction threshold of p < .05

(single‐voxel p = .002; cluster connection radius [r] = 5 mm; 5,000

simulations). The high initial voxel threshold was chosen based on

the report of Woo, Krishnan, & Wager, (2014) to minimize false

positives and account for smaller, but significant, activation

clusters.

Demographic and clinical data were analyzed using SPSS

version 19.0 (SPSS Inc., Chicago, IL). We used t tests for con-

tinuous variables and χ2 tests for categorical variables. Differ-

ences were considered statistically significant at p < .05. The

effect size (d) was calculated using Cohen's formula. Correlations

were analyzed between anxiety scores (HAMA‐somatic subscale,

HAMA‐psychic subscale, each with 14 items in the HAMA and

GAD7) and BPQ (total score and five subscores) in patients

with GAD. Due to the BPQ‐awareness and HAMA were

discrete scores, the data of neuroimaging was the β value

which was real‐valued, so Spearman's correlation analysis

was employed, with a Bonferroni correction for two comparisons

(p < .05/2 or p < .025).

3 | RESULTS

3.1 | Participant characteristics and BPQ scores

Patients with GAD and HCs did not significantly differ in age, gender,

education level, body mass index, or IQ. All participants were right‐
handed. As expected, the GAD group scored significantly higher than

the HCs on the HAMA subscales (psychic anxiety and somatic anxi-

ety), GAD7, and BPQ‐total score, and five BPQ subscale scores

(Table 1 and Figure 1).

Among patients with GAD, GAD7 was significantly

correlated with the total BPQ score (Spearman's ρ = 0.506;

p < .01), BPQ‐awareness score (ρ = 0.551; p < .01), and BPQ‐ANSR

(ρ = 0.432; p < .05). Moreover, the BPQ‐awareness score and

total BPQ score were both significantly correlated with

respiratory symptoms in the HAMA‐somatic subscale (ρ = 0.530

for BPQ‐awareness score and 0.467 for BPQ‐total score;

p < .01).

3.2 | Task‐related activity

Patients with GAD were compared with HCs in terms of the

three abovementioned contrasts. For the heartbeats > fixation

contrast, patients with GAD exhibited greater activity in

the left anterior insula (AlphaSim‐corrected p < .05) than HCs

F IGURE 1 Results of the Body Perception Questionnaire (BPQ)
in healthy controls (HCs) and patients with GAD (means ± standad
deviation). A, awareness; ANSR, autonomic nervous system

reactivity; GAD, generalized anxiety disorder; SR, stress response;
SS1, stress 1; SS2, stress 2; Total, total score; *p < .001; *p < .05
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(Figure 2a and Table 2). For the pure tones > fixation contrast,

patients with GAD demonstrated lower activity in the left

superior frontal gyrus, precuneus, left superior temporal gyrus,

right precentral gyrus, left anterior cingulate cortex, and

right occipital cortex (AlphaSim‐corrected p < .05) than HCs

(Figure 2b and Table 2). For the heartbeats > pure tones

contrast, patients with GAD showed greater activity in the left

insula, right anterior insula, and right superior frontal gyrus

(AlphaSim‐corrected p < .05) than HCs (Figure 2c and Table 2).

We further divided left insula into left anterior insula and left

posterior insula. After extracting β values from the left anterior

and posterior insula, right anterior insula and right superior

frontal gyrus during the conditions of heartbeats > pure tones

contrast, posthoc comparisons revealed that heartbeats led to

greater activity in these brain areas in GAD patients than HCs

(p < .05; Figure 3).

F IGURE 2 (a) In the heartbeats > fixation

contrast, patients with GAD showed greater
activity in the left anterior insula (p < .05,
corrected) than HCs. (b) In the pure

tones > fixation contrast, patients with GAD
showed reduced activity in the right occipital
gyrus (i), left superior frontal gyrus (ii), left

anterior cingulate gyrus (iii), right precentral
gyrus (iv), left superior temporal gyrus, and
precuneus (vi); p < .05, corrected) than HCs.
(c) In the heartbeats > pure tones contrast,

patients with GAD showed greater activity
in the right precentral cortex (i & iv), right
anterior insula (ii & v), and left anterior and

posterior insula (iii & vi); p < .05, corrected,
than HCs. GAD, generalized anxiety disorder;
HC, healthy control
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3.3 | Resting‐state FC (rsFC)

Resting‐state analyses focused on regions showing significantly

higher activity in the patients versus HCs in the heartbeats > pure

tones contrast (left anterior insula, right anterior insula, left posterior

insula, and right superior frontal gyrus).

