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Abstract Gamma-band synchronization has been linked to
attention and communication between brain regions, yet
the underlying dynamical mechanisms are still unclear.
How does the timing and amplitude of inputs to cells
that generate an endogenously noisy gamma rhythm affect
the network activity and rhythm? How does such ”com-
munication through coherence” (CTC) survive in the face
of rhythm and input variability? We present a stochas-
tic modelling approach to this question that yields a very
fast computation of the effectiveness of inputs to cells
involved in gamma rhythms. Our work is partly motivated
by recent optogenetic experiments (Cardin et al. Nature,
459(7247), 663–667 2009) that tested the gamma phase-
dependence of network responses by first stabilizing the
rhythmwith periodic light pulses to the interneurons (I). Our
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computationally efficient model E-I network of stochastic
two-state neurons exhibits finite-size fluctuations. Using the
Hilbert transform and Kuramoto index, we study how the
stochastic phase of its gamma rhythm is entrained by exter-
nal pulses. We then compute how this rhythmic inhibition
controls the effectiveness of external input onto pyramidal
(E) cells, and how variability shapes the window of firing
opportunity. For transferring the time variations of an exter-
nal input to the E cells, we find a tradeoff between the phase
selectivity and depth of rate modulation. We also show that
the CTC is sensitive to the jitter in the arrival times of spikes
to the E cells, and to the degree of I-cell entrainment. We
further find that CTC can occur even if the underlying deter-
ministic system does not oscillate; quasicycle-type rhythms
induced by the finite-size noise retain the basic CTC prop-
erties. Finally a resonance analysis confirms the relative
importance of the I cell pacing for rhythm generation. Anal-
ysis of whole network behaviour, including computations of
synchrony, phase and shifts in excitatory-inhibitory balance,
can be further sped up by orders of magnitude using two
coupled stochastic differential equations, one for each pop-
ulation. Our work thus yields a fast tool to numerically and
analytically investigate CTC in a noisy context. It shows that
CTC can be quite vulnerable to rhythm and input variability,
which both decrease phase preference.

Keywords Gamma oscillations · Stimulus selection ·
Communication through coherence

1 Introduction

Gamma-band rhythmicity (30-90 Hz) has been well-
documented in many brain regions across many species
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(Buzsàki 2006). It has been recorded in the visual cortex
(Engel et al. 1991), in the auditory cortex (Brosch et al.
2002), and in the hippocampus (Csicsvari et al. 2003), to
mention just a few studies. Research has revealed its exis-
tence in non-human mammals (Fries et al. 2001), humans
(Schoffelen et al. 2005), and also in insects (Stopfer et al.
1997). It has been associated with many cognitive tasks
(Buzsàki 2006), and has been suggested to play a crucial
role in attention and routing of information (Fries et al.
2007; Tiesinga and Sejnowski 2009; Sejnowski and Paulsen
2006; Salinas and Sejnowski 2001). However, the pre-
cise computational role of gamma-band synchronization (as
well as other frequency bands) is still a subject of debate
(Sejnowski and Paulsen 2006; Cannon et al. 2014).

There is much evidence that gamma rhythms arise from
the interplay between the pyramidal cells (E-cells) and
interneurons (I-cells). In this scenario (Buzsáki and Wang
2012; Bartos et al. 2007), there is no need for pacemaker
cells to initiate the rhythm; rather, it emerges at the network
level due to the synaptic interactions. The rhythm arises
as follows: under an external influence, such as a constant
background bias, the pyramidal cells start firing sponta-
neously and excite the interneurons. Once the interneurons
activate, they shut down the pyramidal neurons. This leads
to a drop in drive to the inhibitory neurons, and the result-
ing spontaneous re-excitation of the pyramidal cells initiates
the cycle anew. This mechanism is referred to as the PING
model (Pyramidal Interneuron Network for Gamma oscilla-
tion); see for example (Buzsáki andWang 2012; Bartos et al.
2007) for reviews on the emergence of gamma rhythms,
and see also (Wang and Buzsáki 1996; Brunel and Hakim
1999; Lindner et al. 2005; Brunel 2000) for computational
implementations.

The particular constitution of the cycle makes the gamma
rhythm a good candidate for cortical computations. For
example, it has been suggested that the I-cells cyclically
gate the availability of the E-cells to fire to external input.
In other words, the interneurons periodically modulate the
E-cell excitability, all the while being an essential intrinsic
component of the rhythm. Since any phase of the gamma
cycle is linked to the current degree of inhibition, one
expects the ongoing phase to be a temporal marker of
network excitability (Fries 2005). The rhythmic inhibition
would create consecutive windows of opportunity where
synaptic input arriving in an open or ”excitable window” has
a greater likelihood of inducing a response.

Sequences of open and closed windows of excitability
may be central for communication across neural circuits.
The communication through coherence hypothesis (CTC)
states that, in order to send information to a neural (pyra-
midal) group oscillating in the gamma frequency, this infor-
mation should arrive during this window of opportunity. To

do so, the source of the information needs to oscillate at
the same frequency and remain phase locked to the receiver
(Fries 2005; Fries et al. 2007). Neural populations could
communicate efficiently with each other when there is a
”good” phase relation between the source in one region
and the receiver in another. A change in the phase rela-
tion between the source and receiver will reflect changes
in the information transfer between their neurons. The cou-
pling strength between two brain regions and the presumed
ability to share information is thus modulated by the phase
relationship, which tunes the effectiveness of inputs at
altering activity. Such predictions were verified experimen-
tally as well as using computational modeling approaches
(Buehlmann and Deco 2010; Womelsdorf et al. 2007;
Tiesinga and Sejnowski 2010; Knoblich et al. 2010).

CTC hypothesizes that an input is expected to be most
efficient when it arrives far away from the inhibitory peak.
It is however difficult to test this ”phase” or timing predic-
tion in CTC, and to further formulate expectations for the
role of the stimulus amplitude, without somehow artificially
locking the fluctuating rhythm with an external periodic
drive. Indeed, since the gamma cycle is noisy in both ampli-
tude and phase, it would be nearly impossible to target the
downstream pyramidal cells at a precise desired phase of
the ongoing gamma cycle. This problem was circumvented
using the clever experimental setup of Cardin et al. (Cardin
et al. 2009). In their paper, they entrain the I cells using
optogenetic stimulation, and then excite an E cell at dif-
ferent phases of the global gamma rhythm. They conclude,
under these ”stabilized conditions”, that the effectiveness
(or ”gain”) of a stimulus to increase E cell firing depends
on its precise timing, lending further support to the CTC
hypothesis.

