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Temporal hierarchy of intrinsic neural timescales
converges with spatial core-periphery organization
Mehrshad Golesorkhi 1,2, Javier Gomez-Pilar3,4, Shankar Tumati 2,5, Maia Fraser 6 &

Georg Northoff 2,7,8✉

The human cortex exhibits intrinsic neural timescales that shape a temporal hierarchy.

Whether this temporal hierarchy follows the spatial hierarchy of its topography, namely the

core-periphery organization, remains an open issue. Using magnetoencephalography data,

we investigate intrinsic neural timescales during rest and task states; we measure the

autocorrelation window in short (ACW-50) and, introducing a novel variant, long (ACW-0)

windows. We demonstrate longer ACW-50 and ACW-0 in networks located at the core

compared to those at the periphery with rest and task states showing a high ACW corre-

lation. Calculating rest-task differences, i.e., subtracting the shared core-periphery organi-

zation, reveals task-specific ACW changes in distinct networks. Finally, employing kernel

density estimation, machine learning, and simulation, we demonstrate that ACW-0 exhibits

better prediction in classifying a region’s time window as core or periphery. Overall,

our findings provide fundamental insight into how the human cortex’s temporal hierarchy

converges with its spatial core-periphery hierarchy.

https://doi.org/10.1038/s42003-021-01785-z OPEN

1 School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada. 2Mind, Brain Imaging and Neuroethics Research Unit,
Institute of Mental Health Research, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada. 3 Biomedical Engineering Group,
University of Valladolid, Valladolid, Spain. 4 Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN),
Madrid, Spain. 5 Neuropsychopharmacology research group, Sunnybrook Research Institute, University of Toronto, Toronto, Canada. 6 Department of
Mathematics and Statistics, University of Ottawa, Ottawa, Canada. 7 Centre for Cognition and Brain Disorders, Hangzhou Normal University,
Hangzhou, China. 8Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. ✉email: georg.northoff@theroyal.ca

COMMUNICATIONS BIOLOGY |           (2021) 4:277 | https://doi.org/10.1038/s42003-021-01785-z | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-01785-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-01785-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-01785-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-01785-z&domain=pdf
http://orcid.org/0000-0003-0555-5534
http://orcid.org/0000-0003-0555-5534
http://orcid.org/0000-0003-0555-5534
http://orcid.org/0000-0003-0555-5534
http://orcid.org/0000-0003-0555-5534
http://orcid.org/0000-0001-5703-2044
http://orcid.org/0000-0001-5703-2044
http://orcid.org/0000-0001-5703-2044
http://orcid.org/0000-0001-5703-2044
http://orcid.org/0000-0001-5703-2044
http://orcid.org/0000-0003-4240-7178
http://orcid.org/0000-0003-4240-7178
http://orcid.org/0000-0003-4240-7178
http://orcid.org/0000-0003-4240-7178
http://orcid.org/0000-0003-4240-7178
http://orcid.org/0000-0002-5236-0951
http://orcid.org/0000-0002-5236-0951
http://orcid.org/0000-0002-5236-0951
http://orcid.org/0000-0002-5236-0951
http://orcid.org/0000-0002-5236-0951
mailto:georg.northoff@theroyal.ca
www.nature.com/commsbio
www.nature.com/commsbio


The brain shows a complex temporal structure during both
resting and task states. Recent findings demonstrate
intrinsic neural timescales in resting state with shorter

timescales in unimodal sensory regions and longer ones in
transmodal regions of the default-mode (DMN) and fronto-
parietal (FPN) networks1–4. At the same time, there is increasing
evidence that task states structure information in temporal
terms as described by “temporal receptive fields”5 or “temporal
receptive windows”6. Specifically, short segments like single
words are processed mainly in unimodal lower-order sensory
regions like the visual or auditory cortex while longer segments,
integrating different stimuli, are processed in higher-order
regions like DMN and FPN6–11. How such temporal structuring
during task states is related to the resting state’s intrinsic neural
timescales remains yet unclear, though. One goal of our paper is,
therefore, to investigate whether the resting state’s intrinsic
neural timescales are preserved and/or changed during the
transition from rest to task.

Analogous to the temporal hierarchy of intrinsic neural time-
scales, the hierarchical organization has also been observed on the
spatial side, that is, its topographical organization. Converging
evidence shows micro-scale and macro-scale hierarchical orga-
nization in the human cortex following what has been described
as ‘core–periphery’ (CP)12–19. A CP architecture20 can be char-
acterized by a core that includes nodes with strong functional
connectivity (FC) among each other (i.e. core–core connections
or ‘rich club’21–24). These core–core connections can be observed
among regions included in the DMN, fronto-parietal (FPC), and
cingulo opercular networks12–16,19. These networks constituting
the core have been distinguished from those at the opposite end
of the CP gradient, that is, sensory networks like visual, auditory,
and somatomotor networks12–16,19. The spatial hierarchy
of CP has been mainly observed in functional magnetic
resonance imaging (fMRI) measuring infraslow frequency ranges
(0.01–0.1 Hz). This leaves open whether CP organization is also
present in the faster frequency (1.3–50 Hz) as measured in MEG/
EEG where, so far, an anterior–posterior hierarchy has been
demonstrated25. Therefore, our goal was to probe whether the CP
hierarchy is also present in the faster frequency range (1.3–50 Hz)
while controlling for anterior–posterior hierarchy.

How are temporal and spatial hierarchies related to each
other? Recent studies demonstrate that the intrinsic neural
timescales within specific regions strongly correlate with their
FC1,3. Given this relationship between FC and autocorrelation
window (ACW), the FC-based spatial-topographic CP organi-
zation may converge with the temporal hierarchy of the
intrinsic neural timescales during both rest and task states. This
touches upon the more general question about the relationship
and potential convergence of temporal and spatial hierarchies
in the brain, and whether such convergence is carried over from
rest to task states. Investigating the convergence of spatial and
temporal hierarchies of the brain is the overarching aim of our
study. Insight into such possible convergent temporo-spatial
CP hierarchy is of importance to understand the brain’s orga-
nization which, in turn, is important for mental features like
self and consciousness as they have neurally been characterized
by temporo-spatial dynamics26–33.

Aims and hypotheses. The general aim of our study is to probe
whether the temporal hierarchy of intrinsic neural timescales during
both resting and task states follows the spatial topography of the CP
hierarchy (see Fig. 1 for a general overview). To this end, we used
MEG rest and task data from the Human Connectome Project’s
(HCP) dataset. To operationalize CP organization, we used three
different definitions of CP including Schaeffer/Margulies (SCP)14,

Ji/Ito (JCP)1, and restricted Ji/Ito (RCP). We determined the
ACW (see below) of the regions/networks in the three different CP
definitions to probe whether the hierarchical distribution of
intrinsic neural timescales follows the spatial CP organization. Data
analyses including rest–task correlation and rest–task differences
were complemented by kernel density estimation, machine learning,
and simulation for a more precise differentiation of core and
periphery regions on temporal grounds, i.e., their intrinsic neural
timescales.

