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Schizophrenia (SCZ) can be characterized as a basic 
self-disorder that is featured by abnormal temporal in-
tegration on phenomenological (experience) and psy-
chological (information processing) levels. Temporal 
integration on the neuronal level can be measured by 
the brain’s intrinsic neural timescale using the auto-
correlation window (ACW) and power-law exponent 
(PLE). Our goal was to relate intrinsic neural time-
scales (ACW, PLE), as a proxy of  temporal integration 
on the neuronal level, to temporal integration related 
to self-disorder on psychological (Enfacement illusion 
task in electroencephalography) and phenomenological 
(Examination of  Anomalous Self-Experience [EASE]) 
levels. SCZ participants exhibited prolonged ACW and 
higher PLE during the self-referential task (Enfacement 
illusion), but not during the non-self-referential task 
(auditory oddball). The degree of  ACW/PLE change 
during task relative to rest was significantly reduced 
in self-referential task in SCZ. A  moderation model 
showed that low and high ACW/PLE exerted differen-
tial impact on the relationship of  self-disorder (EASE) 
and negative symptoms (PANSS). In sum, we demon-
strate abnormal prolongation in intrinsic neural time-
scale during self-reference in SCZ including its relation 
to basic self-disorder and negative symptoms. Our re-
sults point to abnormal relation of  self  and temporal 
integration at the core of  SCZ constituting a “common 
currency” of  neuronal, psychological, and phenomeno-
logical levels.

Key words:   self-disorder/intrinsic neural timescale/auto-
correlation window/power law exponent/EEG/rest-task 
modulation/enfacement illusion/EASE

Introduction 

Temporal Integration I—“Common Currency” of 
Phenomenological, Psychological, and Neuronal Levels

The disturbance of  the basic self  (a structural insta-
bility of  the first person-perspective) has been pro-
posed to constitute a core trait-phenomenological 
feature of  schizophrenia (SCZ).1–3 Basic self-disorder 
can be assessed with a well-established phenomeno-
logical instrument, ie, the EASE-scale (Examination 
of  Anomalous Self-Experience).4 One key aspect of 
basic self-disorder is abnormal temporal integration 
(see below for definition) on a phenomenological level 
(time experience).5–8 Abnormal temporal integration 
is also described on the psychological (time percep-
tion) level6,9–15 as related to a discontinuous sense of 
self.2,5,8,16–18 The neuronal correlates of  abnormal tem-
poral integration as a key aspect of  basic self-disorder 
remain unknown.

We understand temporal integration in a wide way, as 
connecting different time points by pooling and summing 
them (see also refs. 19,20). Connection between different 
time points can occur on different levels, phenomenolog-
ical, psychological, and neuronal levels, thus providing 
their “common currency.” 21

On the phenomenological level, different time points 
are integrated into experience of time as it is manifest in 
the “stream of consciousness” 22–24 and “inner time con-
sciousness.” 5–8 Psychologically, different stimuli at dif-
ferent time points are integrated into perception when 
we perceive a coherent scene or a melody composed of 
stimuli occurring at different time points; the distinction 
of psychological and phenomenological levels is relative 
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and operational (rather than absolute and ontological) as 
both provide different methods to access related or even 
the same temporal integration. Finally, neural activities 
at different time points are also pooled, summed, and in-
tegrated, which can be measured by the brain’s intrinsic 
neural timescale.20

Temporal Integration II—The Brain’s Intrinsic Neural 
Timescale

Information processing in the brain is shaped by the 
spontaneous activity’s spatiotemporal dynamics con-
stituting an intricate temporal structure. Such tem-
poral structure is manifest in what has been described 
as “intrinsic neural timescale.” 25–28 The intrinsic neural 
timescale provides temporal windows within which dif-
ferent stimuli can be integrated and processed together 
(temporal integration on the psychological level).20,29 
The intrinsic neural timescale can be investigated by 
calculating the autocorrelation window (ACW). The 
ACW measures repeating and correlating patterns in a 
signal, enabling us to test the relationship, eg, correla-
tion in neural activity patterns across different points 
in time.25 It has been applied at cellular25,30,31 and system 
levels32–34 measuring temporal integration on the neu-
ronal level.20,25–27,29

Longer ACW is related to slow frequencies while 
shorter ACW is modulated by stronger power in faster 
frequencies.29 The balance in power between slow and 
fast frequencies can be measured in frequency character-
istics of periodic oscillations in electroencephalography 
(EEG) calculating power-law exponent (PLE) as an index 
if  arrhythmic scale-free (“1/f  noise”) brain activity.35–40 
Like ACW in the time domain, the PLE can be conceived 
an index of temporal integration albeit in the frequency 
domain, ie, it measures the degree of integration in the 
power of different frequencies.26,27,29,38

Healthy subject studies in functional magnetic res-
onance imaging (fMRI)37 and EEG32 show that inter-
individual variation in intrinsic neural timescales (ACW, 
PLE) explains a high degree of inter-individual variation 
in self-consciousness (see refs. 41–43). These data suggest 
that temporal integration on the neuronal level, ie, ACW 
and PLE, is related to temporal integration on psycho-
logical and phenomenological levels of self—this pro-
vides the background of our study.