But they leave open some important dynamical ques-
tions about the extrinsic and intrinsic factors governing the
modulation of input effectiveness. What shapes the depen-
dence of the E cell response on the synchronization of the
I cells? Does this shape depend on the intrinsic sponta-
neous activity of the E and I cells? Does CTC weaken
when the rhythms are variable, and the inputs jittered in
time? How does it depend on the amplitude of the stim-
ulus to the E-cells? This latter question is pertinent to
the biophysically plausible scenario where the amplitude -
rather than just the phase- of signals between communi-
cating populations is time-varying, as different numbers of
presynaptic cells are recruited over time. And can one have
an analytical handle on all this? Apart from these specific
questions, our study more generally explores the relation
between random spontaneous activity, the fluctuations in the
excitatory-inhibitory balance and evoked responses, which
are issues related to rest-stimulus interactions, see chapter
10 in (Northoff 2014).
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Our computational approach below sheds light on these
questions. We use the fully stochastic version of the Wilson-
Cowan model on which recent studies have focussed
(Wallace et al. 2011) and (Benayoun et al. 2010) and
(Buice and Cowan 2007). This model consists of binary
neural units that follow a random walk between two pos-
sible states, one active and one silent. The behaviour of
this model is one that exhibits fluctuations due to finite-size
effects; it is known to converge to the standard determinis-
tic Wilson-Cowan model in the thermodynamic mean field
limit of an infinite number of cells (Buice and Cowan 2007;
Bressloff 2009, 2010; Bressloff and Newby 2013). Fur-
thermore that network model, which can be simulated
much faster than networks of integrate-and-fire or Hodgkin-
Huxley-type neurons, is known to nicely reproduce many
statistical attributes of the gamma cycle (Benayoun et al.
2010). And it can be described succinctly by a pair of
stochastic ordinary differential equations, from which cer-
tain properties can be computed and on which analytical
work can be performed. We show that the resulting system
provides a quick computational tool to explore the different
biophysical regimes of activity and information transfer in
the set-up of Cardin et al. (2009), and in particular to explore
the important question of the effect of variability on CTC.

The paper first describes in the Methods section the
stochastic spiking process as well as the different measures
used to analyze the data produced by the model. It goes on to
show how the PING model without external pacing exhibits
an endogenous window of opportunity for the E cells. It then
explains how this window is constituted by the fluctuating
balance of excitation and inhibition. Extending this model
to the externally paced I-cells and externally excited E-cells

reproduces the main observation of a window of opportunity
for CTC in (Cardin et al. 2009) in spite of the fluctuations.
The paper then highlights the role of stimulus amplitude,
revealing a trade-off between the sharpness in firing phase
and the absolute change in firing rate as a result of amplitude
changes. In other words a larger change in rate comes with
a loss in timing accuracy. It also investigates how jitter in
the timing of inputs to the E-cells, the synchronization index
of the I cells, and the existence of a deterministic oscilla-
tion impact the window of opportunity. And it addresses
the resonances seen in the I vs E cells under pacing stim-
uli delivered to the I vs E cells, supporting the predominant
role of the former for rhythm maintenance. The paper ends
with a discussion about the implications of our findings, in
particular the increase in simulation speed and availability
of simple stochastic differential equations for the reduced
system that describes the behaviour of the whole network.

2 Methods

In this section, we give the details of the mathematical
model, its relation to the Wilson-Cowan oscillator and the
different measures used in this paper. We first summarize in
Table 1 the main mathematical notations and their associ-
ated biophysical meaning used throughout this document.

2.1 Stochastic spiking process

We first describe the stochastic spiking process based on
the Wilson-Cowan equation (Wilson and Cowan 1972).
This model is used here to mimic a cortical circuit as

Table 1 Main notation used throughout this paper and their biophysical interpretation

Notation Biophysical interpretation

m / n Number of active inhibitory/excitatory neurons

hI / hE Baseline input of inhibitory/excitatory neurons

sI / sE Synaptic input of inhibitory/excitatory neurons

wIE / wII Synaptic strengh in inhibitory neurons

wEI / wEE Synaptic strengh in excitatory neurons

αI / αE Membrane time constant of inhibitory/excitatory neurons

f (s) Response or ”firing rate” function

βI / βE Response function weight of inhibitory/excitatory neurons

rI / rE Global inhibitory/excitatory activity

II / IE External drive on inhibitory/excitatory neurons

QI / QE Amplitude of the external drive on inhibitory/excitatory neurons

σI / σE Variance of the external drive on inhibitory/excitatory neurons

TI / TE Periode of the external drive on the inhibitory/excitatory neurons

φE Phase shift of the external drive on the excitatory neurons
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presented in (Benayoun et al. 2010). The stochastic ver-
sion of the Wilson-Cowan equation was introduced to
go beyond the usual mean field approximation by tak-
ing into account the second order firing statistics, see
(Buice and Cowan 2007; Bressloff 2009). The model offers
a good framework for our study since it nicely reproduces
the main attributes of gamma oscillations (Wallace et al.
2011). A similar approach based on binary neurons to study
the spike train correlation of the asynchronous state can
be found in (Ginzburg and Sompolinsky 1994), see also
(Renart et al. 2010; Helias et al. 2014; Grytskyy et al. 2013)
for more recent discussions on spike train correlations.

The population is assumed to be composed of NE exci-
tatory cells (E-cells) and NI inhibitory cells (I-cells). It
is commonly accepted that a cortical circuit is constituted
of 80 percent of E-cells and 20 percent of I-cells. In the
stochastic Wilson-Cowan model, each neuron is character-
ized by a random walk between two possible states (active
vs silent). When a neuron enters the active state, it is
said to fire an action potential. The transition rates from
one state to another of this Markov process are chosen
such that the standard Wilson-Cowan model (Wilson and
Cowan 1972) is recovered in the thermodynamic mean-
field limit (i.e. infinite number of cells), see (Buice and
Cowan 2007; Bressloff 2009). During a short interval of
time (t, t + dt) the probability that a neuron jumps from
the active state to the silent state is αdt , see Fig. 1. In other
words,

P(active → silent, during dt) = αdt.

In the opposite direction from the silent state to the active
one, the transition rate depends on the synaptic input s that
the neuron receives. The probability that a neuron jumps
from the silent state to the active state is calculated using
the nonlinear sigmoid response function f and the synaptic
input s, see Fig. 1

P(silent → active, during dt) = βf (s)dt,

where the response function f is

f (s) = 1

1 + e−s
. (1)

Let m denote the number of active neurons in the excita-
tory population at a certain time, and n the number of active
neurons in the inhibitory population. Assuming an all-to-
all coupling, the synaptic input to the excitatory neurons is
given by

sE = wEEm/NE − wEIn/NI + hE,

and by

sI = wIEm/NE − wIIn/NI + hI ,

for the inhibitory neurons. In the two last mathemati-
cal expressions, hE stands for the external influence or
”drive” on the E-cells, and hI on the I-cells. The synap-
tic strengths of connection are denoted by w. Notice that
the model is built under the assumption that the net-
work is perfectly homogenous with all-to-all coupling, see
(Wallace et al. 2011) for the influence of sparse connectivity.
Following the important remark in (Benayoun et al. 2010),
we chose in all our simulations αE = 0.1, which corre-
sponds to a time constant of α−1

E = 10ms. Since the basket
cells are much faster, we chose αI = 0.2 corresponding to a
time constant of α−1

I = 5ms. The parameters are similar to
those in (Benayoun et al. 2010).

