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Altered brain dynamics index levels of arousal in
complete locked-in syndrome
Federico Zilio 1✉, Javier Gomez-Pilar2,3, Ujwal Chaudhary4,5, Stuart Fogel 6,7, Tatiana Fomina8,

Matthis Synofzik 9,10, Ludger Schöls9,10, Shumei Cao11, Jun Zhang11, Zirui Huang 12, Niels Birbaumer13 &

Georg Northoff 7

Complete locked-in syndrome (CLIS) resulting from late-stage amyotrophic lateral sclerosis

(ALS) is characterised by loss of motor function and eye movements. The absence of

behavioural indicators of consciousness makes the search for neuronal correlates as possible

biomarkers clinically and ethically urgent. EEG-based measures of brain dynamics such as

power-law exponent (PLE) and Lempel-Ziv complexity (LZC) have been shown to have

explanatory power for consciousness and may provide such neuronal indices for patients with

CLIS. Here, we validated PLE and LZC (calculated in a dynamic way) as benchmarks of a wide

range of arousal states across different reference states of consciousness (e.g., awake, sleep

stages, ketamine, sevoflurane). We show a tendency toward high PLE and low LZC, with high

intra-subject fluctuations and inter-subject variability in a cohort of CLIS patients with values

graded along different arousal states as in our reference data sets. In conclusion, changes in

brain dynamics indicate altered arousal in CLIS. Specifically, PLE and LZC are potentially

relevant biomarkers to identify or diagnose the arousal level in CLIS and to determine the

optimal time point for treatment, including communication attempts.
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Locked-in syndrome (LIS) is a pathological condition in
which patients cannot move due to motor paralysis while
their consciousness is preserved1,2. LIS is more frequently

caused by local brain injury3, but can also be observed in the late
stage of amyotrophic lateral sclerosis (ALS)2,4,5. As ALS pro-
gresses, patients gradually lose the ability to move, talk, swallow,
and breathe autonomously. Communication is possible, but,
mostly through eye movements; alone, or combined with a brain-
computer interface (BCI), which can provide the ability to
exchange thoughts and feelings with others6. However, a portion
of patients with ALS eventually converts to what is called com-
plete locked-in syndrome (CLIS), characterised by the loss of
reliable eye movements and other motor functions2. In this state,
communication through eye movements is no longer reliable.
While some eye movements may persist, these individuals are no
longer functional for communication, and BCI communication
becomes impossible7–16 (note: except for a recent case where
communication was established through invasive BCI9). It is still
unclear why patients with CLIS-ALS are generally unable to use
BCI communication. It has been hypothesized that a progressive
reduction or even extinction of goal-directed thinking in com-
plete paralysis11, namely, the complete lack of motor control
and feedback could be responsible for the cessation of
voluntary cognitive activity, goal-directed thinking, and mental
imagery11,15,17,18. However, we currently lack the means to probe
the state of consciousness of these patients and similar, or related
conditions9. Thus, the search for neuronal markers that index
either states, or levels of consciousness is rather urgent in CLIS
patients. That is the main goal of this study, which, in addition to
providing scientific evidence, has major ethical and clinical
implications (see discussion).

One hallmark feature of CLIS is the difficulty, or even the
impossibility, of communication of any kind (either with, or
without brain-computer interface—BCI). It is possible that this
may be in part due to fluctuations in cognitive abilities, attention,
and alertness over the course of the day and/or a worsening of
such abilities over time6,10,11,15,18–23. Some cases of CLIS are
clinically characterised by changes in circadian rhythm and sleep
patterns inferred from the fragmentation of slow-wave sleep and
the absence of sleep spindles24,25, and by alterations of alpha
oscillations, reactivity, and peak frequency;26,27 which might
suggest related alterations in arousal and attention during BCI
communication attempts20,26,28,29. For example, it has been
shown that, in a patient with CLIS-ALS, the alpha rhythm (a
marker of relaxed wakefulness) fluctuated substantially over a 10-
hour period20. In addition, reduced modulation of alpha and
gamma power in the medial prefrontal cortex in CLIS patients
compared to healthy controls in reaction to self-referential stimuli
(‘self‘ vs. ‘friend’ and ‘celebrity’), suggesting alterations in self-
referential thinking processes19. Finally, a patient with late-stage
ALS found that, after the transition from LIS to CLIS, P300
responses from auditory stimuli could no longer be detected or
conclusively reveal information processing30. Together, these
findings do not constitute conclusive evidence for impairment of
consciousness or cognitive abilities per se but suggest that patients
with CLIS-ALS may be subject to alterations in consciousness or
experience ‘windows’31 of consciousness.

Do these alterations in electrophysiological states reflect
alterations in the patient’s state of consciousness? It is unclear
which dimension of consciousness is potentially associated with
these alterations, whether it be arousal (i.e., the overall state of
alertness or wakefulness) or awareness (i.e., contents of con-
sciousness), or even cognitive access32–34. In that case, intra-
subject fluctuations in neural activity may be useful to index
changes in arousal. Specifically, intra-subject fluctuations over
time can be measured using dynamic analyses35–37. Specifically, a

sliding window approach can be applied to our measures of brain
dynamics, such as power-law exponent (a metric of the broad-
band non-periodic, arrhythmic quality of the EEG; PLE)35–37 and
information-based Lempel-Ziv Complexity (a metric of how
regular/repeatable, or diverse the EEG signal is over time; LZC).
These measurements are altered in anaesthesia, disorders of
consciousness, and sleep38–43. Given our hypothesis in regards to
altered arousal in CLIS, and given the relationship of static PLE/
LZC to the level of arousal/wakefulness, we predict that the
dynamic fluctuations of PLE/LZC will serve as an index of the
alterations in the level of arousal/wakefulness in CLIS.

The goal of this study is to investigate the brain dynamics using
EEG recordings, namely scale-free arrhythmic activity (PLE) and
signal complexity (LZC), to probe whether they can serve as
indices of the level of arousal (or wakefulness) in CLIS, at both the
group and individual levels. LZC is one of the most consistent and
reproducible measures in the context of consciousness, and PLE
variations are robustly reflected in sleep, anaesthesia, and dis-
orders of consciousness. LZC and PLE measure complementary
characteristics, and the robustness and consistency across con-
sciousness studies make them ideal candidates for our study.

For that, we used a dataset of CLIS patients and compared
them to healthy control groups across a spectrum of different
conscious states, including: anaesthesia (ketamine, sevoflurane),
sleep (N1-2-3, REM), and LIS/non-LIS patients affected by ALS.
We hypothesised that: (1) changes in both PLE would be higher
than controls and LZC would be lower than controls in patients
with CLIS, and (2) a greater degree of intra- and inter-subject
variability (over time) in PLE/LZC in patients with CLIS would
indicate corresponding alterations in arousal. To test these main
hypotheses, three specific research objectives are necessary based
on specific secondary hypotheses:

1. The first specific objective consisted of measuring PLE and
LZC from the EEG as benchmarks of normal variations
across states of consciousness. To this end, we investigated
the mean and the coefficient of variation (CV) of PLE and
LZC in different states such as sleep (from wakefulness to
N1, N2, N3, and REM) and anaesthesia (sevoflurane,
ketamine). We hypothesised that PLE increases parame-
trically in states associated with an assumed decrease or
absence of arousal/wakefulness, while we hypothesised that
LZC decreases in states. In addition to characterising PLE
and LZC using mean and the CV, we further probed the
utility of these indices employing receiver operating
characteristic (ROC) curve as a measure of their classifica-
tion robustness in distinguishing conscious vs. alterations of
conscious states in these conditions. This objective will
demonstrate that PLE and LZC can be useful indices of the
level of arousal across different states of consciousness.

2. The second objective was to apply PLE and LZC to a group
of participants with CLIS (n= 12) to investigate their level
of arousal; in particular, four of these patients received a
series of repeated EEG recordings, which also allowed us to
investigate changes in PLE and LZC between sessions in the
same participant. We hypothesised that patients with CLIS
would show altered PLE and LZC compared to controls,
with varying degrees of mean and CV at both the group and
individual levels. This would distinguish them from both
LIS and non-LIS patients, as well as healthy participants,
suggesting a potentially degraded state of wakefulness in
patients with CLIS over a prolonged period of time. This
objective will demonstrate whether and how the level of
arousal is altered in patients with CLIS.

3. The third objective consisted of measuring the relationship
between PLE and LZC, i.e., between arrhythmicity and
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signal complexity, respectively42. Given our previous
findings44,45 and others46–48 in healthy awake participants,
we predicted that PLE and LZC will negatively correlate in a
non-linear way. This will be validated by using both
empirical data from the analysed datasets, and also a
simulation model using synthetic signals generated by
varying the noise power decay factor with frequency. The
imbalance between slow and fast frequencies with a
progressive shift towards slower frequencies (PLE) can be
accompanied by loss of information complexity (LZC)
during the alteration of arousal in CLIS and analogous
states (from reduced arousal in N1, ketamine, REM to
abolished arousal in N2, N3, sevoflurane). This objective
will demonstrate whether changes in arousal level with their
power spectrum changes are related to reduced information
processing in CLIS patients.