Temporal Integration III—“Common Currency” 
of Neuronal, Psychological, and Phenomenological 
Changes of Self in SCZ

Several studies using fMRI44–47 or EEG9–13,48–53 observed 
changes during self-referential stimuli in SCZ; ie, re-
duced activity in cortical midline structures (medial pre-
frontal cortex and posterior cingulate cortex) (fMRI)44,46 
and decreased amplitudes in event-related potentials.49–53 

A  multisensory self-recognition task (Enfacement illu-
sion)54,55 found behavioral deficits in SCZ56,57 possibly 
related to deficits in temporal integration on the psycho-
logical level, the neuronal mechanisms of which remain 
unclear.

SCZ has been characterized by decreases in faster 
frequency power (gamma,58–60 alpha,61,62 and theta63–65). 
Given reduced fast frequency power in SCZ as well as 
the dependence of ACW and PLE on slow-fast frequency 
power balance, one would expect prolonged ACW and 
elevated PLE in SCZ on the neuronal level. Moreover, 
findings in healthy subjects (above) suggest that altered 
ACW and PLE on the neuronal level could be related to 
changes in temporal integration of self  on psychological 
and phenomenological levels.

Aims, Hypotheses, and Experimental Design

The goal of our study is to investigate the brain’s tem-
poral integration on the neuronal level by probing in-
trinsic neural timescale for the first time in SCZ (see33,66 
for autism) including its relation to psychological and 
phenomenological changes of self. We hypothesized that 
temporal integration is abnormal in the self  of SCZ pro-
viding the missing link or “common currency” 21 of phe-
nomenological, psychological, and neuronal levels. To 
that end, we applied measures of temporal integration 
on all 3 levels: phenomenological, psychological, and 
neuronal.

Our first specific aim consisted in testing temporal in-
tegration on the neuronal level by measuring intrinsic 
neural timescales in EEG using ACW and PLE (as cal-
culated over specifically the fractal rather than oscilla-
tory component of the power spectrum; see Methods 
and Materials); ACW and PLE were measured during 
task states as well as in their relative difference to rest, 
ie, “rest-task modulation.” 40,67 Based on the findings on 
self-referential processing,9–13,48–53 we hypothesized that 
SCZ participants would show (1) prolonged ACW and 
abnormally high PLE and (2) reduced rest-task ACW/
PLE difference during specifically the self-referential task 
(but not non-self-referential task).

Testing temporal integration on the psychological 
level during EEG, we applied a self-referential task 
(Enfacement illusion)54,55,57 and a non-self-referential task 
(auditory oddball paradigm)68–70: presenting morphed 
pictures of one’s own and another person’s face in a 
temporal sequence requires subjects to temporally inte-
grate (on the psychological level) the different pictures’ 
time points under the self  or, alternatively, segregate 
them when attributing them to the other person’s face, 
ie, non-self.

Our second specific aim was to investigate the relation 
of neuronal and psychological abnormalities of self to 
psychopathological and phenomenological changes, ie, the 
basic self-disorder.9–13,48–53 Applying a moderation model, 
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we hypothesized that temporal integration on the neuronal 
level (rest-task modulation of ACW and PLE) during a 
task requiring temporal integration on the psychological 
level (Enfacement task) would moderate the impact of the 
phenomenological level (basic self-disorder) on psycho-
pathological symptoms (like negative symptoms).

Methods and Materials

Subjects

Thirty-seven patients diagnosed with SCZ (mean age 
22.11 years, 14 males) and 36 matched healthy controls 
(HC) (mean age 24.06 years, 14 males) were included in 
the study. The patients were recruited from 3 psychiatric 
outpatient clinics in Region Zealand in Denmark be-
tween May 2017 and February 2019. The majority of pa-
tients were under treatment with atypical antipsychotics 
in a stable post-acute symptomatic phase of their illness 
(see supplementary table S1; see supplementary material 
for inclusion and exclusion criteria).

Written consent was obtained from all participants 
after having received an oral and written description of 
the paradigms in the study. The study was approved by 
the regional data agency and ethics committee in Region 
Zealand, Denmark and in line with the ethical standards 
of the Declaration of Helsinki 2013.

Clinical Evaluation

The psychiatric evaluation was performed by K.E.S., 
a senior resident in psychiatry, who was reliability 
tested and trained by the founder of  the EASE scale 
(J.P.) and a senior EASE expert (J.N.). All partici-
pants were evaluated with a comprehensive psycho-
pathological examination, including Assessment of 
Positive and Negative Syndrome Scale (PANSS),71 the 
Operational Criteria Checklist for Psychotic Illness 
and Affective Illness (OPCRIT),72 the perceptual do-
main of  the Bonn-scale (BSABS),73 and Examination 
of  Anomalous Self  Experience (EASE), that targets 
different domains of  self-disorder (see supplementary 
material).4 A  focused neurological examination was 
performed for vision, hearing, and sensation.