2.2 The Wilson-Cowan oscillator

As we mentioned above, the Markov process was first
presented to go beyond the usual mean field rate approxi-
mation. A first description using the path integral formalism
can be found in (Buice and Cowan 2007), and a compari-
son with Van Kampen’s system size expansion is done in
(Bressloff 2009) and (Buice and Chow 2013). To speed
up the computational performance of the Markov process

−6 −4 −2 0 2 4 6
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1
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Fig. 1 The left panel is a schematic representation of the random walk
between the two possible states (active and silent). During a short inter-
val of time (t, t +dt), a neuron that is in the active state has probability
αdt to jump into the silent state, and similarly, a probability βf (s)dt to

jump from the silent state into the active state, where f is the response
function (1) and s the synaptic input. The right panel is a graphical
representation of the response function f
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in chemical reactions, the τ -leaping formula was intro-
duced in (Gillespie 2001), see also (Gillespie 2007) for
more recent review. The τ -leaping formula can be used to
derive a stochastic differential equation, see (Wallace et al.
2013; Wallace 2010; Wallace et al. 2011). It is known that
this Markov process can be described by a master equa-
tion, and can lead to the Wilson-Cowan equations. Our
primary interest is in tracking the statistics of the neural
network. The full population of neurons can be described
using a master equation. Let T denote T (t, m, n) the prob-
ability that the network has the configuration described
by m neurons in the active state out of the NE exci-
tatory cells and n out of the NI inhibitory. We then
have:

d

dt
T (t, n,m) = αE ((m + 1)T (t, m + 1, n) − mT (t, m, n))

+(NE − (m − 1))βEf (s(m − 1, l))T (t, m − 1, n)

−(NE − m)βEf (s(m, n))T (t, m, n)

+αI ((n + 1)T (t, m, n + 1) − nT (t, m.n))

+(NI − (n − 1))βI f (s(m, n − 1))T (t, m, n − 1)

−(NI − n)βI f (s(m, n))T (t, m.n). (2)

To clarify the dynamics of the stochastic spiking process,
we compute the first moment. We will derive a moment
hierarchy from our master Eq. (2), and then show how it
can be truncated. Let us introduce the notation of the first
moment

< n >=
∑

n,m

nT (t, n, m).

To get an equation for the first moment < n >, we multi-
ply the master Eq. (2) by n and sum over all configurations.
Algebraic manipulations yield the dynamics of the first
moment:

d

dt
< m >= −αE < m > +βE < (NE − m)f (sE) > .

In the limit of infinite neural network size, systems of deter-
ministic differential equations may be derived to describe
the expected value of each cells. The most common ana-
lytical approach for dynamics on complex networks is
mean-field (MF) theory. In this thermodynamic limit, the
mean field approximation neglects the correlation among
cells. The MF assumption is namely

< (NE − m)f (sE) >=� (NE− < m >)f (< sE >).

Of course, the situation for inhibitory cells can be treated in
a similar way. Noting

rE =< m > /NE and rI =< n > /NI ,

the equation reduces to the standard rate model

{
d
dt

rE = −αErE + (1 − rE)βEf (sE)
d
dt

rI = −αI rI + (1 − rI )βI f (sI ),
(3)

where the synaptic inputs are

sE = wEErE − wEI rI + hE,

and

sE = wIErE − wII rI + hI .

The rate model (3) is a good approximation only in the
thermodynamic limit NE, NI → ∞ and the correlation
among cells can be neglected. The deterministic approach
regards the time evolution as a continuous, wholly pre-
dictable process governed by a set of coupled, ordinary
differential equations that neglect correlations among cells.
However, the time evolution of binary neurons interacting
together is not a continuous process, because the state of
each individual cell can change only in a discrete manner.
It is possible to show that for finite NE and NI that the
network is described by stochastic versions of (3), where
the noise arises due to finite-size effects. The determinis-
tic Wilson-Cowan equations and the stochastic full network
simulations are compared in Fig. 2.
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Fig. 2 Illustration of the gamma rhythm as a stochastic limit cycle. In
panel A, the black line represents the stochastic trajectory of the nor-
malized (divided by the total number of cells) Markov process. The
panels B and C compare, respectively, the stochastic activity generated

via the binary cortical network and the deterministic counterpart of the
Wilson-Cowan Eq. (3). Parameters for the simulation are as in Fig. 5.
The purple line indicates the limit cycle
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The finite size fluctuations can be added to the equa-
tion via a Kramers-Moyal expansion of the master equation
(see Bressloff 2009 for details). Using the rescaled vari-
able rE and rI , and treating them as continuous variables,
a Taylor expansion to second order in 1/N leads to the
Fokker-Planck equation

∂

∂t
p(t, rE, rI ) + ∂

∂rE
((αErE − (1 − rE)βEf (sE)) p(t, rE, rI ))

− 1

NE

∂2

∂r2E

((αErE + (1 − rE)βEf (sE)) p(t, rE, rI ))

+ ∂

∂rI
((αI rI − (1 − rI )βI f (sI )) p(t, rE, rI ))

− 1

NI

∂2

∂r2I
((αI rI + (1 − rI )βI f (sI )) p(t, rE, rI )) = 0 (4)

The solution to the FP Eq. (4) determines the proba-
bility density function for a corresponding Ito stochastic
process. By a direct application of the Feynman-Kac for-
mula that establishes the link between the FP equation and
and stochastic differential equations (see Bressloff 2009
for details), we get that the our stochastic process evolves
according to the stochastic Wilson-Cowan model

⎧
⎨

⎩

d
dt

rE = −αErE + (1 − rE)βEf (sE) +
√

αErE+(1−rE)βEf (sE)
NE

ηE(t)

d
dt

rI = −αI rI + (1 − rI )βI f (sI ) +
√

αI rI +(1−rI )βI f (sI )
NI

ηI (t).
(5)

Here ηE(t) and ηI (t) denote two independent white
noises such that

〈η(t)〉 = 0, 〈η(t)η(t ′)〉 = δ(t − t ′).

2.3 Power spectrum

To analyze the dynamics of the cortical circuit, we apply
some techniques of signal processing. We use the power
spectrum measure to quantify the strength of the oscilla-
tion of the global gamma activity. We compute the power
spectrum via the Fourier transform

P(ω) := lim
T →∞

< |r̂(ω)|2 >

T
,

where r̂(ω) stands for the Fourier transform of the neural
activity r(t), and T is the measurement (i.e. simulation) time

r̂(ω) =
∫ T

0
r(t)e−iωt dt.

The nature of the spectrum of the neural activity gives useful
information about its nature, for example, about its degree
of periodicity. The result presented in Fig. 2 shows a clear
peak in the gamma range.

2.4 Phase extraction

It is possible to go beyond the power spectrum to reveal
deeper features of the rhythm by computing its phase via a
Hilbert transform, which in turn can be used to quantify the
instantaneous frequency (see Boashash 1992), which fluc-
tuates even during one gamma cycle. We first apply a band-
pass filter to the summed E and I activities r(t) = rE(t) +
rI (t) that keeps only the γ -part rγ (t) of the signal. To do
so we used the butterworth filter function in the Matlab
signal processing toolbox. We chose to use a second order
filter, and the lower and upper cutoff frequencies were given
by the gamma frequency band (30 − 90 Hz). Such a func-
tion allows to design a bandpass in the frequency band of
interest. Other definitions of the activity used to compute a
global phase will yield qualitatively similar results. Then we
write this γ -part as

rγ (t) = E(t) cos θ(t).

The phase θ(t) can be extracted via the Hilbert transform
r̃γ (t) of the neural activity signal. We can then compute the
analytic signal

E(t)eiθ(t) = rγ (t) + ir̃γ (t).

The phase is extracted via this last formula. An illustra-
tion of our method is given in Fig. 6 presented in the Results
section. Our methodology illustrates how one can extract the
ongoing phase as well as the envelope of the neural network
activity in any oscillatory band of interest. Note that from
Fig. 6, we see that the reconstructed signal and the original
signal are in excellent agreement.

2.5 Synaptic drive

To test the excitability of the pyramidal cells as well as
to lock the cortical network, we use an external stimu-
lus. In our numerical experiment, we chose a rhythmic
drive analogous to (Börgers and Kopell 2008) which has
the form

II (t) = QI

+∞∑

k=−∞

TI√
2πσ 2

I

exp

(
− (t − kTI )

2

2σ 2
I

)
. (6)

where TI is the oscillation period of the rhythmic drive, σI

the width of the input, and the drive frequency is given by

fI = 1000

TI

.