Intrinsic neural timescales can be measured by the ACW,
which measures repeating patterns in a signal and enables testing
for correlation in neural activity patterns at different points in
time4. The ACW has been determined at the cellular level4,5,34 as
well as systems-level (using fMRI1,3 and EEG/MEG9,26,35).
Therefore, we here use ACW to measure the spatial CP
organization in the faster frequency range of MEG. To account
for different window sizes, we, in addition to the standard
measurement of autocorrelation decline at 50% (ACW-50), also
used a longer window size where ACW was defined as the
length of time at the first instance where the Pearson correlation
reaches zero (ACW-0) (see the “Methods” section for details and
differences between the two measures). Employing short (ACW-
50) and long (ACW-0) window sizes enabled us to probe a more
fine-grained temporal organization, that is, whether core and
periphery regions can be differentiated by differences in the
shorter and longer temporal windows within the faster frequency
range of MEG (1.3–50 Hz).

Our first specific aim focuses on the resting state as to
investigate whether the temporal hierarchy of intrinsic neural
timescales follows the spatial hierarchy of CP organization. fMRI
(0.01–0.1 Hz) resting state studies of intrinsic neural timescales
demonstrate short ACW in unimodal sensory regions and long
ACW in transmodal regions1–3 which suggests a CP organization.
Extending these results to the faster frequency range (1.3–50 Hz),
we hypothesize that the topographical distribution of the resting
state’s intrinsic neural timescales, i.e., ACW-50 and ACW-0,
converges with the spatial CP organization—this would imply a
truly temporo-spatial CP hierarchy.

The second specific aim is to investigate the intrinsic neural
timescales during different task states including their relation to
resting state, i.e., rest–task correlation and rest–task differences.
This is based on the findings, that rest and task data by
themselves show strong hierarchical similarities in intrinsic
neural timescales1,3,6,9,11 as well as previous data showing that
the CP organization holds during task states17,36. Together, these
findings suggest carry-over of temporal and spatial hierarchies
from rest to task states which we measure by rest–task correlation
and rest–task differences. Taken together, we hypothesize that the
convergence of temporal hierarchy with the spatial CP organiza-
tion also holds during task states as being carried over from rest
to task; we, therefore, hypothesize a high correlation of the resting
state’s spatial topography of the intrinsic neural timescales with
the one during task states.

The third specific aim consists of probing whether core and
periphery regions differ from each other by the length of the
windows of their intrinsic neural timescales as measured by the
different window sizes of ACW-50 (shorter window) and ACW-0
(longer window). This is based on the observation that, compared
to the periphery, core regions/networks exhibit stronger slow
frequencies37,38 which leads to longer time windows9,39 as
measured with especially the ACW-0 (rather than the ACW-
50). We, therefore, hypothesize that the ACW-0, probing longer
time windows, allows differentiating core and periphery regions
better than the shorter time window of ACW-50. To support the
empirical data, we also use machine learning and simulation to
verify this hypothesis that the longer time window of ACW-0
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allows for more precise characterization of core region relative to
periphery regions when compared to the shorter ACW-50.

Results
In this paper, our main aim was to investigate whether the
temporal hierarchy of intrinsic neural timescales of the faster
frequency (1–50 Hz) of MEG conforms to CP architecture and
how they will be affected in the task state. Preprocessed MEG
data of 89 subjects from the HCP were low-pass filtered at 50 Hz
(thus the frequency range was 1.3–50 Hz). One resting state
(Rest, 6 min) and three-task conditions of language processing
(StoryM, 7 min), motor (Motort, 14 min), and working memory
(Wrkmem, 10 min) were recorded from each subject. Sensor
signals were projected onto source space by synthetic aperture
magnetometry method and then parcellated using two well-
known templates provided by Schaefer et al.40 and Ji et al.41. In
the first parcellation (Schaefer) the surface-based data were
parcellated into 200 regions (7 networks: Visual, Somatomotor,
Dorsal Attention, Salience, Limbic, FPC and DMN) and 360
regions in the second (Ji) parcellation (12 networks: Visual1,
Visual2, Auditory, Somatomotor, Dorsal Attention, Posterior

Multimodal, Ventral Multimodal, Orbito Affective, Language,
Cingulo Opercular, FPC and DMN).

Three different CP divisions were defined in this work. (1)
Schaefer/Margulies core–periphery (SCP): the regions from the
Schaefer template were divided into core and periphery based on
the principal gradient introduced in ref. 14 in which regions in the
Limbic, FPC and DMN networks were put into the core category
and the others in the periphery one. (2) Ji/Ito core–periphery
(JCP): the regions from the Ji template were used for this CP
definition. They were labelled core or periphery based on the
unimodal/transmodal definition of ref. 1 in which regions in
Visual1, Visual2, Auditory, and Somatomotor were assigned to
the periphery, and the rest of the brain to the core. (3) Restricted
Ji/Ito core–periphery (RCP) which was similar to JCP, but with a
more restricted core definition. Only the regions of Cingulo
Opercular, FPC and DMN networks were put into the core of
RCP and the rest of the regions (not in either periphery or core)
were ignored. The primary analysis steps are illustrated in Fig. 1
and the findings are presented in the box of the same figure.

ACW during resting state. In the first analysis, we calculated
ACW values for each cortical region in the resting state data. For

Fig. 1 Schema of the paper. Represents the primary analysis conducted in this study. First, the time-series were averaged over cortical brain regions (1).
Then, ACF was calculated for each region and from that ACW-50 and ACW-0 were extracted (2). Three different core–periphery divisions were defined
based on the Schaefer and Ji templates (3). In Schaefer/Margulies (SCP) core-periphery division, cortical regions/networks are defined based on the
Schaefer template40 and then divided into core or periphery based on the first principal gradient introduced in ref. 14. The regions/networks in Ji/Ito (JCP)
are from Ji template41 and each region is labelled core or periphery based on unimodal/transmodal definition in ref. 1. The periphery definition in Restricted
Ji/Ito (RCP) is similar to JCP, but only the regions in cingulo opercular, frontoparietal and default-mode networks are assigned to the core division, and the
rest of the regions are ignored.
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each region, two ACW scales were calculated, i.e. ACW-50 and
ACW-0, as the first lags where autocorrelation function (ACF)
reaches half of its maximum value, and zero, respectively.
Next, the ACW values were averaged over subjects and were
assigned to either core or periphery categories. All three CP
divisions (Fig. 2a for SCP, Fig. 2b for JCP and Fig. 2c for RCP)
show an increase in both ACW scales from the periphery to the

core. The difference between core and periphery was statistically
tested using Student’s t-test (with Cohen’s d for the effect size)
which showed significant differences (p < 0.001) between the two
in SCP (ACW-50: t=−5.25, d=−0.77, ACW-0: t=−5.42, d=
−0.78), JCP (ACW-50: t=−5.72, d=−0.66, ACW-0: t=
−11.67, d=−1.33) and RCP (ACW-50: t=−6.12, d=−0.75,
ACW-0: t=−13.58, d=−1.63).