Our multigroup EEG study shows the utility of PLE and LZC
to serve as a benchmark, and thus, index the level of alertness/
wakefulness in CLIS. This is supported by both empirical data
and a simulation model. We demonstrate that a shift towards
slower frequencies (high PLE) is related to a decrease in proces-
sing information complexity (low LZC), which, at least in part,
may reflect a reduction in arousal in CLIS. This may consequently
compromise communication. Taken together, we present
empirical evidence for reduced and highly unstable and fluctu-
ating brain dynamics (PLE) and signal complexity (LZC) in CLIS
reflecting intra-subject fluctuations in their level of arousal/state
of alertness (Fig. 1).

Results
Sleep. Our results showed an increase in the mean PLE (mPLE)
and coefficient of variation of LZC (cvLZC), and a decrease in
mean LZC (mLZC) and coefficient of variation of PLE (cvPLE) as
the sleep stages deepened (Awake, N1, N2, N3). In almost all
cases, REM sleep values fell between the waking state and deeper
stages of sleep (Fig. 2a–d). Similarly, PSD showed a progressive
increase in power at slow frequencies (1–8 Hz) and decreased
power at higher frequencies (10–40 Hz) from wakefulness to deep
sleep, except for the REM phase, which showed a power spectrum
most similar to N1 and wakefulness. This is consistent with the
neurophysiology and cognitive state of REM sleep, which is
paradoxically wake-like49 and is a sleep state typically (but not the
only one) characterised by vivid dream content50. This is also
reflected by the different degrees of slope of the scale-free
structure of the PSD (Fig. 2e), where the steepest slope is in N3,
the flattest in the waking state, and again, the slope for REM sleep
is slightly below N1. Repeated measures test showed statistically
significant differences between all states analysed here (n= 23,
p < 0.001 and p < 0.05, see Table 1), with a few exceptions where p
values > 0.05 were found for the comparisons between N2 and
REM (mLZC: N2-REM; cvPLE: N2-REM; cvLZC: Awake-N1-N2-
REM, N1-N2-REM, N2-REM). The coefficient of variation of the
LZC was found to be the measurement with the fewest significant
differences. However, the ROCs showed significantly higher
performance than the chance level in all measurements (AUC:
mPLE= 0.92; cvPLE= 0.91; mLZC= 0.92; cvLZC= 0.68), sup-
porting the robustness of the significant differences shown in the
box plots (see Supplementary Fig. 1). Finally, in all measure-
ments, progressive global changes were observed in the topo-
graphic maps, which is supported by generally widespread
statistical differences (repeated measures test) after FDR correc-
tion (Benjamini-Yekutieli) found in most comparisons between
sleep states (see Supplementary Fig. 1). Thus, taken together, PLE
and LZC are robust metrics of the temporal signatures of the EEG

that can discriminate well between the various sleep-wake states
in a predictable manner.

Anaesthesia. As predicted, participants who received sevoflurane
showed a higher mPLE and, conversely, lower mLZC compared
to the results shown by the same participants in the awake con-
dition. Furthermore, cvPLE was lower during sevoflurane, while
cvLZC was higher than in the awake condition. As expected, this
is comparable to the results observed for N3 in the sleep dataset.
The repeated measures test showed statistically significant dif-
ferences between the awake and sevoflurane conditions (n= 10)
in both mPLE (p < 0.05) and mLZC (p < 0.05) for the mean dis-
tribution of all electrodes, and in both cvPLE (p < 0.05) and
cvLZC (p < 0.05) (Fig. 3a–d).

A similar trend was found for the ketamine condition, for
mPLE, mLZC, cvPLE, and cvLZC. However, the increases in
mPLE and the decrease in mLZC, as well as the decrease in cvPLE
and the increase in cvLZC, were much less apparent as compared
to the awake state than in the sevoflurane group. In this case,
significant differences were found only for mPLE (repeated-
measures test, n= 10, p < 0.05) (Fig. 3a). mLZC, cvPLE and cvLZC
under ketamine conditions did not show significant statistical
differences from the awake state (repeated-measures test, p > 0.05).
However, ROC curves showed a significantly higher performance
than chance in all measurements (AUC: mPLE= 0.79; cvPLE=
0.80; mLZC= 0.72; cvLZC= 0.80), highlighting still relevant
robustness of the trend shown in the box plots (see Supplementary
Fig. 2). These results are consistent with other studies showing
that ketamine anaesthesia, despite behavioural unresponsiveness,
preserves a dream-like state of consciousness, as reported by
participants after awakening33,42,51–53.

The differences between the effects of sevoflurane and ketamine
correspond well to the visual inspection of the PSD (Fig. 3e),
whereby sevoflurane showed a generally steep decline of PSD
compared to the awake state, with higher values at slow
frequencies (1–8 Hz), a flattening of the alpha peak and a deeper
slope at higher frequencies (20–40 Hz). By contrast, ketamine
showed a slight flattening of PSD, with a slowdown and a shift of
the alpha peak towards lower frequencies. Topographic maps for
the differences between pre-anaesthesia and anaesthesia in mPLE,
cvPLE, mLZC, and cvLZC showed global changes for sevoflurane
and regional changes for ketamine. Statistical differences (repeated
measures test) after FDR correction (Benjamini–Hochberg) can be
seen in Supplementary Fig. 2. Thus, taken together, PLE and LZC
are robust metrics of the temporal signatures of the EEG that can
discriminate well between the wake state and anaesthesia in a
predictable manner, most robustly for sevoflurane and less-so for
ketamine.

CLIS at the group and individual levels. The ten participants
with late-stage ALS and CLIS had a comparable pattern of results
for sleep and anaesthesia; showing higher mPLE and, conversely,
lower mLZC compared to healthy controls. Furthermore, in the
CLIS participants, cvPLE was lower, while cvLZC was higher than
in the healthy group. Non-repeated measures tests showed sta-
tistically significant differences between CLIS participants
(n= 10) and healthy controls (n= 6) in both mPLE (p < 0.001)
and mLZC (p < 0.001) for the grand average over the electrodes,
and in both cvPLE (p < 0.001) and cvLZC (p < 0.05) (Fig. 4a–d)
(for ROC curves, see Supplementary Fig. 3). In addition, the
general pattern of differences for CLIS and healthy participants
correspond well to the visual inspection of PSD (Fig. 4e), whereby
CLIS patients showed a generally steep decline in PSD compared
to healthy controls, with higher values at slow frequencies
(1–8 Hz), a slowdown and shift in the alpha peak towards lower
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frequencies, and a negative slope at higher frequencies
(10–40 Hz). Due to the use of different electrode locations,
depending on the clinical requirements of each CLIS patients, it is
not possible to perform an average of measures between parti-
cipants for specific electrodes. Therefore, it is not possible to
represent the usual topographic plots or perform a reliable sta-
tistical analysis for direct comparisons. Thus, a global analysis
(average across electrodes) was performed. Taken together, these
results suggest that PLE and LZC can discriminate well between
the temporal variations in the EEG of patients with CLIS and
healthy controls that may be clinically significant and have
diagnostic and prognostic value.

PLE and LZC alterations in three patients with ALS-CLIS.
Among the ten CLIS participants, EEG recordings of three
patients from a longitudinal study54 were analysed. Participant #6
(male, 40 years old; 20 sessions over a 20-month period); parti-
cipant #9 (male, 24 years old; 13 sessions over a 12-month per-
iod); participant #11 (male, 35 years old; 19 sessions over a 16-
month period). In general, the three sets of EEG sessions show
very similar pattern to those of the ten CLIS participants com-
pared with healthy controls: higher mPLE, lower mLZC, lower
cvPLE, and higher cvLZC (Fig. 5a–d). However, it is also possible

to identify a trend toward progressive differentiation in the PLE
and LZC results of healthy controls from the time that the
patients reached a complete locked-in state. On the date of the
first EEG recording, P#6 had already been in CLIS for five years,
P#9 for one year, and P#11 began the transition to CLIS during
the recording period. Although P#11 has results that are still close
to the average of healthy controls (in particular mPLE, mLZC,
and cvLZC), P#9 and P#6 progressively deviate from healthy
controls. This is also visible in the PSDs of the three CLIS par-
ticipants (Fig. 5e). While P#11 presents a power spectrum close to
the average of the healthy controls (although we can already
notice a greater inclination of the scale-free structure of that
PSD), P#9 and P#6 show a progressive shift of power towards
delta and theta ranges with residual alpha peak activity and a loss
of power in the faster frequencies. Finally, a similar progressive
trend can be seen regarding the variability of the values of
the three CLIS participants between all sessions, whereby
P#6 (longest time in CLIS) showed the highest standard deviation
(P#6 SD: mPLE= 0.213; cvPLE= 0.058; mLZC= 0.033;
cvLZC=0.033; P#9 SD: mPLE= 0.170; cvPLE= 0.017; mLZC=
0.032; cvLZC= 0.015) and P#11 (shortest time in CLIS) the
lowest (SD: mPLE=0.075; cvPLE= 0.026; mLZC= 0.019;
cvLZC= 0.012) (see also below, Fig. 6). Taken together, these

Fig. 1 Schematic of the rationale and methodology of the study. Through the analysis of four datasets characterised by normal and altered levels of
arousal, the non-linear relationship between PLE and LZC (mean and coefficient of variation taken across sliding windows) is identified. Once the
association between brain dynamics, information processing, and wakefulness is validated, the results from the various states (healthy controls, sleep
stages, and anaesthesia) are compared with the altered values of PLE and LZC and the high degree of inter-subject and intra-subject variability among
participants with CLIS.
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results suggest that PLE and LZC are robust metrics of the
temporal signatures of the EEG that can discriminate the severity
of the changes in arousal within and between patients with CLIS.
PLE and LZC may be clinically significant indices of disruptions
to consciousness and have diagnostic and prognostic value.