The factor of 1000 is necessary because we read TI as
a period in ms but keep the frequency fI to be in Hz. The
consequence of such a rhythmic drive is the entrainment of
the cortical network’s activity as illustrated in Fig. 9. To test
the excitability of the pyramidal cells, we shift the periodic
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drive on the E-cells relatively to the periodic drive that the
I-cells receive:

IE(t) = QE

+∞∑

k=−∞

TE√
2πσ 2

E

exp

(
− (t − (k + φE

2π )TE)2

2σ 2
E

)
.

This time the phase shift φE allows to test the excitability
of the pyramidal cells with respect to the ongoing phase of
the gamma cycle as illustrated in Figs. 12 and 13.

To further test the influence of the irregularity of the
periodic drive in a more realistic setting, we introduced a
gaussian fluctuation in the arrival time of pulses, using a
stimulus defined as:

IE(t) = QE

+∞∑

k=−∞

TE√
2πσ 2

E

exp

(
− (t − (k + φE

2π + σηηk)TE)2

2σ 2
E

)
,

where ηk is a N(0,1) random number:

< ηkη
′
k >= δkk′ .

As above, the phase shift φE allows to test the excitability of
the pyramidal cells with respect to the ongoing phase of the
gamma cycle, however the phase onset is no longer precise.
A small fluctuation deviates the phase stimulus onset with
a deviation proportional to ση. The illustration on the shape
of the stimulus is given in Fig. 3.

2.6 Phase locking value

We introduce the phase locking value based on the
Kuramoto parameter that we used to quantify the entrain-
ment of the neural network:

K = 1

M
|

M∑

k=1

eiθk |, (7)

where θk is the phase of the neural activity at the stim-
ulus onset, and M the number of stimulus presentations.
From its definition, the Kuramoto index is a value between
zero and one, a value close to zero for a poor entrainment
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Fig. 3 Illustration of the influence of noise on the phase target onset.
Parameters for the external drive on I-cells are QI = 0.3, σI = 0.3
and fI = 60; the external drive on E-cells uses QE = 0.3, σE = 0.3
and fE = 60. a ση = 0. b ση = 0.3

(weak phase locking), and close to one for strong entrain-
ment (strong phase locking). The result is shown in Fig. 10,
where the Kuramoto parameter is shown with respect to the
stimulus amplitude.

3 Result

3.1 Gamma band synchronization

In this section, we illustrate the gamma rhythm arising from
the PING interaction (see Fig. 4) with a simulation of a
cortical circuit made up of pyramidal cells and fast bas-
ket cells. The model is detailed in the Methods section.
Note that there is no external pacing of the I-cells here,
as our goal is first to expose any window of opportunity
in the fluctuating endogenous gamma rhythm. The neural
dynamics is displayed in Fig. 5. We see from the net-
work raster plots that both the E and I-cell populations
are globally (i.e. all) engaged in rhythmic behaviour. The
spontaneously emerging oscillatory regime is clearly seen
by looking at the activity time series (number of active
cells per unit of time) and its associated power spectrum.
The dominant frequency of the power spectrum is in the
gamma band regime (30–90 Hz). Note also that the pop-
ulations of E-cells and I-cells have similar power spectra.
We refer the interested reader to (Kukjin Kang et al. 2010;
Mazzoni et al. 2008) for the relation between the low-
frequency part of these spectra and local field potential
data.

What are the firing patterns in the PING scenario? The
pyramidal cells start firing and switch on the fast basket
cells. This firing activity can be seen as ”spontaneous” even
though it relies on a minimum mean level of external activ-
ity impinging on the cells; it is not e.g. temporally locked
as a response to some external pattern of stimulation. Once
these interneurons are activated, they inhibit the pyramidal
cells. When the pyramidal cells recover after the decrease of

Fig. 4 Schematic representation of the synaptic interaction between
cells in the PING mechanism of gamma rhythm generation. The pyra-
midal cells (E-cells in red) drive the fast basket cells (I-cells in blue)
that inhibit the whole network. In our computational model, we assume
an all-to-all connectivity among cells, and the synaptic interaction is
made via a sigmoidal transfert function (1). The details are given in the
Method section
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Fig. 5 Illustration of the PING dynamics. Simulation of the binary
Markov network with a cortical circuit composed of 80 percent of E-
cells and 20 percent of I-cells during 200 ms. a Raster plot depicting
the spike timing for the E-cells. b Activity (number of active E-cells)
as a function of time. c Power spectrum computed by averaging over
100 realizations or ”trials”, which shows a clear peak in the gamma

frequency band (30-90 Hz). Similarly, d, e and f are the corresponding
plots for the I-cells. Parameters for the simulation are the number of
neurons NE = 800 and NI = 200, the synaptic weights wEE = 25,
wII = 1.5, wIE = 32 and wIE = 18, the time constants αE = 0.1
and αI = 0.2, βE = 1, βI = 2 and the external drives hE = −3.8 and
hI = −9.2

the inhibitory feedback, the gamma cycle starts again. Note
that a given pyramidal cell does not fire at every cycle of
the gamma rhythm. This is difficult to see for all cells at the
level of resolution of Fig. 5, so the firing times of two spe-
cific E cells and two specific I cells are shown in panels A
and D, respectively. A cell often misses several cycles of the
global oscillation before being able to initiate its next action
potential. Consequently this type of gamma rhythm is often
called ”weak” PING, and has been associated with atten-
tional processing (Cannon et al. 2014). In contrast, a given
fast basket cell may fire twice during the same cycle.

From a mathematical perspective, the oscillatory regime
can be suitably characterized using mean field theory and
dynamical system analysis. Indeed, one can show that in the
thermodynamic limit, the Markov walk process (see Meth-
ods) used here to simulate the cortical circuit reduces to the
well-known Wilson-Cowan equations

⎧
⎪⎨

⎪⎩

d

dt
rE(t) = −αErE(t) + (1 − rE(t))βEf (sE(t))

d

dt
rI (t) = −αI rI (t) + (1 − rI (t))βI f (sI (t)),
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Fig. 6 Illustration of the gamma phase extraction from full network
simulations of the global activity. a Global activity as a function of
time, i.e. the sum of I-activity and E-activity in the full network. b
Power spectrum of the global activity. c Gamma (γ ) part of the sig-
nal obtained by applying a bandpass filter (see Method) in the gamma
band (30 − 90 Hz). The gamma signal oscillates around zero; the

grey line is its envelope computed using the Hilbert transform (see
Methods). d Phase of the γ -signal. e Superposition of the original
gamma signal and of its Hilbert representation using the slow enve-
lope and phase; the two are in excellent agreement. Parameters for the
simulation are as in Fig. 5



J Comput Neurosci

Phase
0 /2 3 /2 2

S
pi

ke
s

0

2000

4000
A

Phase
0 /2 3 /2 2

 s
ig

na
l

-0.5

0

0.5
B

Phase
0 /2 3 /2 2

B
al

an
ce

-5

0

5
C

Fig. 7 Illustration of the PING cycle and rhythmic modulation of the
excitatory-inhibitory balance. a Proportion of neurons (E-cells in red
and I-cells in blue) entering into the active state as a function of the
ongoing phase of the endogenous gamma cycle, obtained by simulat-
ing the whole network. No external stimulation is applied here. These
cycle histograms are constructed using 50 bins on the interval (0, 2π).
b The excitatory (rE : red line) and inhibitory (rI : blue line) compo-
nents of the gamma rhythm produced by the stochastic Wilson-Cowan

model (see Methods) of the whole network as a function of the ongoing
gamma phase. Data from multiple successive cycles are superimposed.
c The weighted balance of synaptic input sE to the pyramidal cells as a
function of the gamma phase. For our neural network, the simulations
in b and c were two orders of magnitude faster than those of the whole
network; this speed-up factor depends on the number of neurons in the
network. Again data from many successive cycles are superimposed.
Parameters for the simulation are as in Fig. 5

where the synaptic inputs are

sE(t) = wEErE(t) − wEI rI (t) + hE,

and

sI (t) = wIErE(t) − wII rI (t) + hI .

and f is the firing function. Moreover, it is also well-
known that the Wilson-Cowan model exhibits a Hopf bifur-
cation. Thus, with finite-size fluctuations, the oscillatory
regime of the cortical circuit is an emergent noisy limit
cycle, as shown in the Methods section. This noisiness
blurs any definition of phase for the emergent rhythm,
thus impeding the determination of any window of firing
opportunity.

