
EDITORIAL
published: 29 October 2015

doi: 10.3389/fnsys.2015.00147

Frontiers in Systems Neuroscience | www.frontiersin.org 1 October 2015 | Volume 9 | Article 147

Edited and reviewed by:

Maria V. Sanchez-Vives,

ICREA-Institut d’Investigacions

Biomèdiques August Pi i Sunyer,

Spain

*Correspondence:

Dave J. Hayes

dave.hayes@neuroscientist.ca

Received: 06 August 2015

Accepted: 12 October 2015

Published: 29 October 2015

Citation:

Hayes DJ, Northoff G and

Greenshaw AJ (2015) Editorial:

Reward- and aversion-related

processing in the brain: translational

evidence for separate and shared

circuits. Front. Syst. Neurosci. 9:147.

doi: 10.3389/fnsys.2015.00147

Editorial: Reward- and
aversion-related processing in the
brain: translational evidence for
separate and shared circuits

Dave J. Hayes 1*, Georg Northoff 2, 3, 4 and Andrew J. Greenshaw 5

1 Brain, Imaging and Behaviour – Systems Neuroscience, Toronto Western Research Institute, Toronto Western Hospital,

University Health Network, University of Toronto, Toronto, ON, Canada, 2Mind, Brain Imaging and Neuroethics Research

Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada, 3Brain and Consciousness Research

Center, Graduate Institute of Humanities in Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, 4Centre

for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China, 5Department of Psychiatry, University of

Alberta, Edmonton, AB, Canada

Keywords: affective neuroscience, affective disorders, appetitive, aversive, reward, punishment, reinforcement,

translational research

The dynamic evaluation of experience is existentially essential. Assigning value to events
and objects drives neural development and plasticity and impacts our changing perceptual
interpretations of the world and future behaviors (Nelson et al., 2014). The affective foundation of
behavior provides more than a mere phenomenological “coloring” of experience. In fact, affect may
be an inseparable component of sensation and cognition instead of an oft-considered byproduct
(Inzlicht et al., 2015), and translational neuroanatomical evidence suggests that the major brain
areas and tracts involved appear largely conserved across species (Panksepp, 2011).

Less clear are the neural underpinnings of valuative processing which give rise to positive and
negative affective experience, appetitive/aversive encoding, reward/punishment-related reinforced
behaviors, and feelings/emotions. There are many outstanding questions in this field—in addition
to contention about precise definitions of terms such as emotion (Izard, 2009; Madan, 2013).
Are appetitive and aversive stimuli encoded in similar brain areas? If so, do they share neural
circuits and mechanisms? Do they function independently, in parallel, or is their cross-talk more
complicated than this?

In this Research Topic, a number of authors have explored themes related to these fundamental
questions at very different levels. Chris Madan uses a broad psychological-conceptual perspective
with his presentation of the SIMON framework, which considers the interplay between the
constructs of affect, reward, and motivation (Madan, 2013). This interplay could help contextualize
findings showing that prior exposure to unpleasant images, inducing negative affect, can reduce
reward-related responding in a reaction time task, even when motivation to perform is high.
This framework also underscores how narrowly-focused experimental designs can advance our
understanding of a given concept while also hindering a full appreciation of its real-world relevance.

Cross-conceptual thinking also helps elucidate the context-dependence of affective experience.
Stimuli that follow painful events, and signal relief, can share neurophysiological characteristics
with rewards but be reported as unpleasant. Andreatta et al. (2013) showed that the prediction
of a painful stimulus differentially modulated a person’s physiological output and behavioral
reports. Both predictable and unpredictable conditioned stimuli following a painful shock acquired
implicitly positive valences (i.e., skin responses consistent with relief), but only the predictable
stimulus was reported as pleasant, while the unpredictable stimulus was said to be highly
unpleasant. This speaks to the subjectivity and malleability of pain experience, and also to the
context-dependence and interplay of affect, value and motivation alluded to by Madan.
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Authors here have also explored biological mechanisms
associated with valuative processing in simpler animals.
Sinakevitch et al. (2013) looked at octopamine receptor, AmOA1,
distribution in honey bee and fruit fly neurons, as octopamine-
containing neurons (a homolog of dopamine) are involved
in reinforcement and neural plasticity. In clever cross-species
experiments, they revealed similar expression patterns and
highlighted the importance of octopamine on the modulation of
local GABAergic interneurons, which could help to clarify the
mechanisms underlying food-odor reinforcement. Ducrot et al.
(2013) underscored the involvement of glutamatergic AMPA and
NMDA receptors in electrical brain self-stimulation reinforced
behavior in rats. Blocking AMPA receptor function in the
anterior ventral tegmental area decreased appetitive responding,
perhaps related to reduced excitatory input to dopaminergic
cells, while NMDA receptor blockade in more posterior areas
increased appetitive responding, which likely reflects GABAergic
disinhibition. Hayes’ (2015) work echoes that of Sinakevitch
and Ducrot by proposing that GABA-containing cells play a
central role in valuative processing and suggests that long-
and short-range GABAergic circuitry likely contributes to both
the integration/cross-talk and differentiation of appetitive and
aversive signals.