Fig. 2 Autocorrelation window (ACW) during resting state for the three core–periphery (CP) divisions. Rainclouds represent regions. Values are
presented in milliseconds. Brain plots show the different CP divisions of the regions. a Showing rainclouds for the ACW values of core and periphery using
the Schaefer/Margulies division (SCP). The Student’s t-test showed a significant difference in ACW-50 (t=−5.25, d=−0.77) and ACW-0 (t=−5.42,
d=−0.78). b The same analysis as (a), but using the CP definition of the Ji/Ito (JCP). Student’s t-test was significant for the difference of both ACW-50
and ACW-0 between core and periphery (t=−5.72, d=−0.66 and t=−11.67, d=−1.33, respectively). c The same analysis using the restricted definition
of core (RCP) showed a significant statistical difference between core and periphery for both ACW-50 (t=−6.12, d=−0.75) and ACW-0 (t=−13.58,
d=−1.63). Stars represent the significance level (*** ≡ α= 0.001).
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A recent article25 argues that the peak frequency of the MEG
signal in the range of 3–45 Hz follows the anterior–posterior axis
(more details in the “Discussion” section). To further validate the
CP organization of ACW, we used linear regression to regress out
the effect of this axis. An anterior–posterior value was calculated
for each region based on the y coordinate of the region in the
anatomical surface map (provided by the HCP group). Then, the
anterior–posterior axis was used as the independent variable in
the linear model of ACW. The residual of the model (residual
ACW) is presented in the Supplementary Fig. 1 for all three CP
divisions. SCP (ACW-50: t=−7.80, d=−1.14, ACW-0: t=
−7.23, d=−1.04), JCP (ACW-50: t=−10.43, d=−1.20, ACW-
0:t=−11.65, d=−1.33), and RCP (ACW-50: t=−11.69, d=
−1.43, ACW-0:t=−13.51, d=−1.62) showed significant (p <
0.001) differences between core and periphery of residual ACW,
thus, validating our previous results.

The topography of ACW during resting state was further
explored on a network level using both Schaefer (Supplementary
Fig. 2a) and Ji (Supplementary Fig. 2b) templates. Plotting these
values revealed different spatial patterns among the networks.
One-way analysis of variance (ANOVA) suggested significant
(p < 0.001) differences between networks in both ACW-50
(Schaefer: F(6,193)= 11.17, η2= 0.25, Ji: F(11,348)= 24.23,
η2= 0.43) and ACW-0 (Schaefer: F(6,193)= 21.42, η2= 0.39, Ji:
F(11,348)= 215.64, η2= 0.86).

Organization of ACW along the principal gradient of CP.
Margulies et al.14 suggest a principal gradient of FC for the CP
organization which captures the transition between different net-
works (Fig. 3c from ref. 14). To further validate that the topography
of ACW follows the CP organization, we projected our results on to
the same cutouts provided in Fig. 3c of ref. 14 (Fig. 3). The results
suggest a direction of change similar to the principal gradient.

ACW during task states. To investigate whether the CP
organization of ACW is preserved during the task state, we
calculated ACW-50 and ACW-0 for the three different task
conditions of language processing (StoryM), motor (Motort),
and working memory (Wrkmem). An increase in both ACW
scales from the periphery to the core in all three-task conditions

was observed (Fig. 4). To test that, we used three separate two-
way analysis of variances (ANOVA) for the three CP organi-
zations (SCP, JCP, and RCP). Both task (3 levels) and CP
(2 levels) were used as independent factors in the model. The
model showed significant (p < 0.001) effect of CP factor for SCP
(ACW-50: F(1,594)= 57.69, η2= 0.08, ACW-0: F(1,594)=
70.47, η2= 0.09), JCP (ACW-50: F(1,1074)= 318.44, η2= 0.22,
ACW-0: F(1,1074)= 464.40, η2= 0.26), and RCP (ACW-50:
F(1,1074)= 311.75, η2= 0.25, ACW-0: F(1,1074)= 549.90,
η2= 0.33). Complete result of the ANOVA test is presented
in Supplementary Table 1. Further post-hoc analysis using
Tukey’s HSD method revealed that regions in the periphery are
significantly different from those in the core in all three CP
divisions of all task conditions (Table 1). These results align
with our resting state findings suggesting that the ACW in both
50 and 0 scales was higher in the core regions during all three
tasks thus following a CP regime during task states.

To extend the resting state results and further validate the CP
organization of ACW scales during task conditions, we controlled
for the anterior–posterior gradient by regressing out the y
coordinate of each region and repeating the aforementioned
analysis on the residual ACW values. The y coordinate of all
regions was used as the independent variable in a linear regression
model (one model per each scale) to estimate the ACW values
(ACW values used as dependent variables). Then, the residual of
the model was determined as the residual ACW and plotted along
the three definitions of CP, i.e. SCP, JCP, and RCP (Supplementary
Fig. 3). Statistical analysis using two-way ANOVA (similar to
previous results, complete ANOVA in Supplementary Table 2)
showed a significant (p < 0.001) effect of the CP factor on residual
ACW. SCP: ACW-50, F(1,594)= 152.67, η2= 0.20; ACW-0:
F(1,594)= 144.40, η2= 0.19). JCP: ACW-50, F(1,1074)= 514.64,
η2= 0.32; ACW-0, F(1,1074)= 518.48, η2= 0.32. RCP: ACW-50,
F(1,1074)= 565.43, η2= 0.38; ACW-0: F(1,1074)= 607.97, η2=
0.40. Moreover, post-hoc analysis using Tukey’s HSD method
revealed that the periphery has significantly lower ACW values
compared to the core in the task condition within all three different
definitions of CP (Supplementary Table 3). These results validate
our original results suggesting that ACW during task, similar to rest,
follows a CP organization.

Fig. 3 ACW cutouts for principal gradient of functional connectivity. The cutouts are similar to Fig. 3c of ref. 14. They suggest that the direction of cross-
regional changes in ACW is similar to the principal gradient of functional connectivity defined in ref. 14 further validating the presence of the core–periphery
organization in ACW. a Networks and the cutouts on the brain. b The regional principal gradient from the cutouts. c regional ACW values from the cutouts.
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Task state ACW was also investigated along the different
networks defined by both Schaefer and Ji templates. Both ACW
scales were first averaged over subjects and then plotted for
different networks (Supplementary Fig. 4). The effect of networks

on the ACW values was tested using ANOVA. First, ACW was
modelled with both task (3 levels) and network (6 levels in
Schaefer and 12 levels in Ji templates) as independent factors to
test if the effect of network is overall significant. Then, a one-way

Fig. 4 ACW during task conditions for different core–periphery divisions. Rainclouds represent regions divided into core and periphery. Values are
presented in milliseconds. a Showing rainclouds for the ACW values of core and periphery using the Schaefer/Margulies division (SCP). Two-way analysis
of variance (ANOVA) using task condition (3 levels: StoryM, Motort and Wrkmem) and CP (2 levels: core and periphery) as factors showed significant
(p < 0.001) effect of CP factor on ACW-50 (F(1,594)= 57.69, η2= 0.08) and ACW-0 (F(1,594)= 70.47, η2= 0.09). Complete ANOVA result is
presented in Supplementary Table 1. b Similar analysis as in (a) for the Ji/Ito core-periphery (JCP). Again, two-way ANOVA showed significant (p < 0.001)
effect of CP factor on ACW-50 (F(1,1074)= 318.44, η2= 0.22) and ACW-0 (F(1,1074)= 464.40, η2= 0.26). c Similar to (a) and (b) but using the
restricted core–periphery (RCP). Similar to previous results the effect of CP factor was significant (p < 0.001) for ACW-50 (F(1,1074)= 311.75, η2= 0.25)
and ACW-0 (F(1,1074)= 549.90, η2= 0.33). Similar to the resting state results, an increase in both ACW scales along the different definitions of CP can
be observed in all task conditions. Post hoc analysis using the Tukey HSD method revealed significant differences between periphery and core in all task
conditions. The post-hoc results are presented in Table 1. Stars represent the significance level (***≡ α= 0.001,**≡ α= 0.01).