As the heartbeats > pure tones contrast yielded elevated left

anterior insula activity in patients > HCs, we found that elevated

activity in the left anterior insula of patients was paralleled by sig-

nificantly reduced seed‐based rsFC of the left anterior insula

cluster with bilateral putamen and left medial PFC (Figure 4a;

AlphaSim‐corrected p < .05; Table 3).

As the heartbeats > pure tones contrast yielded greater left

posterior insular activity in patients than in HCs, we found that

the elevated activity in the left posterior insula of patients

was paralleled by significantly reduced seed‐based rsFC in the

left posterior insula cluster, including the occipital cortex,

right medial PFC, and left supplementary motor cortex (SMA;

Figure 4b; AlphaSim‐corrected p < .05; Table 3).

As the heartbeats > pure tones contrast yielded greater

right anterior insula activity in patients than in HCs, we found that

the elevated activity in the right anterior insula of patients was

paralleled by significantly reduced seed‐based rsFC in the right

anterior insula cluster, including the bilateral precentral gyrus, right

lingual gyrus, left SMA, left superior temporal cortex, and brain stem

(Figure 4c; AlphaSim‐corrected p < .05; Table 3).

As the heartbeats > pure tones contrast yielded greater

right superior frontal gyrus activity in patients than in HCs, we

found that the elevated activity in the right superior frontal

gyrus of patients was paralleled by significantly reduced seed‐
based rsFC in the right superior frontal gyrus cluster, including

the left superior parietal lobule, right calcarine cortex, bilateral

TABLE 2 Brain regions exhibiting differences in the hemodynamic
response between GAD and HC

Peak coordinates
Cluster
numbersSide/Location x y z t

GAD > HC

Heartbeat>fixation

Left anterior insula −33 0 +18 3.86 57

HC > GAD

Pure tones > fixation

Right occipital gyrus +45 −87 +3 5.04 77

Left superior frontal gyrus −21 +48 +30 4.33 179

Left anterior cingulate cortex −9 +39 +9 3.79 118

Right precentral gyrus +48 −18 +60 3.75 93

Left superior temporal gyrus −39 −39 +12 3.67 58

Precuneus 0 −45 +39 3.1 59

GAD > HC

Heartbeat > pure tones

Left posterior insula −36 −24 +24 3.45 97

Left anterior insula −35 0 +18 3.4 142

Right superior frontal gyrus +27 −12 +75 3.33 59

Right anterior insula +30 −12 +18 3.29 55

Abbreviations: GAD, generalized anxiety disorder; HC, healthy control.

F IGURE 3 Mean betas of left anterior insula (a), left posterior insula (b), right anterior insula (c) and right superior frontal gyrus (d) during
the condition of heartbeats > pure tones contrast. Error bars depict the standard error of the mean. *p < .05
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occipital pole, right precuneus, right postcentral gyrus, and left

precentral gyrus (Table SI1).

3.4 | Correlations between brain activity
and anxiety severity

In the heartbeats > pure tones contrast, the blood oxygenation‐level‐
dependent activity in the left anterior insula of patients with GAD

exhibited a positive correlation with BPQ‐awareness subscale scores

(Figure 5). Within the GAD group, the HAMA somatic subscale score

was negatively associated with FC between the left anterior insula

and left medial prefrontal gyrus (Figure 6).

3.5 | Correlations between task‐evoked activity
and rsFC

Left anterior insular activity identified in the heartbeats >

pure tones contrast was negatively correlated with FC between

the left anterior insula and right putamen during resting

state in patients with GAD (Figure 7).