CLIS vs. LIS vs. non-LIS vs. healthy controls. This unique group
of participants with ALS was crucial in identifying differences
between healthy controls and people with ALS, but still capable of
moving to some degree (non-LIS). A single participant with ALS
in locked state (LIS) was unable to move but still able to com-
municate with the eyes, and two participants with ALS in com-
plete locked state (CLIS) whose eye movements no longer allowed
reliable communication for approximately two years27 were
included in the following comparisons. Non-repeated measures
tests did not show statistically significant differences in mPLE,

mLZC, and cvPLE between healthy controls (n= 23) and non-
LIS (n= 14), except for cvLZC (p < 0.05). In addition, one indi-
vidual with LIS showed values of mPLE, mLZC, cvPLE, and
cvLZC in the same range as ALS without LIS and healthy controls
(Fig. 6a–c). Statistical comparisons using a Z test was performed
on all values of the LIS participant. In all cases, the values for the
LIS patient were Z < 1.96 (p > 0.05) from healthy controls (mPLE
z=−0.012; mLZC z= 0.961; cvPLE z=−0.111; cvLZC
z= 0.526) and non-LIS patients (mPLE z= 0.432; mLZC
z= 0.242; cvPLE z=−0.454; cvLZC z= 1.659). By comparison,
the two CLIS patients demonstrated the same trend as the CLIS
dataset described above (Figs. 4, 5) with higher mPLE and cvLZC,
and lower mLZC and cvPLE compared to HC and non-LIS.
Again, this was statistically using a Z test for the two CLIS par-
ticipants, showing Z > 1.96 (p < 0.05) from healthy controls,
except for cvPLE (mPLE z= 4.694; 4.546; mLZC z=−3.120;

Fig. 2 Evaluation of PLE and LZC in the sleep dataset. The mean PLE (a) and LZC (c) distributions and their respective coefficients of variation (b, d) are
depicted using violin plots and box plots for each of the sleep stages. A significant increase for mPLE (with a decrease for cvPLE) and a significant decrease
for mLZC (with an increase for cvLZC) are observed for deeper sleep stages. Mean PSD with standard error mean (e) is represented for awake and all
sleep stages, showing that the scale-free structure of the power spectrum changes in N1, N2, N3, and REM, as the relationship in power between slow and
fast frequencies is altered, with a shift towards lower frequencies (except for REM, which is most similar to the light sleep stage N1 and the waking state).
Source data are provided in Supplementary Data 1.
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Table 1 Main results of all the datasets analysed: mean, standard deviation, and statistical comparisons.

Sleep

Mean and standard deviation

Awake N1 N2 N3 REM

mPLE 1.07 ± 0.24 1.41 ± 0.29 1.69 ± 0.31 2.45 ± 0.24 1.57 ± 0.24
mLZC 0.52 ± 0.06 0.44 ± 0.06 0.40 ± 0.06 0.29 ± 0.03 0.39 ± 0.03
cvPLE 0.39 ± 0.11 0.27 ± 0.08 0.24 ± 0.10 0.03 ± 0.03 0.05 ± 0.05
cvLZC 0.19 ± 0.03 0.20 ± 0.02 0.20 ± 0.02 0.25 ± 0.02 0.21 ± 0.01

p values

Awake vs
N1

Awake vs.
N2

Awake vs.
N3

Awake vs.
REM

N1 vs. N2 N1 vs. N3 N1 vs.
REM

N2 vs. N3 N2 vs.
REM

N3 vs.
REM

mPLE <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.5 <0.001 <0.05 <0.001
mLZC <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 NS <0.001
cvPLE <0.001 <0.001 <0.001 <0.001 <0.05 <0.001 <0.05 <0.001 NS <0.001
cvLZC NS NS <0.001 NS NS <0.001 NS <0.001 NS <0.001

Anaesthesia

Mean and standard deviation

Pre-ketamine Ketamine Pre-sevoflurane Sevoflurane

mPLE 1.16 ± 0.26 1.43 ± 0.27 1.12 ± 0.22 2.30 ± 0.40
mLZC 0.48 ± 0.07 0.42 ± 0.05 0.56 ± 0.06 0.25 ± 0.06
cvPLE 0.30 ± 0.07 0.23 ± 0.07 0.29 ± 0.05 0.14 ± 0.04
cvLZC 0.18 ± 0.04 0.20 ± 0.02 0.17 ± 0.02 0.23 ± 0.04

p values

Pre-ketamine vs. ketamine Pre-sevoflurane vs. sevoflurane

mPLE <0.05 <0.05
mLZC NS <0.05
cvPLE NS <0.05
cvLZC NS <0.05

Complete locked-in syndrome

Mean and standard deviation

Healthy controls CLIS

mPLE 0.97 ± 0.40 2.11 ± 0.65
mLZC 0.55 ± 0.08 0.34 ± 0.09
cvPLE 0.44 ± 0.27 0.16 ± 0.04
cvLZC 0.16 ± 0.04 0.22 ± 0.04

p values

HC vs. CLIS

mPLE <0.001
mLZC <0.001
cvPLE <0.001
cvLZC <0.05

3 CLIS patients–multisession

Mean and standard deviation

CLIS P#6 CLIS P#9 CLIS P#11

mPLE 2.07 ± 0.21 1.85 ± 0.17 1.17 ± 0.08
mLZC 0.34 ± 0.03 0.37 ± 0.03 0.50 ± 0.02
cvPLE 0.22 ± 0.06 0.20 ± 0.02 0.27 ± 0.03
cvLZC 0.29 ± 0.03 0.25 ± 0.02 0.18 ± 0.01

p values

P#6 vs. P#9 vs. P#11

mPLE <0.001
mLZC <0.001
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−3.750; cvPLE z=−1.693; −1.801; cvLZC z= 6.625; 5.565), and
non-LIS (mPLE z= 4.294; 4.172; mLZC z=−2.650; −3.096;
cvPLE z=−1.749; −1.837; cvLZC z= 9.980; 8.534). The topo-
graphic maps for the difference between the mPLE, cvPLE,
mLZC, and cvLZC groups are represented in Supplementary
Fig. 4. The differences between the two CLIS participants and the
other groups (healthy controls, non-LIS participants, and the
single LIS participant) correspond well to visual inspection of the
PSD (Fig. 6e), whereby the CLIS condition showed a generally
steeper decline in PSD, with higher values in slow frequencies
(1–8 Hz), with a slowdown and a shift in the alpha peak towards
lower frequencies and a negative slope in higher frequencies
(10–40 Hz). Taken together, these results suggest that PLE and
LZC can discriminate between patients with LIS and CLIS, and
between non-LIS and CLIS, and may be clinically significant
indices of disruptions to consciousness and have diagnostic and
prognostic value.