Table 1 Post-hoc results for periphery vs. core in different task conditions.

StoryM Motort Wrkmem

t d p t d p t d p

SCP
ACW-50 −5.41 −0.77 *** −3.47 −0.49 ** −3.60 −0.51 **
ACW-0 −6.48 −0.92 *** −4.71 −0.67 *** −3.43 −0.48 **
JCP
ACW-50 −9.80 −1.11 *** −5.65 −0.64 *** −5.46 −0.61 ***
ACW-0 −15.47 −1.75 *** −10.63 −1.20 *** −7.34 −0.83 ***
RCP
ACW-50 −11.24 −1.34 *** −6.36 −0.75 *** −6.02 −0.71 ***
ACW-0 −11.57 −2.03 *** −11.57 −1.42 *** −8.25 −0.98 ***

Tukey HSD method was used to determine the between factor significance of ANOVA on both ACW-50 and ACW-0 along different CP divisions. d stands for Cohen’s d effect size. The values are
represented as periphery vs. core. Stars represent the significance level (*** ≡ α= 0.001, ** ≡ α= 0.01).
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ANOVA with only the network as the independent factor was
calculated for each task to determine the effect of network in each
task. The results are presented in Supplementary Table 4 showing
a significant (p < 0.001) effect of network in both templates on
ACW-50 and ACW-0 during all three task conditions.

The relationship between resting and task states in ACW
The similarity between resting and task states. In this step, we
investigated how the resting state’s intrinsic neural timescales
including their CP-gradient are carried over to task states; for
that, we conducted various analyses on rest–task similarities and
differences. The rest–task similarity analysis was performed in
three steps, spatial correlation, linear regression and regional
correlation.

The spatial correlation was calculated to see how similar the
spatial distribution of ACW values are between resting and
different task states (Fig. 5a for ACW-50 and Fig. 5b for ACW-0).
It was conducted by first averaging each condition (either resting
or task) across subjects and then correlating resting state’s
averaged brain map with each task state’s brain map across
regions. Pearson correlation showed that all tasks ACW’s spatial
distributions are highly (n= 360, p < 0.001) correlated with the
resting state in both ACW scales, i.e. 50 and 0 (values are
presented in Fig. 5a, b) suggesting similar spatial topography
between resting and task states.

To extend our spatial correlation results, we also conducted
linear regression. ACW during each task state was modelled as a
function of the resting state in a linear model (Supplementary
Fig. 5) after averaging all conditions (either resting or task) across
subjects (thus, one brain map for each condition). This analysis
revealed a significant (n= 360, p < 0.001) linear relationship
between rest and all three task conditions in both Schaefer and Ji
parcellation templates (R2 values are presented in Supplementary
Fig. 5) suggesting that rest ACW can explain more than 85% of
the variance in task ACW.

Next, the rest–task similarity was further explored using regional
correlation. The results were analogous for both ACW-50 (Fig. 5c)
and ACW-0 (Fig. 5d). In both cases, first, a Pearson correlation
coefficient was calculated for each region over different subjects
(n= 89) between resting and each task state (e.g. Rest vs. StoryM).
Then, p-values were corrected for multiple comparisons using the
false discovery rate (FDR) method at α= 0.05 while non-significant
coefficients were ignored. The results show a high correlation of
resting and task states across subjects suggesting that the similarity
between resting and task states is consistent across subjects.
Together, the findings show strong rest–task similarity suggesting
that the convergence of temporal and spatial hierarchies during the
resting state is carried over to task states.

Degree of change from resting to task state. This analysis aimed to
investigate the degree of task-related changes relative to rest and

Fig. 5 The spatial similarity between resting and task states. The similarity was calculated by applying rest–task spatial correlation (a, b) and intra-
regional rest–task correlation (c, d). The boxes with the gray brains show how spatial and regional correlation was calculated. The yellow region in the box
of regional correlation is a sample region chosen only for illustration purpose. a, b Show spatial correlation (numbers on the arrows) between different
conditions alongside their spatial distribution over brain regions for ACW-50 and ACW-0, respectively. Each value on the arrows is a Pearson correlation
coefficient between a pair of conditions across the brain regions (n= 360). All correlation values suggest that different conditions are highly correlated
with each other (*** ≡ α= 0.001). c, d Show the regional correlation between resting and each task state in ACW-50 and ACW-0, respectively. Pearson
correlation coefficients were calculated for each region over different subjects, then corrected for multiple comparisons using the FDR correction method at
α= 0.05. Only the regions that survived the correction are illustrated.
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whether that change also conforms to a CP regime. For that, we
calculated the percentage of change from resting to task state. It was
calculated per region and per subject in all three task conditions and
was normalized against its respective resting state value, i.e., the
degree of change from rest to task (see the “Methods” section for
details), in all three CP divisions (SCP, RCP, and JCP, Fig. 6). The
percentage of change was then tested for statistical significance using
two-way ANOVA similar to previous resting and task state analyzes.
Task condition (3 levels) and CP (2 levels) were used as independent
factors to investigate their effects on the percentage change of ACW
scales from rest to the task. The statistical test (Supplementary
Table 5) suggested a significant (p < 0.001) effect of CP factor on the
change in ACW in SCP (ACW-50: F(1,594)= 10.63, η2= 0.01,
ACW-0: F(1,594)= 12.17, η2= 0.01), JCP (ACW-50: F(1,1074)=
99.61, η2= 0.07, ACW-0: F(1,1074)= 26.74, η2= 0.01), and RCP
(ACW-50: F(1,1074)= 97.35, η2= 0.08, ACW-0: F(1,1074)= 34.92,
η2= 0.02). The difference between periphery and core was also
investigated using Tukey’s HSD method in a post-hoc analysis
(Table 2). We can see a prominent change in ACW from rest to
task. However, the direction of change is not similar among the
three conditions (e.g. StoryM and Motort showing opposite direc-
tions of change from rest to task in ACW-0). These findings suggest

task-specific effects in especially ACW-0 but also in ACW-50.
Notably, these task-specific findings were not observed in the task
conditions alone, i.e., independent of rest (Fig. 4); they become only
apparent when one subtracts task from rest, i.e., rest–task difference,
which subtracts, i.e., eliminates, those features shared by rest and
task, e.g., CP organization.