3.2 Gamma phase and the window of opportunity

Cortical rhythms, and in particular gamma synchroniza-
tion are thought to gate, select and suppress the flow of
information between brain regions. To develop this argu-
ment requires going beyond the usual spectral analysis and
explore the precise time evolution of the phase within a
cycle and across cycles of the endogenous gamma rhythm;
later we compute the window of opportunity using timed

external pulses to a fraction of the E-cells. We computed the
phase of the neural activity after the application of a band-
pass filter that keeps only the gamma part (30-90 Hz) of
the signal (see Fig. 6 and Methods). Our methodology illus-
trates how one can extract the ongoing phase (panel D) as
well as the envelope (panel C) of the neural network activ-
ity in any oscillatory band of interest; a similar idea was
used in (Greenwood et al. 2015) without this application of
a bandpass filter. This enables us to investigate the informa-
tion contained in the ongoing phase and/or envelope of any
specific rhythm.

The core prediction of the CTC hypothesis is that the
rhythmic inhibition during the gamma cycle gates the avail-
ability of pyramidal cells to respond to their own external
excitatory input (as distinguished from their inhibitory input
from the interneurons). The pyramidal cells will more likely
fire when the inhibitory firing rate is low - although it is
less clear whether this should occur in the waxing and/or
waning phases of inhibition. Thus the rhythmic inhibition
modulates the excitability of the E-cells, and thus their
firing rate, allowing them to fire only during short win-
dows of opportunity. If a pyramidal cell does not fire
during this window in a given cycle, the cell has to wait
until the next cycle. This is central to understand the
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Fig. 8 Illustration of the PING cycle and rhythmic modulation of
the excitatory-inhibitory balance when the coupling among E-cells is
non existant. a Raster plot depicting the spike timing for the E-cells.
Similarly, b is the corresponding plot for the I-cells. c Proportion of
neurons (E-cells in red and I-cells in blue) entering into the active state

as a function of the ongoing phase of the endogenous gamma cycle,
obtained by simulating the whole network. No external stimulation is
applied here. These cycle histograms are constructed using 50 bins on
the interval (0, 2π). Parameters are the same as in Fig. 5 except the
coupling among the E-cells Wee that is taken to be zero
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Fig. 9 Illustration of the phase entrainment. a Global activity rE + rI
(black line) and external rhythmic drive on the I-cells (blue line). The
simulation was made directly on the whole binary network. b Phase of
the γ -signal (black curve); the blue pulses are the stimulus presentation

times. cHistogram of phase of the global activity at the stimulus onset.
Parameters are as in Fig. 5, except that the external drive to the I-cells
is QI = 0.3 with σI = 0.3 and fI = 60 as in Eq. (6)

observation made above (see in Fig. 5) where individual
pyramidal cells spike only occasionally and miss several
cycles (window of opportunity) before being able to fire
again.

Figure 7 portrays the constituents of the gamma cycle
and displays the temporal window. It shows in the first
panel the precise spike timing of the onset of activity in
E-cells and I-cells as a function of the gamma phase. A
spike is associated with a neuron making a transition to
the excited state. It is clear from this panel that the E-cells
have a higher firing probability as the magnitude of the inhi-
bition grows, rather than when it falls. The second panel
displays the excitatory (red line) and inhibitory (blue line)
gamma signal produced by the network. These are obtained
from the stochastic Wilson-Cowan equations (see Meth-
ods), and correspond respectively to the variables rE(t) and
rI (t). Simulation of these equations, as opposed to whole
network simulations, yields a tremendous decrease in com-
putation time (since it is independant to the number of cells
present in the network) in order to obtain information on
the phase dependence of the firing probability. These results
also reveal that the inhibitory variability across cycles of
the gamma rhythm is greater than the excitatory variabil-
ity (see the spread of the blue vs red lines, respectively).
This is expected from the shape of the stochastic limit cycle
and associated excitatory and inhibitory time series shown
in Fig. 2.

The third panel gives the total synaptic input sE to the
pyramidal cells, made up of the weighted sum of the exci-
tatory (E to E) and inhibitory (I to E) inputs. During a
cycle, each pyramidal cell receives an input which is posi-
tive (depolarizing) during a short window (of opportunity)
and negative (hyperpolarizing) otherwise. The rhythmic
reverberation in the E-I network arises from the periodic
modulation of the balance of inputs to the pyramidal cells,
and consequently, of their firing probability. For the param-
eters chosen, one can see from the magnitudes that this
firing modulation is principally due to the variation in the
inhibition (Figs. 7b and 8). It makes good sense then to
stabilize the gamma rhythm experimentally by driving the

interneurons - rather than the pyramidal cells - with exter-
nal periodic pulses, as in (Cardin et al. 2009). One would
want to do that anyways if one wishes to avoid the inter-
ference of a rhythm-regularizing pacing stimulation with an
external ”communication” signal being later applied to the
pyramidal cells.

The gamma cycle thus causes successive transitions
between open and closed windows of excitability. Hence,
one would expect the ongoing phase cycle to be a
predictive measure of the pyramidal cell excitability
(Fries 2005). As already stressed in the Introduction, this
may subserve stimulus selection in attentional processes
(Fries et al. 2007), which is the subject of the next section.
The excitatory-inhibitory balance is constantly dynamical
in nature in this system, as its shifts produce the gamma
rhythm, and the openings and closings of the window.
The external stimulation to the interneurons that we next
explore serves to better understand how much phase matters
in communication.
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Fig. 10 Measure of the entrainment of the global activity of the neural
network to the external rhythmic drive (6). a Kuramoto index (7) of
phase locking of the global activity (number of active E and I cells) as
a function of the amplitude of pacing stimulation of the interneurons.
The measure is computed using an average over 100 realizations. The
black line denotes the mean and the shaded region is the confidence
interval of ±1 standard deviation. Parameters for the simulation are as
in Fig. 5, except that the external drive to the I-cells is QI = 0.3 with
σI = 0.3 and fI = 60 as in Eq. (6). b Illustration of the rhythmic
drive for two different stimulation amplitudes QI = 0.1 (black) and
QI = 0.3 (blue, used for the results in panel a)
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3.3 Entrainment of the gamma rhythm

To deepen our dynamical understanding of the core pre-
diction of the CTC hypothesis, we designed a follow-up
series of numerical experiments in the spirit of Cardin et al.
(2009). We start by artificially locking the fast basket cells
to an external drive in order to stabilize the gamma rhythm.
This will enable the definition of a precise phase, and con-
sequently, the exploration of how ”in principle”, in this best
scenario low-noise case, pyramidal cell responses to inputs
external to the network depend on gamma phase (the net-
work here now understood as E cells, plus I cells, plus
pacing to the I cells). This will reveal basic information
about the same question in the noisier E-I system without
pacing. We use a rhythmic drive analogous to (Börgers and
Kopell 2008). In this computational experiment, the external
rhythmic drive mimics the periodic light-driven activation
of fast-spiking interneurons in (Cardin et al. 2009).