F IGURE 4 (a) Elevated activity in the left anterior insula of patients with GAD in the heartbeats>pure tones contrast was

paralleled by significantly reduced seed‐based FC between the left anterior insula cluster and the left putamen (i), right putamen (ii),
and left medial frontal gyrus (iii); p < .05, corrected. (b) Elevated activity in the left posterior insula of patients with GAD in the heartbeats>pure
tones contrast was paralleled by significantly reduced seed‐based FC between the left posterior insula cluster and occipital cortex (i), right
prefrontal cortex (ii), and left supplementary motor area (iii); p < .05, corrected. (c) Elevated activity in the right anterior insula of patients with

GAD in the heartbeats > pure tones contrast was paralleled by reduced seed‐based FC between the right anterior insula cluster and right
precentral gyrus (i), right lingual gyrus (ii), left supplementary motor area (iii), left prefrontal cortex (iv), left superior temporal cortex (v),
and brain stem (vi); p < .05, corrected. FC, functional connectivity; GAD, generalized anxiety disorder; HC, healthy control
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4 | DISCUSSION

We investigated the psychological and neural substrates of

somatic interoceptive symptoms in a sample of patients with

first‐episode, drug‐free GAD. Psychologically, patients with

GAD exhibited increased interoceptive awareness, as tested

for by the BPQ. Neurally, they showed increased task‐evoked
activity in the anterior insula during an interoceptive awareness

task. This was accompanied by abnormal rsFC from the same

anterior insula regions to other regions that are implicated

in cognitive processing, for example, FC between anterior

insula and medial PFC in decision making. Neural abnormalities

in the left anterior insula during both task and rest correlated

with clinical measures. Finally, task‐evoked activity in the

left anterior insula was negatively correlated with FC between

TABLE 3 Brain regions exhibiting insula resting–functional
connectivity in GAD compared with HC

Peak coordinates
Cluster
numbersSide/Location x y z t

ROI, L anterior insula

HC >GAD −27 −9 +18 3.69 82

Left putamen

Right putamen +33 +3 −3 3.51 60

Left medial prefrontal cortex −42 +30 +6 3.15 68

ROI, L posterior insula

HC >GAD +21 −66 +3 4.01 329

Occipital cortex

Right medial prefrontal cortex +30 +9 +24 3.95 109

Left supplementary motor

cortex

−12 −9 +51 3.38 70

ROI, R anterior insula

HC >GAD +42 0 +33 4.66 354

Right precentral gyrus

Right lingual gyrus +36 −51 −9 4.39 132

Left supplementary motor

cortex

−15 −12 +54 4.16 80

Left precentral gyrus −45 +3 +36 4.10 287

Left superior temporal cortex −45 −30 +3 3.92 154

Brain stem −15 −48 −48 3.59 66

Abbreviations: GAD, generalized anxiety disorder; HC, healthy control.

F IGURE 5 Left anterior insula activation in the heartbeats > pure
tones contrast was positively correlated with the Body Perception

Questionnaire (BPQ)‐awareness score

F IGURE 7 Task‐evoked activity in left anterior insula was
negatively correlated with resting‐state functional connectivity (FC)
between the left anterior insula and right putamen

F IGURE 6 Resting‐state FC between the left anterior insula and

left medial prefrontal gyrus was negatively correlated with somatic
anxiety severity. FC, functional connectivity; HAMA, Hamilton
Anxiety Scale
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the left anterior insula and right putamen during rest. Taken

together, the present study demonstrated abnormal psychologi-

cal activity (interoceptive awareness) and neural activity

(resting and task‐related) in the left anterior insula, of somatic

interoceptive symptoms in first‐episode, drug‐free GAD, con-

firming our initial hypotheses.

Patients with GAD showed significantly higher BPQ scores

than healthy controls (HCs) in the present study. Higher BPQ

scores reflected hypersensitive interoception in GAD, which is

consistent with previous findings showing abnormal bodily

interoception in patients with GAD (Cui et al., 2016;

Mallorqui‐Bague et al., 2016; Rossignol, Philippot, & Vogele,

2016). Our results broadened these previous findings by con-

firming that, in four body perception domains (awareness, stress

response, ANSR, and stress styles), values are elevated in pa-

tients with GAD.