Intra-subject fluctuations in a single CLIS case. Furthermore, a
series of 35 EEG recordings from one of the two CLIS participants
in this dataset (female, 64 years old, named here as ‘CLIS 1’) were
analysed, as well as a series of 34 EEG recordings from one of the
ALS non-LIS participants (male, 59 years old) as a control for the

analysis of intra-subjective variation. The multisession EEG ana-
lysis of the female participant in CLIS confirmed the results
highlighted in Figs. 4–6, that is, PLE and LZC (both mean and
coefficient of variation) in CLIS differ significantly from HC and
non-LIS. Furthermore, this CLIS participant showed higher intra-
subject variations in mPLE and mLZC during the sessions com-
pared to the non-LIS participant (mPLE: CV= 0.276 vs. 0.133;
mLZC: CV= 0.214 vs. 0.033) and also to the inter-subject varia-
tion among healthy participants in mLZC (mLZC: CV= 0.281 vs.
0.105). This higher intra-subject variation in CLIS is represented
by fluctuations in mPLE, mLZC, and the cvPLE, and cvLZC values
session after session (Fig. 7a–d). Furthermore, cvPLE and cvLZC
(Fig. 7b, d) show that the degree of fluctuation of PLE and LZC
within particular recordings is higher compared to controls and
the non-LIS patient, that is, there are periods with high values of
stability and periods with low stability (particularly in LZC). These
differences between the CLIS participant and the non-LIS parti-
cipant and, conversely, the similarities between HC and non-LIS,
are also evident in the PSD (Fig. 7e). While the grand-average PSD
of the non-LIS sessions is close to the average of the healthy
controls, the grand-average PSD of the CLIS sessions shows an
evident slowdown and shift of the power towards the delta-theta
range with residual alpha peak activity and a reduced power
in faster frequencies. Topographic maps also showed global

Table 1 (continued)

p values

P#6 vs. P#9 vs. P#11

cvPLE <0.001
cvLZC <0.001

Amyotrophic lateral sclerosis

Mean and standard deviation

Healthy controls non-LIS LIS CLIS

mPLE 0.86 ± 0.24 0.73 ± 0.29 0.86 1.97 ± 0.03
mLZC 0.56 ± 0.06 0.60 ± 0.08 0.62 0.36 ± 0.03
cvPLE 0.41 ± 0.12 0.47 ± 0.14 0.40 0.21 ± 0.01
cvLZC 0.15 ± 0.02 0.13 ± 0.02 0.16 0.28 ± 0.02

p values z scores

Healthy controls vs. nonLIS LIS CLIS 1 CLIS 2

mPLE NS <1.96 >1.96 >1.96
mLZC NS <1.96 >1.96 >1.96
cvPLE NS <1.96 <1.96 <1.96
cvLZC <0.05 <1.96 >1.96 >1.96

CLIS—non-LIS

Mean and standard deviation

CLIS 1 Non-LIS

mPLE 1.56 ± 0.43 0.64 ± 0.09
mLZC 0.47 ± 0.10 0.61 ± 0.02
cvPLE 0.37 ± 0.17 0.63 ± 0.16
cvLZC 0.28 ± 0.06 0.14 ± 0.01

p values

CLIS 1 vs. nonLIS

mPLE <0.001
mLZC <0.001
cvPLE <0.001
cvLZC <0.001

NS not significant.
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significant changes between CLIS and non-LIS in mPLE, cvPLE,
mLZC, and cvLZC (see Supplementary Fig. 4). Taken together,
these case studies suggest that PLE and LZC can index arousal
over time between patients CLIS and non-LIS patients.

CLIS—from brain dynamics to behaviour. Our results thus far
show that there is great variability of CLIS patients (in particular
long-term CLIS) as compared to healthy controls, and non-LIS
patients (see Figs. 5, 6). However, it remains to be demonstrated
whether the dynamics measured by PLE and LZC are related to

behaviour (and therefore symptom severity) in these patients. As
previously mentioned, it is extremely difficult to assess the beha-
vioural capabilities in these groups of patients. Indeed, CLIS is
diagnosed when there is complete bodily immobility and unrelia-
bility of eye movements to communicate. Thus, there may still be
residual eye movements that are unreliable for the purposes of
communication. An assessment of overall state of vigilance was
attempted using a scale where 0= appears unconscious,
5= appears fit and fully conscious (see Methods). The evaluation
was carried out after the resting state session (5min), and before
starting each brain-computer interface session (‘Before session 1’,

Fig. 3 Evaluation of PLE and LZC in the anaesthesia dataset. The mean distributions of PLE (a) and LZC (c), and their respective coefficients of variation
(b, d) are depicted using violin plots and box plots for each anaesthesia and pre-anaesthesia condition. A significant increase for mPLE (with a decrease for
cvPLE) and a significant decrease for mLZC (with an increase for cvLZC) are observed for sevoflurane as compared to that observed in wakefulness
through the measures test. A similar but less robust trend is shown for ketamine as compared to that for awake through a repeated measures test in mPLE
(a). These results can be confirmed by visual inspection of the PSD with standard error mean (e). Source data are provided in Supplementary Data 1.
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‘Before session 2’, ‘Before session 3’, 12min each). From these
behavioural data and the measures of brain dynamics obtained
from EEG (mean and coefficient of variation of LZC and PLE), we
evaluated their possible inter-relationships. To do this, we generate
a correlation matrix with all the variables involved (see Fig. 7f). In
this approach, individual variables constitute nodes, and the rela-
tions between them constitute the edges. In this study, the rela-
tionships were evaluated using the Spearman test (due to the
nature of the behavioural data and the lack of a priori hypothesis
on the linearity of the relationship), showing only correlations
between the variables that were significant. For visualisation, we
used a direct application of the Fruchterman-Reingold algorithm55.

Interestingly, we found a significant correlation between PLE
(mean and CV) and ‘Before session 1’ (i.e., the test values just
after recording the resting state). Similarly, a significant

correlation was found between LZC (mean) and ‘Before session
1’. These associations are lost in subsequent evaluations. The
results show that, despite complete paralysis due to late-stage ALS
and an inability of CLIS patients to communicate via eye
movements, EEG dynamics were associated with the clinical-
behavioural status of this patient.

See Table 1 for a summary of the main results described above
from all the datasets analysed (mean, standard deviation, and
statistical comparisons).

Simulated signals: CLIS within the dynamic space of all pos-
sible PLE and LZC relationships (and values). Although, in
theory, any pair of LZC and PLE values is possible, brain
dynamics exhibits a specific relationship between them. To ana-
lyse this relationship in a dynamic range larger than those

Fig. 4 PLE and LZC assessment in the CLIS dataset. The mean distribution of PLE (a) and LZC (c) and their respective coefficients of variation (b, d) are
depicted using violin plots and box plots for both the CLIS condition and healthy controls. A significant increase for mPLE (with a uniform decrease for
cvPLE) and a significant decrease for mLZC (with an increase for cvLZC) are observed for CLIS patients compared to HC through non-repeated measures
test. The PSD with standard error mean (e) of the 10 CLIS participants showed a steep overall decline compared to HC, with higher values in slow
frequencies (1–8 Hz), a slowing of alpha peaks in the delta-theta range, and a power slope the higher frequencies (10–40 Hz). Source data are provided in
Supplementary Data 1.
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provided by the empirical data, and at the same time, to provide a
framework to analyse the space of brain operation (i.e., the
‘degree or level of arousal/wakefulness’) in which the different
groups and states are located, a simulation was performed using
artificially generated signals. To do this, 1000 synthetic noise
signals were generated by varying the noise power decay factor
with frequency (see Çatal et al. 2022 for details56)This decay
factor was varied between a slope equal to zero (white noise) and
a slope equal to −2. For each of the synthetic signals, LZC and
PLE were calculated following the same procedure as with the
empirical data (see Fig. 8a). These signals are intended to simulate
the fractal component of the EEG45. The non-linear relationship
between LZC and PLE follows an exponential trend (blue line).
The LZC and PLE values (as well as PLE variability) of all groups
in each dataset were depicted on such an exponential trend
(Fig. 8b). Except for the non-LIS group, all healthy control groups
were situated in higher LZC values and lower PLE compared to
different states of reduced arousal. Interestingly, the CLIS groups
generally showed a greater variance compared to the other groups
(except perhaps for patient P#11, who, as seen above, was
entering CLIS during the EEG recording phase).

Regarding the relationship between cvPLE and cvLZC using
all available empirical data, a moderate/strong (negative)

relationship was observed between both measures (Pearson’s
R=−0.6). In other words, for high LZC fluctuation values, the
corresponding PLE fluctuation values are low. Furthermore, low
LZC fluctuation values seem to imply higher PLE fluctuations;
however, this is less evident because the slope of the regression
line is shallow (~0.22). These results suggest perhaps that large
LZC fluctuations appear in ‘reduced’ arousal. However, caution
must be exercised when interpreting these indirect results to
avoid speculation.