Taken together, our results, on one hand, suggest a consistent
similarity in the organization of ACW between resting and
different task states—this is documented by their high similarity
in all three statistical rest–task analyses. On the other hand, when
the effect of resting state is removed, i.e., eliminated, as when
calculating the rest–task differences, each task shows distinct
features in its temporal organization. These results suggest that
task-specific effects occur within the framework of the more
fundamental CP organization as that is preserved during both rest
and task states.

The relationship between different timescales and their
predictive power. So far, we have investigated the temporal
organization of neural activity using two different scales of ACW,
i.e. 50 and 0 which showed more or less similar results for both.

Fig. 6 Change in ACW from rest to task states in different CP divisions by calculating rest–task differences. Rainclouds represent regions divided into
core and periphery. Values are presented in percentages. Stars represent the significance level (*** ≡ α= 0.001, * ≡ α= 0.05). a Showing rainclouds for
the ACW change values of core and periphery using the Schaefer/Margulies division (SCP). A statistical test (Supplementary Table 5) was performed with
two-way ANOVA using task condition (3 levels: StoryM, Motort and Wrkmem) and CP (2 levels: core and periphery) as independent factors. It showed
significant (p < 0.001) effect of CP factor on ACW-50 (F(1,594)= 10.63, η2= 0.01) and ACW-0 (F(1,594)= 12.17, η2= 0.01). b Ji/Ito template (JCP):
again, two-way ANOVA showed significant (p < 0.001) effect of CP factor on ACW-50 (F(1,1074)= 99.61, η2= 0.07) and ACW-0 (F(1,1074)= 26.74,
η2= 0.01). c Restricted Ji/Ito template (RCP): significant (p < 0.001) effect of CP for ACW-50 (F(1,1074)= 97.35, η2= 0.08) and ACW-0 (F(1,1074)=
34.92, η2= 0.02). Post-hoc analysis was performed using Tukey’s HSD method to determine whether the difference between core and periphery is
significant. The results are provided in Table 2.
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The last part of our analysis involves investigating the relation-
ship between ACW-50 and ACW-0 and showing the differential
effects of them in determining CP organization in a more fine-
grained way. This was done using three methods: kernel density
estimation, simulation and machine learning.

Kernel density estimation. First, the density estimation of the
ACW data was performed to observe the general density function
(DF) over the whole data. We used our Ji-parcellated data (360
regions per subject) and removed all the labels (e.g. task, subject,
region) from the ACW values; then the range of each ACW scale
(i.e. 50 or 0) was scaled to be between 0 and 1. Based on the
histograms of the data, we decided to use the Gaussian kernel
with the expectation-maximization algorithm to estimate the two
DFs (for ACW-50 and ACW-0). Figure 7a left shows the esti-
mated DFs. It can be observed that the range of ACW-0 values is
much wider than ACW-50; this suggests a higher variety or range
of ACW-0 values in the probability space which may allow for a
more fine-grained differentiation between different labels (i.e.,
condition, subject, or region).

Importantly, the data suggest that ACW-0 follows two separate
Gaussian distributions. To investigate whether these two distribu-
tions are related to subjects or/and regions, we repeated the same
analysis once averaging the data over the regions to remove the
effect of the inter-regional differences (Fig. 7a middle) and once
averaging over the subjects to remove the effect of the inter-
individual difference (Fig. 7a right). This revealed that the two
separate DFs of ACW-0 only appear when we take the interaction
of inter-individual and inter-regional differences (subject × region
interaction) into consideration (the DFs without any label, i.e.
Fig. 7a left). That observation was consistent in all rest and task
conditions suggesting that some subjects’ regional ACW follows the
first DF and some subjects follow the second one. Together, these
findings suggest considerable inter-subject variability in specifically
the longer timescale, i.e., ACW-0, whereas inter-subject variability
was rather minimal in the shorter timescale, i.e., ACW-50.

The impact of inter-individual differences in ACW-50 and
ACW-0 was further validated using a binary classification
problem. First, ACW values were averaged over regions (one
ACW value per subject) and divided into two groups of “low
variability” and “high variability”. The median of ACW values
during resting state was used as the dividing threshold. Thus, the
subjects were divided and labelled (actual label) as “low
variability” or “high variability” considering only the activity
during resting state. Second, a classification analysis was carried
out on the activity during different tasks using a logistic
regression analysis. For each task, the predicted labels (output
of the logistic regression) were compared to actual ones (created

from the resting state data in the first step) across all subjects. The
area under the receiver operating characteristic (ROC) curve was
computed based on the predicted and actual labels (Fig. 7b). An
ROC curve is a graphical plot that illustrates the diagnostic ability
of a binary classifier system as its discrimination threshold is
varied. The area under the ROC curve (AUROC) tells how much
the model is capable of distinguishing between the two classes.
The higher the area under the curve, the better the model is at
correctly predicting the true label. Results show that all the
obtained AUROCs from ACW-0 are higher than those from
ACW-50 for the three tasks. This implies that the ACW-0
contains more information than ACW-50 or, in other words, the
predictive capability of ACW-0 to discriminate between subjects
of high and low variability during the tasks are higher than the
ACW-50.

Simulation. In the second analysis, we were interested to see if the
double Gaussian distribution of ACW-0 is due to random noise or
is indeed related to the brain signal. For that, we simulated random
oscillatory and noise signals in distinct frequencies as distinguished
by their different kinds of noises. Pink noise and sine waves were
used as the basis of our pseudo-aleatory signals. They were simu-
lated in the same frequency range and sampling rate as our original
data (1.3–50Hz) with uniformly distributed random weights.
20,000 signals categorized into four distinct categories (5000 each)
were used: pure pink noise, pure sine wave, a combination of sine
and pink noise, and a combination of sine, pink and white noise.
Random uniform coefficients were used to linearly combine signals
in the third and fourth categories (see Supplementary Fig. 6 for a
sample signal in each category). Pink noise was utilized to simulate
scale-freeness42, sine wave for oscillation and white noise for pure
randomness. Both ACW scales were calculated for the signals and
plotted against each other in Supplementary Fig. 6. Kernel density
of each category was also estimated (Fig. 7c); however, none of the
simulated signals yielded the specific distributions like the ones
previously observed in the brain signal suggesting that the two
Gaussians observed in ACW-0 is not random, validating our pre-
vious results.

Machine learning. As the third and final analysis, we used
machine learning to determine how the two ACW scales differ in
predicting whether a region belongs to the core or periphery. To
simplify the question without losing generality, we designed a
two-class classification problem using a logistic classifier to
determine if a signal is from a core (class 1) or periphery (class 2)
region. Table 3 summarizes the results which show that not only
the two scales have different performances, but also ACW-0 is a
better predictor than ACW-50. The results were also replicated

Table 2 Post-hoc results for periphery vs. core in the change from resting to task state.