The posterior insula plays a role in processing the

physical features of interoceptive information, whereas the

anterior insula integrates these interoceptive physical features

with cognitive information (Babo‐Rebelo, Wolpert, Adam,

Hasboun, & Tallon‐Baudry, 2016; Kuehn, Mueller, Lohmann, &

Schuetz‐Bosbach, 2016). Information from inner organs, such as

heart rate, is initially transferred to the posterior insula for basic

mapping; afterward, the information is transferred to the ante-

rior insula for more advanced conscious perception (Craig, 2002;

Kuehn et al., 2016). The present results demonstrated abnormal

task‐evoked activity in both the anterior and posterior insula in

patients with GAD. Moreover, insular activity is related to in-

teroceptive awareness in the anterior insula, consistent with our

a priori hypothesis; activity in the left anterior insula had a po-

sitive correlation with BPQ‐awareness score during the inter-

oceptive awareness task, whereas FC between the left anterior

insula and left medial PFC had a negative correlation with HAMA‐
somatic score during rest. In this regard, we have expanded upon

previous findings of insular changes in patients with GAD

(Buff et al., 2016; Karim et al., 2017; Moon & Jeong, 2017; Qiao

et al., 2017; Santos, Carvalho, van Ameringen, Nardi, &

Freire, 2018) because we showed elevated anterior insular

activity during both interoceptive awareness and rest, with

both being related to psychological/behavioral measures.

Resting‐state fMRI studies have indicated extensive FC between

the insula and other brain areas (Uddin, Nomi, Hebert‐Seropian,
Ghaziri, & Boucher, 2017), providing indirect evidence for the role of

FC in GAD. The anterior insula has connections to the frontal,

anterior cingulate, parietal, and limbic areas, and these are involved

in cognitive control and affective processes (Nomi et al., 2016;

Steward et al., 2016). And, the posterior insula has connections with

the temporal and posterior cingulate areas involved in sensorimotor

processes (Nomi et al., 2016). In addition to altered task‐evoked in-

sular activity in patients with GAD, we found abnormal rsFC from

the anterior and posterior insula to various regions, notably the

medial PFC, putamen, occipital cortex, precentral gyrus, temporal

cortex, and SMA. This may suggest that cognitive control, affective

processes and sensorimotor processing are disrupted in GAD.

Furthermore, the anterior insula plays roles in processing cognitive

decisions by connecting with the medial PFC (Weller, Levin, Shiv, &

Bechara, 2009), which may contribute to the psychopathology of

GAD. Our observation that decreased FC between the left anterior

insula and left medial PFC is correlated with somatic anxiety

symptoms in GAD supports this assumption.

5 | LIMITATIONS

Several limitations should be noted. First, to assess interoceptive

awareness at the behavioral level, we chose BPQ scales instead

of a heartbeat counting task, the interoceptive accuracy scores

from which might be confounded due to some potential weak-

nesses (Zamariola, Maurage, Luminet, & Corneille, 2018). BPQ is

a self‐administered scale that has not been normed. However, at

least 30 peer‐review papers have used the BPQ in their research

(see Table S1), and a recent study investigating the psychometric

properties of the Body Awareness and Autonomic Reactivity

subscales in the BPQ showed good reliability and validity

(Cabrera et al., 2018). We used the BPQ in our previous study

(Cui et al., 2016) and showed good reliability in a Chinese sample.

In the Supporting Information Materials, we have provided the

methods and results of heartbeat accuracy scores in this study

for readers’ review, as shown in Table SIII. The second limitation

of the present study was the region‐of‐interest approach that we

adopted, which was hypothesis‐driven and may, therefore, have

disregarded results from other brain areas. However, the insula‐
of‐interest approach makes it easier for other researchers to

replicate our results. Finally, one considerable merit of our study

was that it involved first‐episode patients with GAD who were

not taking any psychotropic medications. To investigate dynamic

changes in the neural activity of insula and related FC networks,

further prospective studies should be carried out before and

after treatment.

6 | CONCLUSIONS

In the present study, we demonstrated the psychological and

neural substrates of somatic interoceptive symptoms in a sample

of patients with first‐episode, drug‐naïve GAD. Psychologically,

GAD patients exhibited higher body perception scores, which

also correlated with anxiety symptoms. Task‐evoked activity

during interoceptive awareness in the left anterior insula was

abnormally elevated in GAD, accompanied by abnormal rsFC

between that region and others implicated in cognitive and af-

fective processing. Importantly, abnormalities in both resting

state and task‐evoked activity correlated with clinical measures.

Together, our findings demonstrate the psychological and neural

substrates of abnormal interoception and somatic vegetative

symptoms in patients with GAD. In addition to pathophysiological

10 | CUI ET AL.



understanding, this carries major implications for the develop-

ment of future diagnostic and therapeutic markers in GAD.
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