Human neuroimaging studies asked questions about
emotional responsivity, behavioral control, and substance
abuse at the whole-brain level. Lee et al. (2013) showed that a
vasopressin V1a receptor antagonist could reverse the effects of
vasopressin-induced amygdalar BOLD deactivations associated
with the presentation of aversive faces. The antagonist also
resulted in reduced activation to angry faces in the right
temporoparietal junction, precuneus, putamen and medial
prefrontal cortex. Nakao et al. (2013) used near-infrared
spectroscopy to show that resting state signals in the dorsal
portion of the medial prefrontal cortex (which contains the area
identified by Lee et al. above) are negatively correlated with
harm avoidance (a personality trait characterized by increases in
aversive states such as worrying and pessimism), while novelty
seeking (a trait reflecting exploratory behavior, impulsivity,
and increased substance abuse risk) was reflected in a more
ventral area. Brown et al.’s (2015a,b) behavioral-fMRI findings
suggest that one must be careful not to conflate high-risk
behavior with impulsivity, even if the two are behaviorally
correlated, as brain responses associated with each do not
largely overlap. Young adults who reported high-risk behaviors
showed reduced activations during response inhibition in right
orbitofrontal cortex and ventromedial prefrontal cortex, while
impulsive people showed reduced activity in right posterior
orbitofrontal, dorsomedial prefrontal, and perigenual anterior
cingulate cortices. This group also showed increased lateral
prefrontal cortex activation for aversive NoGo vs. aversive Go

trials, irrespective of impulsivity or high-risk scores. Adolescents,
however, showed very similar BOLD correlations with risk-
and impulsivity-related scores although greater activation was
noted in the lateral prefrontal cortices for neutral vs. aversive
distractors—suggesting some differences in emotional-motor
processing as a function of age.

Stewart et al. (2013) compared those with problem (n = 18)
or stopped (n = 15) drug use and healthy controls in an
fMRI study combining a two-choice affective prediction task with
interoceptive challenges. Blunted frontocingulate activations
during aversive interoceptive stimuli, and increased inferior
frontal gyrus activation during punished feedback trials, in those
with problem drug use may reflect goal-directed impairments in
the face of negative external and internal challenges. Lominac
et al. (2014) looked at stimulant-induced neural changes in
biobehavioral experiments in mice. They showed that low
subchronic doses of methamphetamine are capable of inducing
changes within the mesocorticolimbic system, and that pre-
existing differences in accumbens dopaminergic signaling—as
seen in mice bred for high vs. low consumption—may predict a
resistance to addiction.

Two final papers provide a more holistic view by reviewing
the literature on valuative processing from a basic and psychiatric
translational perspective. Bissonette et al. (2014) piece together
the few animal and human studies employing both appetitive and
aversive stimuli to help distinguish value- and salience-related
neural mechanisms, finding a cross-species network of cortical
(e.g., orbitofrontal to parietal) and subcortical (e.g., ventral
tegmental area to substantia nigra pars compacta) regions which
show preferences for each. Griffiths et al. (2014) used a similar
translational approach, but instead considered that dysfunctional
value-related decision making circuits may be the lynchpin
to common psychiatric symptoms. They raise concerns about
considering “decision-making” as a unified concept, and suggest
that the strongest findings are from studies with translatable
processes, such as those involving associative learning and goal-
directed action tasks.

Advancements about “reward” and “fear” circuits, which have
dominated the literature, have gradually paved the way for a
more nuanced conceptualization of valuation in the brain. The
mesocorticolimbic system can no longer be categorized as a
“reward” or a “dopaminergic” circuit, nor can the amygdala
be deemed the “fear center.” Importantly, identification of the
interplay between positive and negative affective brain circuits,
noted here and elsewhere (Vickery et al., 2011; Hayes et al.,
2014; Lindquist et al., 2015), is highlighting the complexity of
such networks. The primary goal of this Research Topic was to
help identify some of the strengths of this approach and to help
generate new hypotheses about how to better apprehend affective
circuits.
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