Discussion
We demonstrate how brain dynamics, measured by PLE and
LZC, can indicate neural alterations and fluctuations within the
state of CLIS compared to healthy participants and ALS patients
with LIS/non-LIS conditions. When comparing these findings
with the reference groups (sleep and anaesthesia), altered and
variable temporal dynamics in the EEG-based PLE and LZC
suggests fluctuating levels (n.b., not necessarily the absence) of
arousal in CLIS. Furthermore, the results suggest that the longer a
patient is in CLIS, the more altered the condition becomes, both
in terms of the degree of fluctuation and overall state of arousal.
Unfortunately, alterations in awareness or experiential con-
sciousness cannot be directly inferred with these methods; neither

Fig. 5 Longitudinal evaluation of PLE and LZC in three CLIS participants from the CLIS dataset (fluctuations between different sessions). The mean PLE
(a) and LZC (c) distributions and their respective coefficients of variation (b, d) are represented using box plots for the three CLIS participants and also for
the mean of the healthy controls group (n.b., multisession records in controls are missing). A progressive increase for mPLE (with a decrease for cvPLE)
and a progressive decrease for mLZC (with an increase for cvLZC) are observed for the three CLIS participants compared to the average of the HC. PSD
with standard error mean (e) showed a power spectrum close to the mean of HC for participant #11 (transition to CLIS occurred during the EEG recording
period), while PSD of participants #9 (1 year in CLIS) and #11 (5 years in CLIS) showed an overall steep decline compared to HC, with higher values in slow
frequencies (1–8 Hz), a slowing of alpha peaks in the delta-theta range and a loss of power in higher frequencies (10–40Hz). Source data are provided in
Supplementary Data 1.
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in CLIS nor in the control groups. Since consciousness can be
examined by different dimensions and characteristics57, for
example, arousal and awareness, which are two classic clinical
distinctions32,53, here, we consider arousal as the overall state of
alertness or wakefulness. Having validated measures of neural
dynamics, including PLE and LZC in two distinct states of
reduced arousal (sleep and anaesthesia) parametrically along a

graded spectrum (low: N1, REM, ketamine; high: N2, N3, sevo-
flurane), here, we show how in CLIS patients shift toward slower
frequencies (high PLE) and lower signal complexity (low LZC),
especially in patients with long-standing CLIS. Furthermore,
patients with CLIS at both the group and individual levels show
fluctuating arousal levels indicated by high intra-sessional varia-
bility (over the course of each EEG session), intra-subject

Fig. 6 Evaluation of PLE and LZC in the ALS dataset. The mean distribution of PLE (a) and LZC (c) and their respective coefficients of variation (b, d) are
represented using violin plots and box plots for the two CLIS patients, the LIS participant, the 14 non-LIS ALS participants, and the healthy controls. A
significant increase for mPLE (with a decrease for cvPLE) and a significant decrease for mLZC (with an increase for cvLZC) are observed only for the CLIS
participants compared to the other groups through z score normalisation. Instead, the results observed in the HC, non-LIS, and LIS groups were not
significant by non-repeated measures test (HC and non-LIS) and z score normalisation (the single LIS patient), except for a significant decrease for cvLZC
in participants without LIS compared to HC. PSD with standard error mean (e) showed a steep overall decline in CLIS compared to HC, non-LIS, and LIS,
with higher values in slow frequencies (1–8 Hz), a slowing of alpha peaks in the delta-theta range, and a power slope in the higher frequencies (10–40Hz).
Source data are provided in Supplementary Data 1.
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variability (within the same individual, over different sessions),
and inter-subject variability (between different CLIS patients).
Taken together, we demonstrate that measures of brain dynamics
such as PLE and LZC can serve to index vigilance states, which
may indicate reduced and/or unstable states of arousal and
wakefulness in CLIS. We, therefore, propose that intra-subject
variability in PLE and LZC may be suitable biomarkers of fluc-
tuations in arousal/vigilance over time within and between
individuals35,58.

In terms of the relationship between brain dynamics and
arousal levels, we show various degrees of increased PLE and
decreased LZC in a wide range of stages where arousal is altered
(e.g., ketamine, REM), moderately reduced (e.g., N1, N2), or
strongly reduced, if not absent (e.g., N3, sevoflurane). This is in
line with previous studies showing analogous changes in reduced
states of wakefulness in both fMRI and EEG22,38–40,42,51,59–66.
Our findings advance knowledge in this area in three important
ways: First, these results show parametric changes in PLE and
LZC during increasingly reduced wakefulness. Second, these
results show the negative nonlinear relationship of LZC and PLE

with changes in information complexity. This pattern is further
supported by our simulation data (Fig. 8). Third, our findings
indicate that the relationship of cvPLE and cvLZC exhibits dif-
ferent tendencies than the relationship of their means. Finally, we
demonstrate high accuracy (above 90%) in predicting vigilance
states, i.e., presence vs. absence of alertness, by PLE and LZC in
almost all the comparisons. Together, this provides evidence that
PLE and LZC of the EEG can be used as indices of different states
of vigilance, which most likely correspond to different levels of
arousal.

These findings make PLE and LZC suitable for estimating
possible levels of arousal in CLIS at both group and individual
levels. Our larger CLIS group showed a tendency towards high
PLE and low LZC similar to reduced arousal in sleep and
anaesthesia (see Fig. 8). This suggests that these participants are
characterised by altered arousal. However, this does not appear to
be a stable over time; as we observed alterations and fluctuations
both within session, and between sessions in both PLE and LZC
in the CLIS participants (see Fig. 8, the two CLIS datasets—group
and individual participant—show the highest standard deviation

Fig. 7 Longitudinal evaluation of PLE and LZC in a CLIS participant and a non-LIS participant from the ALS dataset (fluctuations between different
sessions). The mean PLE (a) and LZC (c) distributions, and their respective coefficients of variation (b, d) are depicted over sessions for the CLIS and non-
LIS participants, as well as for the mean of the healthy controls group (as multisession records in controls are missing). An increase for mPLE (with a
decrease for cvPLE) and a decrease for mLZC (with an increase for cvLZC) are observed for the CLIS participant as compared to the non-LIS participant
and the average of the HC. Moreover, fluctuations between sessions in the CLIS patients were detectable in all measurements. PSD with standard error
mean (e) showed a power spectrum close to the mean of HC for the patient with ALS without LIS. The PSD of the CLIS participant showed a generally
steeper decay compared to HC and non-LIS, with higher power at slow frequencies (1–8 Hz), a slowdown and a shift in power in the delta-theta range with
residual peak alpha activity, and a loss of power at higher frequencies (10–40Hz). The correlation network (f) represents the dynamic variables of the brain
through the nodes of the networks, while the significant Spearman rho correlations between them (p < 0.05) are represented by the blue links. Three
measures derived from the EEG recordings (mean and CV of PLE and LZC) show a statistically significant correlation with the behavioral status assessed
immediately after the recording. This association is lost in subsequent evaluations. Source data are provided in Supplementary Data 1.
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values). Specifically, as shown in Fig. 5, the multisession EEG of
the three participants in CLIS showed progressive alteration of
PLE and LZC (especially mPLE, mLZC, and cvLZC) over time. In
addition, PLE and LZC can serve as indices of CLIS-related
severity; P#6 had been in CLIS for 5 years at the time of data
acquisition and is distinct from controls. P#9 had been in CLIS
for 1 year at the time of data acquisition, is also different from
controls, but not to the same extent as P#6. On the other hand,
P#11 entered CLIS during the data acquisition period and shows
values closer to controls. A similar pattern was observed for PSD,
which suggests that CLIS could also be related to a shifting of the
alpha peak towards the theta-delta range (Fig. 5e).

The above findings could lay the groundwork and can serve to
guide future directions for research. First, the progressive
alteration in brain dynamics across the three participants suggests
a trend that could be related to the years spent in CLIS. This
could mean that patients with ALS-CLIS undergo a progressive
alteration/reduction in arousal. Second, the fact that PLE, LZC,
and PSD of P#9 (CLIS for 1 year) are more similar to P#6 (CLIS
for 5 years) than to P#11 (in a transition state from LIS to CLIS)
suggest that the time of alteration of brain dynamics (and arousal)
may occur within a relatively short time from the diagnosis of
CLIS. This implies the need to identify clinical and rehabilitation
practises that seek to normalize these dynamics. Third, such
alterations could represent one more piece that would help
explain the hypothesis of ‘extinction of goal-directed thinking in
complete paralysis’11. Indeed, alteration of arousal, is likely to
prevent effective use of BCI in CLIS, perhaps at all, therefore
communication attempts could be directed to times when arousal
levels fluctuate to more normal values. Interestingly, the partici-
pant in CLIS #11 (Fig. 5), who spent less time in CLIS than the
other two participants, who showed similar PLE and LZC values
to the healthy control group, is the same patient who has been
able to communicate with an innovative, yet invasive BCI, as

recently demonstrated by Chaudhary and colleagues9. Thus,
deciphering these fluctuations through PLE and LZC could be
instrumental in establishing more objective measures for brain-
computer interface communication in patients with CLIS9–11,67.
In another study, several attempts at BCI communication were
made with the CLIS participant presented in Fig. 7, with poor
results probably due to the high instability of brain dynamics
(e.g., fluctuations of alpha rhythm and power increase in the theta
range15,20) or due to impaired cognitive abilities19,30. However,
these hypotheses are based primarily on only three individuals, so
further investigations are warranted.

Finally, through simulation data and the comparison with EEG
data, we show the relationship between PLE and LZC. Specifically,
the extreme shift towards slow frequency power and the loss of
power in the high frequencies (high PLE) during the presumed
reduced arousal/wakefulness relates to decreased signal complexity
(low LZC) in a non-linear way. Changes in information processing
may be driven by dynamic changes in the ratio of slow:fast fre-
quencies during degraded, reduced, or absent levels of arousal.
However, caution is warranted in interpreting these patterns, as
our data do not allow us to test for causal relationships44.