The consequence of such a rhythmic drive is the entrain-
ment of the gamma rhythm as illustrated in Fig. 9. Indeed,
the histogram of the phases at the stimulus onset (peak of
the external drive) shows a concentrated distribution around
zero. Furthermore, to quantify this entrainment with respect
to the stimulus, we computed the Kuramoto order parameter
for Fig. 10. Originally, the Kuramoto index was introduced
to measure the degree of synchrony among identical inter-
acting oscillators. Here we use the Kuramoto parameter as a
measure of phase locking (Lachaux et al. 1999), i.e. to quan-
tify how tightly the global activity of the network (defined as
the number of active E and I cells) is locked to the external
periodic drive - or, in other words, how the global activ-
ity (defined as the number of active E and I cells ) of the
network is entrained by the external pulses.

From its definition, the Kuramoto index is a value
between zero and one, with a value close to zero for poor
entrainment (weak phase locking), and close to one for
strong entrainment (strong phase locking). As expected,
increasing the amplitude of the stimulus that paces the I-
cells induces a better entrainment of the gamma cycle. Now
that the cortical circuit is entrained and its gamma cycle
is more regular, we can easily investigate the interaction
between external (e.g. sensory) stimuli to the pyramidal
cells and the externally-regularized endogenous gamma
rhythm.

The effect of the stimulation on the E and I cells is stud-
ied now via the power spectrum in Fig. 11. By pacing the
E-cells alone, and then the I-cells alone, we observe strong
effects on the power spectrum as the frequency of the exter-
nal rhythmic drive is changed. To illustrate this, we have
measured the peak amplitude of the power spectrum as a
function of the frequency of the external drive. We clearly
distinguish that the network reacts well to the drive when
its frequency is close to the natural frequency of the neural
network. To be precise, it has to be just a little bit below the
natural frequency of the network.

Note finally that the information presented in Figs. 10
and 11 can also be computed by the direct simulation of
the network as well as the simulation of the SDEs (5) pre-
sented in the Methods section, even though only results on
the full network have been presented here due to lack of
space (except for Figs. 7c and 12). Indeed, from simulation
of the SDEs, one is able to quickly get all the statistical
information of the network that does not require the pre-
cise dynamics of a particular cell. This is indeed the case
when computing the Kuramoto coefficient as well as the
power spectrum. The SDEs are also amenable to analytical

Fig. 11 Illustration of the effect of the external pacing frequency
on the power spectrum. The figure illustrates how the peak ampli-
tude of the power spectrum depends on the frequency of the external
drive. Parameters for the simulation are as in Fig. 5, and the exter-
nal drive on I/E-cells uses QI /QE = 0.3, σI /σE = 0.3. In the
panels a-b-c the pacing is made on the E-cells, while in the panels

d-e-f the pacing is made on the I-cells. a–d Power spectrum of the
global activity. b–e Power spectrum of the E-cells. c–f Power spec-
trum of the I-cells. These results were obtained from simulations of the
two stochastic differential equations Eqs.(5) rather than of the whole
network
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Fig. 12 Gamma phase at the onset of stimulations to the E and I cells.
a Time series of the global activity rE + rI (black line) and of the two
external rhythmic drives: one to the I-cells (blue line) and the other to
the E-cells (red line). b Phase of the γ -signal (black curve); the blue
pulses denote the onset of stimuli to the I-cells, while the red pulses
are those to the E-cells. c Histogram representation of gamma phase
at stimulus onset, in blue for the blue pulses and in red for the red
pulses, where these stimulation phases are referenced to the phase of

the global gamma rhythm. The simulations were made with the whole
binary network. Panels d-e-f correspond respectively to panels a-b-c
but are computed for a later phase. Parameters for the simulation are
as in Fig. 5, and the external drive on I-cells uses QI = 0.3, σI = 0.3
and fI = 60; the external drive on E-cells uses QE = 0.2, σE = 0.3
and fE = 60. Panels a-b-c are for φE = 2π/3, and panels d-e-f for
φE = 5π/3

investigations, which are beyond the scope of the present
paper.

3.4 Excitability of the pyramidal cells

Most studies of gamma oscillations have so far focused on
cortical circuits without external input. Yet to assess the
impact of gamma oscillations on computational capabili-
ties, interaction with external stimuli needs to be examined.
According to the CTC hypothesis, if a stimulus is presented,
the evoked response of the pyramidal cells should depend

on the precise timing of the stimulus onset relative to the
ongoing phase of the gamma cycle. More precisely, if a
stimulus is presented at the peak of inhibition, CTC pre-
dicts a weak evoked response, and vice-versa. The rhythmic
inhibition thus modulates the effectiveness of external stim-
uli to alter the firing of the pyramidal cells. To address this
prediction, we follow the same strategy of (Cardin et al.
2009). We drive a small fraction (20 percent) of the pyra-
midal cells and measure their evoked response (number of
spikes produced by this subpopulation) during 200 ms of
simulation. We study this effect as a function of the shift of

Fig. 13 Dependence of the evoked response of the E-cells on the
phase of the gamma rhythm and the amplitude of external stimulation
to the E-cells. a Spike count emitted by the 50 pyramidal cells receiv-
ing the stimulus as a function of the phase shift φE . This numerical
result is obtained via an averaging over 100 simulations of 400 ms. In
all our simulations, we use a time bin of 0.1 ms. The black line denotes
the mean value and the shaded region represents a one standard devi-
ation interval of confidence. Parameters for the simulation are as in
Fig. 5, and the external drive on I-cells uses QI = 0.3, σI = 0.3 and
fI = 60; the external drive on E-cells uses QE = 0.2, σE = 0.3 and

fE = 60. The red curve corresponds to a pacing with a pulse arriving
on the E-cells with a period two times slower than pulses on the I-cells,
to see if slower pacing as in Cardin et al. alters our results. The shape
of the curve is preserved, with the expected reduction in spike count
by half. b Dependence of the E-cell excitability vs gamma phase rela-
tionship on the amplitude of the stimulus to the E-cells. c Same as B
but in a colour-coded representation of excitability, the ordinate cali-
bration shows 450−900, which corresponds to a number of spikes; the
red line gives the optimal phase processing with respect to the stimulus
amplitude
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the periodic drive to the E-cells relatively to the pacing peri-
odic drive to the I-cells (see Methods). In the true biological
setting, such pulses to the E-cells would arise from a num-
ber of more or less synchronized EPSPs (Excitatory Post-
Synaptic Potentials) from another population somewhere in
the brain.

Note that it would have been very difficult to test the CTC
prediction without artificially locking the gamma oscillator.
We illustrate the precision of the phase target in Fig. 12. The
circular histograms emphasize the design of our numerical
experiment. They reveal the shift between phase onset of
E-cell stimulation relative to phase onset of I-cell (pacing)
stimulation.

Our crucial finding, in agreement with Cardin et al.
(2009), is that the timing of the stimulus onset relative to
the ongoing gamma cycle delicately governs the magnitude
of the change in firing rate of the pyramidal cells. We plot
in the first panel of Fig. 13 the number of action potentials
produced by the subpopulation of excited cells as a function
of the phase shift. As we clearly see, the evoked response
(number of action potentials produced by the subpopulation
during the simulation) strongly depends on the phase shift.
Note that the presented stimuli are the same in every real-
ization; the differences in the responses are solely due to
the fluctuating intrinsic activity of the network (caused by
the stochastic nature of the single neuron dynamics) and the
ongoing phase.