StoryM Motort Wrkmem

t d p t d t d p

SCP
ACW-50 −6.09 −0.86 *** −0.84 −0.12 0.90 −1.12 −0.16 0.50
ACW-0 −1.58 −0.22 0.50 2.32 0.33 0.18 6.31 0.90 ***
JCP
ACW-50 −11.07 −1.25 *** −2.43 −0.27 0.14 −2.42 −0.27 0.14
ACW-0 −5.17 −0.58 *** 3.09 0.35 * 14.88 1.68 ***
RCP
ACW-50 −12.02 −1.43 *** −2.54 −0.30 0.11 −2.45 −0.29 0.13
ACW-0 −5.26 −0.62 *** 3.32 0.39 * 16.28 1.94 ***

Tukey’s HSD method was used to determine the between factor significance of ANOVA on both ACW-50 and ACW-0 along different CP divisions. d stands for Cohen’s d effect size. The values are
represented as periphery vs. core. d stands for Cohen’s d effect size. The values are represented as periphery vs. core. Stars represent the significance level (*** ≡ α= 0.001, * ≡ α= 0.05).
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with a support vector machine (SVM) classifier using the radial
basis function (RBF) kernel (Table 3).

Next, we used a univariate feature selection method to determine
which feature (ACW-50 or ACW-0) is better if we were required to
choose one of the two. This method works by selecting the best
features based on a univariate statistical test. We used mutual
information as our scoring function43 which is a data-driven
method capable of capturing any kind of statistical dependency
between two variables. It is equal to zero if and only if the class label
is independent of the ACW scale (which means the scale is not a
good feature) and higher values mean higher dependency between
the two. It suggested that ACW-0 (score= 0.5) was a better feature
compared to ACW-50 (score= 0.1) when predicting a region’s core
or periphery association.

Discussion
We demonstrate that the temporal hierarchy of intrinsic neural
timescale measured by shorter and longer ACW, i.e., ACW-50
and ACW-0 follows the spatial topography namely the CP hier-
archy. Networks in the core exhibit longer intrinsic timescale, i.e.,
ACW-50 and ACW-0, than those at the periphery—this holds

across both rest and task states as supported by strong rest–task
correlation. Comparing rest and task reveals task-specific changes
in particular networks only when the CP organization is elimi-
nated by subtraction, i.e., rest–task differences. Finally, we
demonstrate that the longer timescale measure, i.e., ACW-0,
exhibits higher accuracy in differentially classifying core vs. per-
iphery regions when compared to the shorter ACW-50; this
suggests a stronger impact of slower frequencies in the core than
in periphery regions resulting in their better and more precise
differentiation. Together, we demonstrate that the temporal
hierarchy of (shorter and longer) intrinsic neural timescales
converges with the spatial topography of the CP hierarchy of the
human cortex with both providing an intrinsically temporo-
spatial hierarchy during rest and task states.

CP organization—converging spatial and temporal hierarchies.
The spatial topography of the CP hierarchy of the human cortex
has been observed in resting state14–16,19. We extend these
findings beyond the spatial domain by showing a corresponding
temporal hierarchy of intrinsic neural timescale. Animal4 and
modelling12,13,44 studies observed different intrinsic neural

Fig. 7 Relationship between shorter (ACW-50) and longer (ACW-0) time window measures. a The probability density of the data removing all labels
(condition, subject or region), averaged over the region and averaged over the subjects. The Ji-parcellated data (360 regions per subject) was used for this
analysis. The range of the data is scaled between 0 and 1 separately for ACW-50 and ACW-0. The density estimation with no label suggests a single
narrow Gaussian distribution for ACW-50 and two separate Gaussians for ACW-0. When averaged over either regions or subjects, the two Gaussians of
ACW-0 disappears. Thus, the double distribution of ACW-0 is only presented when the interaction of inter-individual differences with regional differences
is taken into consideration. Moreover, ACW-0 is expanded over a wider range of values compared to ACW-50 suggesting better and more fine-grained
differentiation capacity in the probability space. b Receiver operating characteristic (ROC) curves for discriminating subjects in different task conditions
(StoryM, Motort, and Wrkmem). They suggest that ACW-0 has better discriminative power among subjects than ACW-50. c The density estimation of
ACW values in simulated signals.

Table 3 The results for the 2-class classification problem.

Algorithm Model # Features Mean accuracy (%) Mean precision (%) Mean recall (%) Mean AUC of ROC

Logistic regression 1 ACW-50 & ACW-0 69.14 63.33 46.61 74.12
2 Only ACW-50 60.55 40.61 6.02 61.10
3 Only ACW-0 69.08 63.37 46.12 74.45

SVM 1 ACW-50 & ACW-0 69.15 63.14 47.20 73.19
2 Only ACW-50 61.61 41.21 7.01 48.72
3 Only ACW-0 69.13 63.12 47.07 70.68

The values are averaged over 20 folds of the K-fold cross-validation algorithm using Logistic regression and support vector machine (SVM) classifiers. The results are presented if each sample has two
features (both ACW-50 and ACW-0), or only one feature (either ACW-50 or ACW-0). They suggest better classification power for ACW-0 compared to ACW-50.
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timescales in lower-order and higher-order regions/networks of
the brain. This leaves open whether the human brain exhibits an
analogous temporal architecture. Extending the animal and
modelling findings to the human cortex, we, in rest states,
observed shorter durations in ACW-50 and especially ACW-0 in
periphery regions/networks like sensory and motor networks.
That was complemented by longer ACW (especially in ACW-0)
durations in the core networks like DMN, cingulum operculum,
and FPN.

Together, these findings strongly suggest an intrinsic, i.e.,
network-specific, temporal architecture with different intrinsic
neural timescales following the spatial topography, that is, the CP
hierarchy. One may consequently want to speak of an integrated
temporospatial CP hierarchy. Future investigation is needed to
establish a more intimate link between temporal and spatial
dimensions. For instance, one may raise the question of whether
the FC among the regions of the core, i.e., core–core connectivity,
is directly related to the longer intrinsic timescale in these regions
as it is suggested by the recent findings of close relation between
inter-regional FC and intra-regional ACW1,3. Yet another
example could be to link the CP hierarchy to other temporal
dynamic measures like the peak frequency, which recently has
been shown to exhibit anterior–posterior hierarchy25. This raises
the question, whether the anterior–posterior hierarchy is
embedded in the more comprehensive CP hierarchy which, by
itself, was not affected when regressing the anterior–posterior
gradient (see the “Results” section).

An analogous temporo-spatial CP hierarchy was observed
during task states. Periphery networks showed shorter ACW
while core networks exhibited longer ACW during all three-task
states. These findings suggest that the temporo-spatial CP
hierarchy is carried over from rest to task state holding across
different tasks. One may consequently assume that the tempor-
ospatial CP hierarchy may be an intrinsic feature that remains
independent of the respective context, i.e., rest or task. That
converges well with the observation that spatial CP hierarchy has
also been observed during task states17,36 which may then be
interpreted as simple carry-over from the rest. This remains to be
explored in future studies.