Our findings may have important clinical and ethical impli-
cations. Measurement of brain dynamics, such as PLE and LZC,
can serve as indices of the degree of arousal along the full con-
tinuum of increased and decreased arousal states. This could offer
the opportunity to diagnose the presence or absence of BCI
capability, particularly in CLIS, which, until now, has proven
elusive. These findings may also provide a major steppingstone
for developing new BCI to enable communication. For instance,
either brief periodic or online analysis of brain dynamics in the
resting-state of EEG through PLE and LZC could provide useful
information to identify the most appropriate time of the day for
treatments (e.g., physical therapy, neurorehabilitation) and
communication attempts.

Fig. 8 Relationship between LZC and PLE in empirical and simulated data. LZC and PLE are computed using synthetic data (a). For that purpose, 1000
brown, white, and pink noise signals were generated by varying the noise power decay factor with frequency. LZC and PLE calculated on these signals show
a non-linear relationship between both measurements. In the empirical data, error bars were used to represent the mean of PLE and LZC as well as the
standard deviation of PLE (b). Patients with CLIS patients from the different datasets show a greater variance in PLE values. Control participants are
grouped around lower PLE values (PLE around 1, that is, pink noise). On the contrary, participants with altered alertness generally show higher PLE values
and lower LZC values.
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CLIS represents a sort of extreme condition in which con-
sciousness can be maintained to some extent (with varying
degrees of alteration, as suggested by this study), but without the
possibility of evaluating it directly. Neuroscientific research based
on theories of consciousness such as Integrated Information
Theory (IIT) and Temporo-spatial Theory of Consciousness
(TTC) could shed light on this issue67–70. Indeed, according to
IIT and TTC various levels of spatiotemporal complexity of brain
activity (measured here through LZC) can be associated with
different states of consciousness. TTC considers LZC an index of
the degree of signal compression as one key feature of the spatio-
temporal repertoire of brain’s spontaneous activity, which is
fundamental to information processing and the formation of the
contents of consciousness71. In this sense, the perturbational
complexity index (PCI) interpreted by IIT as a marker of the
capacity to generate integrated information, i.e., consciousness
according to the theory, is a normalised version of the LZC
triggered by a direct Transcranial Magnetic Stimulation40. Fur-
thermore, TTC considers a balanced (e.g., between slow and fast
frequency power) temporal structure of neural dynamics (asses-
sed through PLE) to be a necessary predisposition for arousal69.
This temporal structure is altered or lost, during anaesthesia or
sleep. In addition, the Global Neuronal Workspace Theory
(GNWT)72,73 focusses mainly on global spatial recruitment of the
whole brain through input from the dorsolateral prefrontal cortex
and on event-related activity such as P3. The current study did
not explicitly test for such global spatial recruitment, as clinical
EEG does not provide adequate spatial resolution. However, the
data show that there is global recruitment of the relative balance
between different frequencies/timescales as measured by PLE and
LZC. The data show that a relative balance of different fre-
quencies is key for maintaining a conscious state, while their
imbalance with an abnormal shift towards the slower frequencies
leads to the disruption of consciousness. Such global temporal or
dynamic recruitment of different frequencies in terms of their
balances is a key feature of the TTC when assuming temporo-
spatial nestedness as the main mechanisms related to level/state
of consciousness69. Hence, the TTC complements here the
GNWT in the need for global recruitment in the dynamic, and
thus temporal, domain.

As for the limitations of this study, we investigated the tem-
poral dynamics of the resting state using EEG. When not exposed
to input from the external environment, or engaged in a specific
task, the resting state exhibits its own spontaneous temporal
dynamics, which may serve as an index of the capacity to process
input from the environment and for cognition74,75. That said,
PLE and LZC can only be indirectly related to an individual’s
ability to interact with the outside world and communicate. An
investigation of task states with BCI is needed to provide a more
direct relationship between the level of stability of alertness in
patients with CLIS and their cognitive ability to communicate.
Thus, from the analysis of the resting-state alone, we cannot
predict whether some cognitive task or external stimulation could
limit the alteration of brain dynamics in CLIS and consequently
improve the arousal state. However, as previously stated, the use
of brain dynamics measurements, such as PLE and LZC, might
indicate the best time to initiate BCI communication attempts. A
future hypothesis that will be tested is that the resting-state before
the task strongly influences cognitive performance, as other stu-
dies suggest36,45,58,76–78. However, it is important to note that
although high BCI performance indicates a good level of con-
sciousness, a low or absent BCI performance does not necessarily
imply a low or absent consciousness. The patient may not want to
answer, questions may be misunderstood, or the BCI device
might have low precision79. Even in the case of a strong corre-
lation between neuronal activity and state of consciousness, we

should identify which dimensions of consciousness are involved
(e.g., arousal, awareness, cognitive accessibility, etc.)32,53 and
what degrees/levels of consciousness (despite ongoing debate
surrounding the concept of ‘level of consciousness’80). Indeed,
there may be cases of dissociation between these dimensions, such
as arousal without awareness (similar to the vegetative state),
levels of awareness/wake-like content of consciousness without
arousal (similar to dreaming), arousal, and awareness but with
cognitive deficits. Finally, as is often the case with unresponsive
patients, it is not possible to directly infer the state of con-
sciousness of patients in CLIS, due to the absence of any detailed
first-person report or behavioural analysis. The fact that PLE and
LZC in patients with CLIS are similar to the values of altered
states of wakefulness such as sleep (N1, REM, N2, N3) and
anaesthesia (ketamine, sevoflurane) does not necessarily imply
that their state of consciousness is identical to these, in particular
in terms of awareness. In other words, identical values do not
necessarily mean the same level of reduction or loss of con-
sciousness. See, for example, some cases of ‘paradoxical con-
sciousness’ related to delta and theta activity (Angelman
syndrome, epilepsy, behavioural responsiveness during propofol
anaesthesia, postoperative delirium, and states of dissociation
from the environment such as dreams and psychedelic states)81,
as well as the case of ‘degraded consciousness’ after tiagabine
described by Darmani and colleagues82. Together with our data,
we can reliably, albeit indirectly, infer that CLIS patients could be
characterised by instability and arousal degradation, without
necessarily identifying their conscious states.

Patients with CLIS cannot communicate with the outside world
and for this reason, their state of consciousness is unclear. Here,
our objective was to provide indices of their level of arousal by
using measures of brain dynamics, such as PLE, and the degree of
signal compression and pattern repetitiveness, such as LZC (as an
index of the complexity of information processing). We show
extreme changes in PLE and LZC in CLIS at both the group and
intra-individual levels. This suggests degraded, reduced, or even
absent arousal in these patients, particularly those with prolonged
CLIS compared to our benchmark, namely other altered states
such as sleep and anaesthesia. Furthermore, patients with CLIS
show high degrees of intra-subject fluctuations in both PLE and
LZC, suggesting an unstable fluctuating state of alertness or
wakefulness rather than a stable reduced state of consciousness.
Together, our findings demonstrate that brain dynamics as
measured with PLE and LZC can serve as an index to diagnose
the state of consciousness, including its fluctuations, and, at the
same time, may also have prognostic value in CLIS. The actual
level of these measures at specific points in time may therefore be
used to determine the optimal timing for communication inter-
ventions through assistive technologies such as BCI.

Methods
Participants. Four datasets were analysed: (1) sleep dataset, (2) anaesthesia dataset,
(3) CLIS-ALS dataset, and (4) ALS dataset (with various levels of motor impair-
ment, see below). A description of each is given below and is summarized in
Table 2.

Sleep dataset. Twenty-three healthy adults (age= 25.95 ± 6.53 years, 15 women)
were included in this study. All participants reported normal sleep patterns and
were free of signs of sleep disorders, according to standard guidelines83, evaluated
by a night of polysomnography (PSG). Participants performed a complete PSG
using the Embla Titanium PSG system (Natus, San Carlos, CA) PSG system. The
EEG, EOG, and EMG signals were acquired with impedances < 5 kΩ, at a sampling
rate of 512 Hz, referenced to FPz. The EEGs were acquired using 11 gold-plated
electrodes placed according to the conventional 10–20 system. The EEG signals
were re-referenced offline to the average of the mastoid derivations for sleep stage
scoring. Sleep stages (wake, N1, N2, N3, REM) were marked using RemLogic
analysis software (Natus) following standard criteria84. See Fang et al.85 for a
further detailed description of the dataset.
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Anaesthesia dataset
Ketamine. For the anaesthesia dataset, the effects of two different general anaes-
thetics, namely, ketamine and sevoflurane, were evaluated in two distinct groups of
10 participants each. To assess the effect of ketamine, resting-state EEG recordings
(Ges300, EGI, USA) in ten right-handed surgical patients (age= 32.90 ± 9.48 years,
4 women), in awake conditions (5 min eyes-closed) condition using an electrode
cap (HydroCel 130) with 256 electrodes. After 10 min of quiet rest, patients were
asked to close their eyes and a 5 min EEG recording was taken in the awake state,
acquired using Netstation 4.2 software (EGI, USA). Then, 1 mg/kg of diluted
ketamine in 10 ml of 0.9% normal saline was infused for 2 min, until the Observer’s
Assessment of Alertness/Sedation (OAA/S) scale was 0 (no response to trapezius
squeeze). When the OAA/S score was 0, the ultrashort-acting opioid remifentanil
(1 μg/kg) and the neuromuscular relaxant rocuronium (0.6 mg/kg) were adminis-
tered for endotracheal intubation. After aesthetic induction, the diluted ketamine
was infused again for 20 min (1 mg/kg/h). EEG data were acquired for 5 min,
taking place 15 min after loss of responsiveness. All patients wore ear plugs to avoid
disruptions from environmental noise. EEG acquisitions were made at a sampling
rate of 1000 Hz, the electrode impedance was kept under 5KΩ, and bandpass
hardware filters were set between 0.1 and 100 Hz with a notch filter at 50 Hz. All
channels were referenced to Cz.