To further investigate this dependency, we tested the
influence of the amplitude of the stimulus as well (see
the panels B and C in Fig. 13). This is meant to extend
the CTC to the plausible situation where communication
between networks involves both amplitude and phase infor-
mation. The amplitude may vary due to e.g. to number of
pre-synaptic external neurons firing at a given instant as they
are contributing to their own local gamma rhythm; commu-
nication would then be best if that rhythm is at the same
frequency as that of the PING network of interest. Our sim-
ulation interestingly reveals how the preferential phase (the
phase with the stronger response) varies with respect to

the external stimulus intensity. Indeed, for moderate stim-
uli, the response of the subpopulation can double if the
stimulus arrives at the ’good’ phase. On contrary, if the stim-
ulus arrives at the ’wrong’ phase, the input has difficulty to
induce any response; in that case, one would deduce that the
stimulus is not processed and that communication is poor.

The phase thus defines a relatively narrow window of
opportunity for the processing of low to moderate inputs.
However, when strong enough, the input dominates or
”overrides” the inhibitory input, producing a response that
depends much less on the phase. Hence, we see a clear
trade-off between the amplitude of the response and its
phase selectivity. In between, the peak of the window, and
indeed its width, depend continuously on the amplitude of
the stimulation to the E-cells. Generally, we also see that the
preferred phase is a function of the magnitude of external
stimulation. In a more natural situation where this magni-
tude fluctuates as the number of presynaptic neurons firing
in any given cycle fluctuates, the best ”communication” (in
the sense of strongest postsynaptic effect) would occur at
phases that also fluctuate. If the E-cell stimulation phase
were somehow kept fixed, then the magnitude of the E-
cell response would continually track the magnitude of the
presynaptic stimulus. The communication could then be
done with both constant phase and amplitude or, perhaps
more efficiently, with time-varying phase and amplitude.

Thus, by its intrinsic constitution, the gamma cycle
defines a narrow window of opportunity for the processing
of moderate inputs. However, this is strongly sensitive to
noise and to the entrainment of the I-cells. As illustrated in
Fig. 14, when the phase target is no longer precise and small
fluctuations deviate the phase stimulus onset (see Fig. 3),
the evoked response of the pyramidal cells loses its phase
dependence. Noise flattens the evoked response and dimin-
ishes the phase preference. Hence, a strong precision in the
phase target is needed in order to be better processed.

In a similar spirit, we tested the excitability of the pyra-
midal cells with respect to phase as a function of the level
of synchronization of the I cells. This level was modified

Fig. 14 Illustration of the influence of noise in the phase target. The
figure illustrates the dependence of the evoked response of the E-cells
with respect to the phase of the gamma rhythm at which the stimulus
is presented. Spike count emitted by the 50 pyramidal cells receiving
the stimulus as a function of the phase shift φE . This numerical result
is obtained via an averaging over 100 simulations of 400 ms. In all our

simulations, we use a time bin of 0.1 ms. The black line denotes the
mean value and the shaded region represents a one standard deviation
interval of confidence. Parameters for the simulation are as in Fig. 5,
and the external drive on I-cells uses QI = 0.3, σI = 0.3 and fI = 60;
the external drive on E-cells uses QE = 0.3, σE = 0.3 and fE = 60.
a ση = 0.1. b ση = 0.2. A) ση = 0.3
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Fig. 15 Illustration of the influence entrainment on the phase
excitability. The figure illustrates the dependence of the evoked
response of the E-cells with respect to the phase of the gamma rhythm
at which the stimulus is presented. Spike count emitted by the 50 pyra-
midal cells receiving the stimulus as a function of the phase shift φE .
This numerical result is obtained via an averaging over 100 simula-
tions of 400 ms. In all our simulations, we use a time bin of 0.1 ms. The

black line denotes the mean value and the shaded region represents a
one standard deviation interval of confidence. Parameters for the sim-
ulation are as in Fig. 5, and the external drive on I-cells uses σI = 0.3
and fI = 60; the external drive on E-cells uses QE = 0.3, σE = 0.3
and fE = 60. A) QI = 0.1 B) QI = 0.15 A) QI = 0.2

by changing the strength of the entraining stimulation to the
I cells. As we can see in Fig. 15, by increasing the pulse
amplitude on the I-cells QI , the peak of excitability shifts
and the amplitude (max-min) of the curves also increases.
This means that the stronger the I-cells are locked, the more
the response of the E-cells is phase dependent.

4 Discussion

Despite extensive research, there is still no concensus on
the potential cognitive functions of rhythmic oscillations in
the brain (Buzsàki 2006). One widely accepted hypothesis
states that those oscillations regulate the flow of informa-
tion across brain regions (Sejnowski and Paulsen 2006).
This hypothesis was partially already confirmed (Fries et al.
2007) even if some criticisms were raised (Rolls et al. 2012).
In fact, for attentional process, stimulus selection and sig-
nal discriminability, a number of studies have suggested that
rhythmic synchronization in the gamma-frequency band
acts as a top-down processing to modulate sensory input and
select the attended stimulus (Fries 2005); see also (Tiesinga
2012) for a discussion of PING vs ING, and (Akam
and Kullmann 2014) for another theory of communication
across cortical regions.

Here we looked at the stochastic dynamical basis of this
hypothesis. Toward this end, we used computational mod-
eling and a novel fast numerical simulation method (based
on networks of noisy two-state neurons) to replicate certain
results of Cardin et al. (2009) and investigate how fluc-
tuations shape the phase dependence. Cardin et al. (2009)
showed that the gamma cycle admits optimal phases that
regulate the response of E cells, and our simple stochastic
model reproduces this empirical observation. We found that
the phase dependence, and consequently the CTC hypothe-
sis per se, to be sensitive to fluctuations. It exhibits a mild
robustness to noise, since increasing jitter in the timing of
inputs as well as gamma rhythm irregularity both tend to

wash out the phase dependence. Further, the phase at which
the stimulation of the E cells optimally elicits responses
depends on the synchrony of the I cells - proportional to the
amplitude of the external pulses that entrain them - and on
the amplitude of the E-cell stimulation. There is just a mild
remnant of the phase dependence when the gamma rhythm
is weakly entrained, which raises the issue of the extent of
the CTC viability in the absence of artificial entrainment.
The weak phase dependence under ”natural” conditions
may nevertheless be observable through population averag-
ing. It may also be that an ING type mechanism, rather than
the PING one studied here, could endow more robustness to
the CTC if the inhibitory interactions yield a highly stable
gamma rhythm to feed to the E cells.

As we have seen, the neural mechanism underlying the
gamma rhythm, and especially its rhythmic inhibitory feed-
back, is naturally suited for stimulus suppression. Only the
input that is sent around the peak of excitability will be
processed in the sense of having an impact on E-cell fir-
ing rate, while the others will be suppressed. Therefore,
by exposing the underlying dynamics, our findings support
the potential role of gamma band synchronization in atten-
tional process. Our results further show that the interneurons
exhibit stronger cycle-to-cycle fluctuations than the pyrami-
dal cells for the generic circuit configuration and parameters
we have used. Light pulses to these interneurons thus have a
strongly stabilizing effect on the gamma rhythm, endowing
it with a more regular phase.