Finally, findings on intrinsic neural timescale show higher-
order networks like the DMN display the longest temporal
receptive windows (based on FC) during equally complex tasks,
i.e., story or movie6–9,11,45. We replicated these findings in terms
of ACW during task states and extend it to the rest where an
analogous temporal hierarchy was observed. Moreover, when
comparing rest and task ACW, i.e., rest–task differences, we
observed task-specific effects that no longer followed the CP
hierarchy which we assume to be related to the cancelling out of
the CP hierarchy commonly shared by rest and task states. That,
in turn, opened the door for observing task-specific ACW
changes in particular networks. We demonstrate that the
probability density of ACW shows a propensity towards longer
ACW-0 in specifically the core networks while it remains shorter
in periphery networks. This suggests some network-specific
effects of longer (ACW-0) and also shorter (ACW-50) intrinsic
neural timescale. Specifically, ACW-50 may be ideal to measure
differences in shorter durations of intrinsic timescales in the
periphery which are lost in the longer time window of ACW-0.
Conversely, ACW-0 measuring longer time interval may be better
suited to differentiate between regions with longer intrinsic
timescales in specifically the core as it is suggested by our
probability density function analysis.

Rest shapes task states—intrinsic neural timescales enable
temporal integration. Given that a CP organization of intrinsic

neural timescales in both rest and task states was observed, we
tested for their relationship. We observed a high degree of cor-
relation in the spatial differences for rest ACW-50/ACW-0 with
their corresponding values in the three-task states as well as
among the three-task states. That was complemented by high
degrees in the correlation of the levels of ACW rest with those
during the three-task states. Together, these findings strongly
support the assumption of an intrinsic temporal architecture in
the brain that is preserved across rest and task states thus shaping
both—the CP organization is carried over from rest to task states
independent of task-specific changes.

Our data suggest an intimate relationship between the intrinsic
neural timescales during rest and task. We assume that such
intimate relationship consists of temporal integration. The ACW
and, more generally, the intrinsic neural timescales allow for
temporal integration of stimuli through their temporal summing
and pooling39. The need for temporal integration is especially
relevant in complex stimuli or tasks like the movie: complex
sequences of stimuli need to be integrated here to apprehend their
meaning. This requires a prolonged ACW in especially higher-
order networks as it is suggested by our rest–task findings.
Moreover, complex stimuli like music or movies involve multiple
time scales including short and long—a corresponding hierarchy
of timescales on the neural side may consequently be best for
processing complex inputs11.

In addition to the temporal integration of the various stimuli
within the task itself, the external task-related stimuli need to be
temporally integrated also with the spontaneous activity’s
ongoing internal stimuli as related to internal cognition like
mind-wandering46 and bodily inputs47,48. Such temporal integra-
tion may be mediated by the changes in the ACW during the
transition from rest to task47,49. This remains speculative at this
point though. We currently do not know whether, and if so how,
the length of the ACW in lower-order and higher-order networks
is related to different degrees of temporal integration of external
and internal stimuli (see ref. 39 for first steps in this direction).

Limitations. Several limitations need to be mentioned. We
employed a novel measure of time window, the ACW-0. While
our findings show rest and task differences of ACW-0 compared
to the shorter ACW-50, future studies both imaging and mod-
elling may be necessary to further establish their differences. Yet
another question in this respect is whether ACW-50 and ACW-0
mediate different cognitive processes as it is suggested by their
association with different regions/networks in the spatial hier-
archy, i.e., core and periphery. Modelling studies will be needed to
establish a causal relation between rest and task temporo-spatial
hierarchies. While employing different measures of rest–task
similarity, we were unable to establish a causal rest–task con-
nection in temporo-spatial hierarchies.

Conclusion. We show the convergence of the brain’s temporal
hierarchy, i.e., its intrinsic neural timescales, with the spatial
topography of the CP hierarchy during both rest and task states.
This suggests an intrinsically temporospatial CP hierarchy in the
human cortex which shapes its cognitive processing during rest
and task states. Pointing to its importance, the temporo-spatial
nature of the brain’s CP organization may be key in under-
standing mental features like self and consciousness including
their temporo-spatial organization in perception27,32,33,50–52.
Specifically, the temporo-spatial CP organization could provide a
dynamic feature shared by both neural and mental levels, i.e., a
“common currency”28, requiring what recently has been descri-
bed as “Spatiotemporal Neuroscience”53.
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Methods
Experimental model and subject details. The analyses involved magnetoence-
phalography (MEG) data of 89 subjects from the HCP WU-Minn HCP
1200 subjects data release54. Resting state MEG data were acquired in runs of ~6
min. During the scan, the subjects were instructed to relax with eyes open and
maintain fixation on a red crosshair. ECG and EOG recordings were also per-
formed. Following the completion of resting state MEG, subjects were asked to
complete three tasks of language processing (story vs. math, StoryM), motor
(Motort) and working memory (Wrkmem). Task MEG data were acquired with the
same parameters as the rest. Each task was approximately 7, 14 and 10 for StoryM,
Motort and Wrkmem, respectively. The sampling frequency was 2034.5 Hz.

Task paradigms. The tasks were all block-design paradigms. In the working
memory task, participants were instructed to retain images in their visual working
memory and compare them with subsequently presented images. The language
processing task consisted of 7 blocks of a story task interleaved with 15 blocks of a
math task. The story blocks presented participants with brief auditory stories.
Motor processing was assessed using a task in which participants were presented
with visual cues instructing the movement of either the right hand, left hand, right
foot, or left foot. The paradigm of each task is extensively discussed in the WU-
Minn HCP 1200 Subjects data release manual.

Preprocessing. The HCP released preprocessed data. It included the following
steps: removal of artifacts, bad channels, and bad segments based on HCP quality
assurance standards55, down-sample to 508.62 Hz, bandpass (1.3–150 Hz) and
notch (59–61, 119–121 Hz) filtering, and removal of non-brain components
through independent component analysis (ICA).

Source reconstruction was conducted similar to a recent article by Demirtaş et al.56,
which used the same HCP data. Briefly, reconstruction was done for 8004 vertices (8k
space) on the cortical surface using Fieldtrip and software provided by HCP. First, we
applied a low-pass filter (50Hz) on the sensor data, which was projected on to source
space by synthetic aperture magnetometry. The details of the projection are provided in
Demirtaş et al.56. After source reconstruction, time courses were parcellated using two
well-known templates provided by Schaefer et al.40 (Schaefer) and Ji et al.41 (Ji). The
Schaefer and Ji templates consist of 200 and 360 regions cortical areas, respectively. The
regions Schaefer template were divided into 7 networks including Visual, Somatomotor,
Dorsal Attention, Salience, Limbic, FPC (frontoparietal), and DMN. Moreover, the Ji
template consisted of 12 networks of Visual1, Visual2, Auditory, Somatomotor, Dorsal
Attention, Posterior Multimodal, Ventral Multimodal, Orbito Affective, Language,
Cingulo Opercular, FPC, and DMN. The templates were resampled to 8k space using
resampling tools available in the HCP workbench software. Finally, the time courses
were averaged over runs resulting in four conditions of Rest (resting state MEG),
StoryM, Motort, and Wrkmem (task states MEG).

Calculation of the metrics. In the next step, ACF of the regions’ time courses were
calculated within the statsmodel library57 using the fast Fourier transform algo-
rithm. From that, two ACW values were extracted per ACF: the first lag (in
milliseconds) where the autocorrelation decays to 50% of its maximum (ACW-50)
and the first instance where the autocorrelation reaches zero (ACW-0).