Sevoflurane. Similarly, the other 10 participants (age= 41.4 ± 13.1 years, 2 women)
followed the same protocol, but under sevoflurane anaesthesia. In this case, 8%
sevoflurane was initially administered in 100% oxygen 6 L/min, and when the
OAA/S score was 0, remifentanil (1 μg/kg) and rocuronium (0.6 mg/kg) were
administered for endotracheal intubation. After induction of the anaesthetic, the
end-tidal concentration of sevoflurane was maintained at 1.3 MAC (2.6%). EEG
data were acquired for 5 min, taking place 15 min after loss of responsiveness. The
equipment and the EEG acquisition procedure were identical to those followed
under the effects of ketamine. During the study period, electrocardiogram, non-
invasive blood pressure, and pulse oximetry were monitored in these non-
premedicated patients (see Supplementary Table 1 for further details).

CLIS-ALS dataset. A total of ten late-stage ALS patients with CLIS were included
(age= 47.1 ± 20.74 years, 5 women). CLIS was defined as the inability to com-
municate with eye movements or any other voluntary muscle with the use or non-
use of eye trackers for more than 6 months. The same protocol was also carried out
on six healthy controls in the awake condition (age= 45 ± 14,79 years, 2 women)7.

Furthermore, an EEG dataset was included from three of the ten participants
with CLIS, with multiple EEG sessions:54 Participant #6 (male, 40 years old;
20 sessions over a 20-month period; data acquisition: May 2017—January 2019);
participant #9 (male, 24 years old; 13 sessions over a 12-month period; data
acquisition: June 2017—June 2018, 12 months); participant #11 (male, 35 years old;
19 sessions over a 16-month period; data acquisition: May 2018—September 2019).
The EEG data were acquired for 5–17 min (reduced then to 5 min to standardise
the data) with eyes closed for both the CLIS and healthy participants. EEG signals
were recorded using a V-Amp amplifier and active electrodes (Brain Products,
Germany). The placement of the electrodes followed the international 10-5 system,
with reference and ground channels placed, respectively, on their right mastoid and
forehead. Due to clinical needs, the number and position of the sensors were
different between the patients, while they were identical between the healthy
participants. For a more detailed description of the acquisition procedure and
clinical conditions, see related studies7,25,54.

ALS dataset. Fourteen non-LIS ALS patients (age= 58.5 ± 11.78 years, 9 men, 1
woman, 4 n.a.) with ALSFRS-R scores of 3–40 (min= 0, max= 48)86, a single
female ALS patient (age= 52 years) in LIS (ALSFRS-R= 1), and two ALS patients

(one male, age= 43; one woman, age=64) in CLIS (ALSFRS-R= 0) participated in
the study (we believed it was appropriate to keep these two CLIS patients within
this dataset and not in the ‘CLIS-ALS’ dataset due to differences in EEG settings
and EEG equipment). Additionally, an EEG dataset with multiple recordings from
one of the fourteen non-LIS participants (male, 59 years old, 34 sessions eyes open)
and one of the two CLIS participants (female, 64 years old, 35 sessions eyes closed)
were included. The EEG data were acquired for 5 min (eyes closed) using 121 active
electrodes at a sampling frequency of 500 Hz (Brain Products GmbH, Germany).
The placement of the electrodes followed the international 5–10 system, reference
to the left mastoid. For a more detailed description of the acquisition procedure, see
related studies19,27,87,88. The same protocol was performed on 23 healthy controls
in the awake condition (age= 44.79 ± 7.47, 10 women).

In addition, regarding the female patient with CLIS, an assessment of overall
state of vigilance was attempted using a scale where 0= appears unconscious,
5= appears fit and fully conscious. Through these residual eye movements, we
attempted to determine from a behavioural point of view, her vigilance status (e.g.,
by checking the ability to keep the eyelids open, observing the frequency of eye
movements, and whether the eyes tend to roll back). This evaluation was carried
out at various stages of the visit during a brain-computer interface communication
experiment, where the patient with CLIS had to try to answer personal questions by
performing two cognitive tasks: (1) thinking of positive memories, and (2)
subtracting numbers for 15 s89,90. The evaluation was carried out after the resting
state session (5 min), and before starting each brain-computer interface session
(‘Before session 1’, ‘Before session 2’, ‘Before session 3’, 12 min each).

Ethics statement. All participants (or their legal guardians) gave their informed
written consent before participating. This research was approved by the respective
Universities/Hospitals depending on the origin of the dataset (sleep dataset:
Western University Health Science Research Ethics Board; Anaesthesia dataset:
Huashan Hospital, Fudan University; CLIS dataset: Medical Faculty of the Uni-
versity of Tübingen; ALS dataset: Max Planck Society Ethics Committee). This
study was conducted in accordance with the Declaration of Helsinki guidelines.

Pre-processing. Due to the diversity of the recordings from the four datasets used in
the present study, different pre-processing procedures were carried out. For this
purpose, the data were resampled after aliasing filtering to avoid possible biases due to
the similar but different sampling rates during the acquisition. We also took special
care in removing muscular and ocular artifacts. All preprocessing was applied using
custom MATLAB scripts (The MathWorks, 2017b) and the EEGLAB toolbox.

Sleep recordings. In the case of the sleep dataset, 30-second length epochs were
classified according to the particular sleep stage. However, due to the length of the
EEG recordings (overnight polysomnography during nocturnal sleep), epochs
labelled as movement/noise/unscored by a registered technologist were excluded
from subsequent analyses. In the remaining epochs, a FIR filter between 0.5 and
45 Hz was applied to the data, as in the other dataset. In particular, sleep data show
the main differences because of the duration of the recordings and the high
nonstationarity of the signals compared to the other datasets. The sleep recordings
have a duration of about 8 h, whereas the other datasets are only a few minutes in
duration. In addition, the different stages of sleep that a person goes through at
night are well known, with the stationarity of the EEG signals lower than during
wakefullness91. These sleep stages have different characteristics in terms of the
amplitude and frequency of the EEG signal91, so considering each sleep stage
separately is imperative. The other main difference between datasets is the number
of electrodes. Since sleep recordings are from standard polysomnography (PSG),
the number of electrodes is lower than that of the other datasets.

Table 2 Summary of the main characteristics of each dataset.

Sleep dataset Anaesthesia dataset CLIS-ALS dataset ALS dataset

Ketamine Sevoflurane Healthy
controls

CLIS Healthy
controls

non-LIS LIS CLIS

Participants 23 10 10 6 10 23 14 1 2
Age 26 ± 6.5 32.9 ± 9.5 41.4 ± 13.1 45 ± 14,8 47.1 ± 20.7 44.8 ± 7.5 58.5 ± 11.8 52 61.5 ± 3.5
Sex (m:f) 8:15 6:4 8:2 4:2 5:5 13:10 7:1+ 4 n.a. 0:1 1:1
Electrodes 11 256 256 16 1-20 121
Sampling rate in acquisition (Hz) 512 1000 1000 500 500
Sampling rate after resampling
(Hz)

256 250 250 250 250

Recording time (cut) 10 × 30 s epochs
(5 min)

5 min 5min 5min 5min

n.a. not available.
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Anaesthesia, CLIS, and ALS recordings. First, the sampling rate was downsampled to
250 Hz using EEGLAB’s resample function. Second, the continuous data were
bandpass filtered from 0.5 to 45 Hz. The unused channels were then removed, i.e.,
peripheric channels, as well as channels related to ocular or heart movements. Next,
clean_rawdata EEGLAB plugin was applied to remove flatline channels, low-
frequency drifts, noisy channels, and short-time bursts from each EEG channel. The
recordings were referenced to the average activity. Finally, stationary artefacts, spe-
cifically eye movements, muscular noise, and line noise were removed using ICA. The
CLIS dataset has a low and variable number of electrodes due to clinical factors (from
1 to 20, and the majority of patients with less than 10 electrodes; for details7,54).