Our approach complements recent computational stud-
ies that aimed to reproduce certain aspects of the Cardin
et al. results (Tiesinga and Sejnowski 2010; Knoblich et al.
2010). Among other results, the first showed how constant
and pulse inputs can shift the local field potentials between
neural populations. Also, the computer-intensive detailed
Hodgkin-Huxley model by Knoblich et al. (2010) has repro-
duced many of these aspects. But no analytical insight is
available from such a detailed formalism. Further, while it
introduces Poisson inputs to model cells to mimic cortical
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variability, it does not examine the role of intrinsic and input
timing variability in shaping CTC, as we have here.

On another note, the stochastic Wilson-Cowan (WC)
model used here produces spike times that can be tracked
numerically. It converges to the deterministic WC firing
rate model in the infinite neuron limit. However, this model
does not produce autonomous oscillations in the absence
of recurrent excitation (see Ermentrout and Terman 2010,
p.351). There is debate in the literature as to whether
recurrent excitation (E-E connections) is a necessary com-
ponent of the PING mechanism. Most studies include such
connections, such as the theoretical one that inspired our
study (Wallace et al. 2011), and is seen in various reviews
(Buzsáki andWang 2012; Tiesinga 2012; Brunel and Hakim
1999), but some do not (e.g. Cannon et al. 2014). This led us
to briefly investigate (Fig. 9) the effect of removing the EE
connections. In this case the rhythm is completely depen-
dent on the noise, i.e. it is induced by the finite size effects -
as opposed to the main part of our results where the system
exhibited oscillations even in the noiseless infinite neuron
limit (i.e. it was above the Hopf bifurcation for the chosen
parameters as in Wallace et al. 2011). This means that in
principle the CTC does not need a gamma rhythm with a
deterministic backbone to be operational: the CTC is also
compatible with noise-induced rhythms.

The experiments of Cardin et al. (2009) which moti-
vated our study lends support to the CTC hypothesis. As
a side comment, the authors suggest that their results are
slightly more supportive of the ING (Interneuron Network
Gamma) mechanism of gamma rhythm generation rather
than PING. The ING mechanism can be seen as simpler
because the rhythm does not depend on the pyramidal cells;
rather it arises solely from interactions between I-cells. The
E-cells are simply receiving this stimulation, and their activ-
ity does not affect the I-cell rhythm. In the context of the
Cardin et al. experiment, the optogenetic stimulation of
the I-cells amounts to a regularization of this I-cell-based
endogenous rhythm. This result is rather trivial to repro-
duce; this is also the case for the firing probability of an
E-cell to an external excitatory pulse as a function of the
phase of the inhibitory drive at which this pulse arrives (not
shown). Given the ongoing debate about ING vs PING, we
have chosen to address the PING scenario, in which the
rhythm involves the interaction of both E and I-cell pop-
ulations and where external pulses to the E-cells have the
potential to also disrupt the cycle. In this case the rhythm
has less phase coherence. Our results nevertheless show
that Cardin’s main results are also compatible with a PING
mechanism.

We have found that there is a trade-off between the
phase selectivity of the E-cells - measured e.g. by the
width of the window of opportunity - and their firing rate.
Cells in a network oscillating at the same frequency as the

gamma rhythm in the E-I network of interest will be able to
modulate the pyramidal cell activity, and thus ”communi-
cate”, although the phase selectivity becomes irrelevant as
the amplitude of that stimulus increases (e.g. as the number
of firing pre-synaptic neurons increases). Further experi-
ments are needed to determine the biophysical significance
of this trade-off for the further development of CTC the-
ory. They are expected to show that the peak and width
of the window are indeed controlled by the amplitude of
the external stimulation, and hopefully will offer insight
for the significance of these quantities for communication
purposes. It also remains to be seen how a time-varying
amplitude of a presynaptic stimulus to the E-cells translates
into a time-varying probability of E-cell firing, given the
dependence of phase preference on stimulus amplitude.

Similarly, the window of opportunity is clearly shaped
by the precision of the timing of the pulses to the E cells.
Indeed, we have seen that a strong precision in the phase tar-
get is needed in order to modulate the evoked response, and
the noise jitter rapidly washes out this modulation effect.
In contrast, this jitter does not shift the peak of the phase
dependence. Another interesting effect is the impact of the
I-cells locking. We have indeed observed that the amplitude
(max-min) of the modulation also increases as the phase
locking of the I-cells increases; the position of the peak and
overall shape of the phase dependence are sensitive to this
pacing. For weak pacing, a weak phase dependence sur-
vives, but this certainly weakens the overall appeal of the
CTC mechanism unless other rhythm stabilizing forces or
population averaging effects come into play.

We have also looked at how the spectral peak in the indi-
vidual and combined activities of the E and I cells changes
with the frequency of the pacing (Fig. 12). This was done
by pacing only the E cells, and only the I cells. Although
our measure slightly differs from that of Cardin et al. (we
do not normalize), we see that the E cells do not show a
resonance when we sweep through the frequency at which
they are stimulated - even though the I cells do. Further, a
resonance is clearly observed for all three activities if the I
cells are stimulated. Thus our stochastic PING model sug-
gests that the gamma rhythm is more effectively maintained
through pacing of the I cells. It would also be interesting in
the future to extend the stochastic model used here to explic-
itly incorporate synaptic response time scales. The neural
time scales α

−1
E and α−1

I are only loosely tied to such synap-
tic time scales, since they respectively determine how the
activities in the E and I populations return to equilibrium.
And the time constants β−1

E and β−1
I are tied to the strength

of the coupling of a cell to its inputs. Thus we can not eas-
ily quantify the role of synaptic time scales in the effects
reported here, e.g. which ones are crucial for the genesis
of the gamma rhythm. This makes our results nevertheless
relevant to rhythms in general, but slightly weakens their
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direct specificity to gamma rhythms. Likewise incorporat-
ing delays in the framework could be done to see their effect,
as in (Dumont et al. 2014) for nets of inhibitory cells.

Our results generally support the notion that the cur-
rent state of a cortical circuit affects the input effective-
ness. The evoked response is consequently given by an
interaction between the internally generated activity and
an external stimulus. Our results highlight this interac-
tion and disentangle the intricate relationship between the
response, the ongoing gamma phase and the amplitude
of the input. This is crucial for stimulus suppression in
attentional process. Furthermore, our results give a bet-
ter understanding of how a good phase relation could
enhance information transfer (see Womelsdorf et al. 2007;
Buehlmann and Deco 2010), in spite of internal and external
sources of fluctuation.

Large response variability to identical stimuli is com-
monly reported in the literature. This trial-to-trial variability
remains incompletely understood and is mainly imputed
to noise. Our computational modelling approach points to
another potential candidate: the phase of ongoing activity
in different frequency bands. Due to ongoing fluctuating
internal rhythms, gamma and non-gamma, the network can
be in different states (e.g. gamma phase) when a stimu-
lus arrives, producing different responses to similar inputs.
Understanding this interaction and in particular its depen-
dence on the amplitude and frequency of both the stimu-
lus and current brain state remains an interesting avenue
to explore.

In the future it would also be of interest to test another
prediction of the CTC., such as the precise way in which dif-
ferent stochastic neuron groups interact with a given target
and compete to convey information to it. The CTC hypothe-
sis states that an enforcement of gamma power is sufficient
to entrain its target and then convey its information. One
would need to investigate if an increase of gamma power
is sufficient to boost the level of transmitted information
between a certain neural group and its target, and what effect
the frequency mismatch may have. Likewise, the regulation
of the information transmission by the balance of excitation
and inhibition in pathology is another potential avenue to
explore with the formalism and fast simulation techniques
presented here, which incorporates directly the stochastic
emergent nature of the rhythms.
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