CP division. To analyze the CP hypothesis, the regional data was divided into two
categories of periphery and core base on the network they belonged to. Three
different CP divisions were defined. (1) CP based on the Schaefer template and the
principle gradient in the Margulies et al. article14 (Schaefer/Margulies or SCP) in
which the regions in the Visual, Somatomotor, Dorsal Attention and Salience
networks were labelled as periphery and the regions in the Limbic, FPC, and DMN
networks as the core. (2) CP based on the Ji template and the unimodal–transmodal
definition in Ito et al.1 (Ji/Ito or JCP) in which periphery is defined as the regions in
Visual1, Visual2, Auditory, and Somatomotor networks and core as the regions in
Dorsal Attention, Posterior Multimodal, Ventral Multimodal, Orbito Affective,
Language, Cingulo Opercular, FPC, and DMN. (3) Restricted CP based on the Ji
template and a restricted version of core from JCP definition (RCP) in which the
periphery is similar to JCP, but the core is defined as only the regions in Cingulo
Opercular, FPC, and DMN. This definition of CP ignores the rest of the regions.

Anterior–posterior regression. The CP organization of ACW was validated by
removing the probable effect of the anterior–posterior organization from both
ACW-50 and ACW-0. From the HCP released data, the averaged T1-weighted
structural MRI was used to extract the y-coordinate of each region defined in both
Schaefer and Ji templates. The ACW values for all regions and their corresponding
y-coordinates were fed into a linear regression model as dependent and indepen-
dent variables, respectively. The residual of the model was used in the CP analysis
as the residual ACW.

Rest–task similarity. The similarity between resting and task states was addressed
using spatial correlation, linear regression and regional correlation. The spatial
correlation was calculated as a single Pearson correlation coefficient between
resting and a task condition (e.g. Rest vs. StoryM) over brain regions after

averaging over subjects (thus creating a single brain per condition, illustrated in the
box of Fig. 4a). The spatial similarity was further investigated using linear
regression. The regional ACW values were averaged over subjects. Then, task state
ACW was modelled as a function of resting state for each task condition. The
regional correlation was used to measure the regional similarity between resting
and task states. This correlation was calculated for each region across subjects
between a pair of conditions (illustrated in the box of Fig. 4b).

Rest–task difference. The difference between rest and task state was calculated as
a percentage of change per region per subject. Each region’s rest and task (e.g.
StoryM) values were put in the Rest�Task

Rest ´ 100 formula to both measures the change
from the rest to the task and normalize against the rest at the same time. The
percentage of change was averaged across subjects and used in the analysis of the
CP organization.

Density estimation. To observe the relationship between ACW-50 and ACW-0,
we estimated the probability distribution of the data, by removing all the labels (e.g.
region and network), by averaging over regions, and by averaging over subjects.
Removing all the labels means that for each scale (whether 50 or 0) all the data
from all tasks, regions, and subjects were put together and fed to the estimation
algorithm. Estimation was performed using the statsmodel’s kernel density esti-
mator (KDEUnivariate) using the Gaussian kernel and expectation-maximization
algorithm.

Inter-individual effects. To investigate the impact of inter-individual differences
on ACW scales, we used logistic regression. A binary classification using logistic
regression was designed. First, all ACW values were averaged over regions. Then,
each subject was labelled either ‘high variability’ and ‘low variability’ (actual labels)
based on their resting state ACW value. High variability refers to those subjects
whose averaged ACW value (averaged over regions) is above the median of ACW
values. Logistic regression was incorporated to determine the label for each subject
during each task state. Then the predicted labels were compared to actual ones. The
area under the receiver operating characteristic (ROC) curve was computed based
on the predicted and actual labels. ROC is a well-known metric for diagnostic test
evaluation. In a ROC curve, the true positive rate is plotted as a function of the false
positive rate for different cut-off points of a parameter (ACW-50 or ACW-0). The
area under the ROC curve (AUROC) tells how much the model is capable of
distinguishing between two diagnostic groups (low variability subjects compared to
high variability ones). The higher the area under the curve, the better the model at
correctly predicting the true label.

CP classification and feature selection. To investigate which ACW scale is better
at discriminating core from periphery regions, a 2-class classification problem was
used with the logistic function as the classifier. Each region’s signal was labelled
either core (class 1) or periphery (class 2). All the other labels were removed from
the data (i.e. condition, subject, network, and region). For each region, the ACW
values were used as features. Thus, each sample in the model had a 1-D feature
vector containing either ACW-50 or ACW-0 value and a label (whether core or
periphery). To increase the reliability of the results, we used the k-fold cross-
validation method with 20 folds. Three different models were created. Model 1
used both ACW values as features (each sample had two features), Model 2 used
only ACW-50 and the third model used only ACW-0. The training and testing
were conducted using the k-fold cross-validation algorithm with 20 folds. Accu-
racy, precision, recall, and the area under the AUC curve was calculated as effi-
ciency metrics.

All of the classification steps were implemented using the scikit-learn library of
Python programming language. For validation purposes, the same procedure was
reused with a SVM classifier using the RBF kernel. Furthermore, mutual
information43 was used as a univariate feature selection method to determine
which of the two scales is better if it was required to choose between the two.
Mutual information is a data-driven method capable of capturing any kind of
statistical dependency between the target class variable and the feature. It is equal
to zero if the two are independent and the more they are dependent the more
mutual information approaches 1. For that, we used the “SelectKBest” function
with the “mutual_info_classif” scoring function from the scikit-learn library.

Simulated signals. The relationship between ACW-50 and ACW-0 was investi-
gated using simulation analysis. 20,000 pseudo-aleatory signals within four dif-
ferent categories (5000 each) were simulated. The ACF of each signal was
calculated and from that ACW scales were extracted. The categories included
(I) pink noise, (II) sine wave, and linear combinations of (III) pink noise and sine
wave, and (IV) pink noise, white noise and sine wave. Uniformly distributed
random weights were used for the linear combinations and the frequency of the
sine waves. The frequency range and the sampling rate was fixed to be equal to our
real data. Pink noise was chosen to model the scale-free behaviour, white noise for
pure randomness and sine wave for oscillation. For each category two density
functions were calculated (one for each ACW scale) and compared to the density
functions of our real data.
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Statistics and reproducibility. All statistical analyses were performed in the
statsmodel library57 and R v.3.6 and all p-values were corrected for multiple
comparisons using the FDR correction method. Student’s t-test, One- and two-way
analysis of variance (ANOVA) were used to determine the difference in ACW
during resting and task states. For significant results, post-hoc analysis using
Tukey’s HSD method was conducted to show the within factor differences. The
steps for each analysis are described in their designated section both in results and
method.

Software. All steps of the data processing were performed with in-house scripts
written in Python programming language using NumPy, SciPy, cifti, joblib, mat-
plotlib, and seaborn libraries. The source code and the figures are freely available at
www.georgnorthoff.com/code/. For brain map visualization purposes, wb_view
(part of Connectome Workbench software, https://www.humanconnectome.org/
software/connectome-workbench) was used.

Data availability
The data that support the findings of this study are freely available at the Human
Connectome Project’s repository at https://db.humanconnectome.org.

Code availability
The scripts that support the findings of this study are freely available at https://github.
com/mehrshadg/acf_paper.
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