Measurements. Brain dynamics and information processing in the brain can be
measured in various ways. One measure captures the balance in the power of slow-fast
frequencies, scale-free dynamics92–95, which can be measured by the PLE38,39,61,96.
Importantly, rather than changes in a specific single frequency band, altered states of
consciousness exhibit changes in the structure of the power spectrum that holds across
the different frequencies; this is reflected in increases in PLE during sleep38,61,66,97,
anesthesia38,39,42 and disorders of consciousness38,60,98–100. In addition to PLE, the
LZC; a metric of how regular/repeatable, or diverse the EEG signal is over time101–103

was used. Importantly, changes in LZC (and its alternatives) have been associated with
changes in state of consciousness (see Sarasso et al. for a detailed review104) such as
sleep40,43,105–108, anesthesia39,40,42,51,109, and disorders of
consciousness39–41,98,99,110,111.

Spectral and PLE analysis. To estimate the PSD of the EEG data, the Welch
method was calculated112. This method requires a split of the EEG time series into
overlapped segments of length L. For our analysis, L was set to 3 times the sampling
rate (e.g., 3 s), with an overlap of 50%. Then, the segments were smoothed using a
Hamming window. The Fast Fourier Transform (FFT) was applied in an epoch-
based way to obtain the modified periodogram. Finally, PSD was estimated by
averaging all periodograms. This allows us to obtain an adequate resolution (two
data samples per Hz) with an assumable increase in computational cost. PSD
values represent the power of oscillatory neuronal activity across the frequency
spectrum (see Supplementary Fig. 5 for a representation of sample of raw EEG data
from each group, with the power spectral density of the given EEG session).

Once the PSD was computed, the PLE was obtained using custom Matlab
scripts. For this purpose, the PSD representation was logarithmically transformed
in both the frequency spectrum and the power spectrum range. Then, the slope of
the PSD was estimated by computing linear least squares regression. Finally, the
PLE of each was defined as the absolute value of such a slope. The average PLE
across epochs and channels was used for further analysis. PLE values represent the
extent of wide-band arrhythmic neuronal activity in the EEG. Thus, lower PLE
values, that is, more flatness in the PSD function, are associated with more
arrhythmic activity. The extreme is a white noise signal with a completely flat PLE.

It is worth noting that the PLE complements the PSD analysis by identifying
differences in the temporal structure of the spectrum power (in a static way).
Although the PSD shows the differences in the power spectrum in terms of
absolute power at particular frequencies, the PLE instead highlights the specific
relationship in power between slow and fast frequencies, showing how their
balance is altered in certain states, e.g., in anaesthesia39. For this reason, the
increase in power of slower frequencies is not always and necessarily associated
with a higher negative slope of the PSD (i.e., higher PLE) and vice versa. For
example, a PSD that shows high power at slower frequencies may be associated
with a low PLE (flat slope) in the case of an increased power also at faster
frequencies. On the other hand, a PSD that shows low power at slower frequencies
may be associated with a higher PLE in the event of an excessive decrease in the
faster frequencies. Importantly, PLE measures changes in the structure of the
power spectrum across different frequencies rather than measuring changes in one
specific single frequency band.

LZC analysis. LZC is a nonlinear measure of complexity that estimates the rate of
occurrence of distinct sub-sequences or patterns in a given time series44,113,114. To
calculate the LZC, the discrete signal in the time domain, x[t], is binarized into a
new sequence (P) using a threshold (T):

P ¼ s 1ð Þ; s 2ð Þ; ¼ ; s nð Þ ð1Þ
where

s ið Þ ¼ 0; ifx i½ �<T

1; otherwise

�
ð2Þ

After binarizing the signal, the sequence P is scanned from left to right and the
complexity counter is increased by one unit every time a new subsequence of
consecutive characters is encountered. Among the different thresholding options,
we used a median split, since it has been commonly applied in previous studies due
to its robustness to outliers115. In particular, we followed the following algorithm:116

1. Let S and Q denote two subsequences of P and SQ be the concatenation of S
and Q, while sequence SQπ is derived from SQ after its last character is
deleted (π denotes the operation of deleting the last character in the
sequence). Let v SQπð Þ denote the vocabulary of all different subsequences of

SQπ . At the beginning, the complexity measurement is c nð Þ ¼ 1, S ¼ s 1ð Þ,
Q ¼ s 2ð Þ, therefore SQπ ¼ s 1ð Þ.

2. In general, S ¼ s 1ð Þ; s 2ð Þ; ¼ ; s rð Þ, Q ¼ s r þ 1ð Þ, then SQπ ¼ s 1ð Þ;
s 1ð Þ; ¼ ; s rð Þ; if Q belongs to v(SQπ), then Q is a subsequence of SQπ, not
a new sequence.

3. Renew Q to be s r þ 1ð Þ, s r þ 2ð Þ and check if Q belongs to v SQπð Þ or not.
4. Repeat the previous steps until Q does not belong to v SQπð Þ . Now Q ¼

s r þ 1ð Þ; s r þ 2ð Þ; ¼ ; s r þ ið Þ is not a subsequence of SQπ ¼ s 1ð Þ;
s 2ð Þ; ¼ ; s r þ i� 1ð Þ, so increase c nð Þ by one.

5. Thereafter, S is renewed to be S ¼ s 1ð Þ; s 2ð Þ; ¼ ; s r þ ið Þ, and
Q ¼ s r þ iþ 1ð Þ.

This procedure is repeated until Q is the last character, being c nð Þ the number of
different subsequences in P. Finally, c nð Þ is normalized to reflect the arising rate of
new patterns in the sequence as follows:102

LZC ¼ c nð Þ
n=log2 nð Þ2 ð3Þ

where n is the length of the time series.

Sliding window. Since we were interested in characterising the time evolution of the
measures explained above (LZC and PLE), that is, computing the temporal dynamics
of the signal over time, we used a sliding-window approach. Hence, we use 1-second-
length windows with 50% overlap as a trade-off between a sufficient number of
windows and sufficient temporal resolution. To verify that the percentage of overlap
did not influence the outcomes, and that the length of the chosen window is sufficient
for the calculation of the parameters, we also used windows of 5 s duration with 90%
overlap (results in the Supplementary Figs. 6–9). This approach verified that this
procedure used a window length that was adequate to estimate the scale-free
dynamics (PLE), and that the normalisation of the LZC was independent of the
window length (see Eq. 3). Note that these two approaches result in the same number
of windows. Furthermore, to confirm the PLE and LZC results, in the Supplementary
Information, the autocorrelation window (ACW) was also calculated as a control
analysis, which has been shown to be related to neural input processing and
consciousness38,74,75 (Supplementary Figs. 6–9). After following the sliding-window
procedure, the mean of the parameters across the sliding windows (mPLE and mLZC)
was calculated, as well as the coefficient of variation (cvPLE and cvLZC).

Statistics and reproducibility. Statistical analysis was performed with the Matlab
‘Statistics and Machine Learning’ Toolbox (version 2017b). Both to analyse the
distribution of the values of each dataset (violin plots) and to study the distribution
of the measurements calculated on the scalp (topographic plots), normality and
homoscedasticity were assessed using the Kolmogorov–Smirnov test and Levene
test, respectively. Given violations of the assumptions for parametric tests (nor-
mality and homoscedasticity), and the low number of participants in certain groups
of specific datasets, non-parametric tests were employed. For pairwise compar-
isons, the Mann-Whitney U test and the Wilcoxon signed-rank test were used to
assess comparisons between groups and within groups, respectively. In the specific
scenario of the sleep dataset, a comparison was conducted among five distinct
conditions (namely, wake, N1, N2, N3, and REM). Consequently, the Friedman test
was employed in this particular case. Post hoc comparisons were performed after
controlling for the false discovery rate (FDR)117,118.

For correlations, Spearman’s rho test was used since we do not have an a priori
hypothesis about the type of relationship between the variables (i.e., linear or
nonlinear relationship).

To further analyse the robustness of the results, a receiver operating
characteristic (ROC) curve was computed for each dataset and measure
(Supplementary Figs. 1–3, 6–8). The ROC curves illustrate the diagnostic ability of
a binary classifier as its discrimination threshold is varied. To obtain these curves,
the true positive rate (i.e., sensitivity) is represented against the false-negative rate
(i.e., 1- specificity) at different thresholds. Finally, the area under the ROC curve
(AUC) was calculated. It ranges from 0 to 1. The higher the AUC, the higher the
robustness or performance of the binary classifier119.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data used to generate figures are available as Supplementary Data 1. The raw data
that support the findings of this study are available on request from the corresponding
author, upon reasonable request. The data are not publicly available due to ethical
requirements and privacy concerns.

Code availability
Matlab codes are available at the following URL: https://github.com/Temporo-spatial/
PLE_LZC.
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