EEG—Rest and Task

Resting State.  EEG was recorded with participants 
lying down with eyes open for 5 minutes. Participants 
were asked to fix their gaze at a particular point on the 
wall while relaxing. EEG was recorded continuously 
during the following paradigms:

Enfacement Illusion.  The task consisted of 3 blocks of 4 fa-
cial recognition tasks. The tasks comprised pictures of the par-
ticipants face and/or other faces, being dynamically morphed 
into each other on a screen. Each block had 4 morphing 

conditions: self-other, other-self, other1-other2, and other2-
other1 (in randomized order). For further details, see ref. 56.

Oddball Paradigm.  The paradigm consisted of 1000 
tones at 1000 Hz, 60dB, presented with an inter-stimulus 
interval of 500 ms; 900 tones (90%) were standard tones 
of 50 ms duration and 100 (10%) were deviants of 100 ms 
duration. All tones were presented in a randomized order 
binaurally through headphones, while the participants 
watched a mute video on a screen.

EEG Acquisition and Analysis

Recording.   The EEG recording system used was a Nicolet 
Nervus, version 5.94.1.534 with a V44 amplifying system and 
a sampling rate at 250 Hz. The Ag/AgCl electrodes were dis-
tributed with a WaveGuard cap-system comprising 20 elec-
trodes applied according to the 10/20 system. Six additional 
low-row electrodes were used with eye-flick transducer, 2 
ECG-electrodes, and a built-in NONN pulse oximetry. 

Preprocessing.   EEG preprocessing of the data was per-
formed with Harvard Automated Preprocessing Pipeline 
for EEG (HAPPE).74 Data were filtered with a 1-Hz FIR 
highpass filter in EEGLAB.75 Because the Cleanline pro-
cedure traditionally used in the HAPPE pipeline failed 
to adequately suppress line noise in our data, we re-
placed this step with notch filtering at 50 and 100 Hz. 
Bad channels were rejected using HAPPE’s normalized 
log-power heuristic, and wavelet-thresholded ICA was 
performed to prepare data for regular ICA decomposi-
tion. Artifactual ICA components were rejected using 
MARA.76 Data were then segmented into 2-second non-
overlapping epochs, and bad channels and segments were 
repaired using FASTER.77To preserve the continuity of 
time series for subsequent analyses, no segments were re-
jected at this step. Finally, data were re-referenced to a 
common average reference.

Calculation of ACW.  The ACW was calculated according 
to the methods of Honey et  al.29Autocorrelation was 
calculated using windows of 20-second length with an 
overlap of 50%. The maximum lag was set to 0.5 seconds, 
given that we have previously established that the ACW 
values agree for different maximum lag values (ranged 
from 0.1 to 1 seconds) (Wolff et al).32 The full-width-half-
maximum of the main lobe of each of the autocorrelation 
functions was then computed for each epoch. ACW was 
estimated as the average of these values over all the epochs 
for each electrode and condition. ACW values represent 
the extent of the periodicity of the EEG signal, whereby 
longer ACWs can be interpreted as greater stability of 
the signal over time. The length of the ACW can be seen, 
therefore, as an index that summarizes the degree of regu-
larity of a signal, with longer ACW associated with more 
a regular EEG signal.
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Calculation of PLE.   The PLE was calculated on the 
fractal (rather than oscillatory) component of the power 
spectrum (see supplementary material for details).

Calculation of Rest-Task Differences (ACW, PLE).  See 
supplementary material for details.

Statistical Analysis

Differences in ACW and PLE between SCZ and HC were 
assessed using cluster-based permutation testing (FDR-
correction)78 implemented in the Fieldtrip toolbox.79 The 
Wilcoxon rank-sum statistic was used for channel-level sta-
tistics, and neighboring electrodes were determined using 
triangulation. For the moderation model80 testing for cor-
relation of ACW/PLE with the interaction between psy-
chopathological components (from principal component 
analysis [PCA]), the mean values of task-related ACW and 
PLE (for Enfacement illusion) all electrodes were used. For 
each PCA component and for each neural variable, we fit 
a linear model with the neural variable of interest plus its 
interactions with the other components as independent 
variables. For example, for component 1 and ACW, the 
model included terms for ACW plus its interactions with 
component 2, component 3, and the 3-way interaction.

Results

Phenomenological, Psychopathological, and 
Psychological Levels—Relation of EASE, PANSS, and 
Enfacement Illusion

The 5 domains of EASE as well as PANSS general, positive, 
and negative were as expected significantly higher in the SCZ 
group compared with HC (see supplementary table S2). In 
order to test for the relationship of self-disorder to positive 
and negative symptoms, we conducted PCA. The analysis 
of psychopathological symptoms yielded 3 components 

(table 1). The first component explained 48% of the vari-
ance and represented mainly the EASE variables, with con-
tribution from the Bonn scale (self-component). The second 
component loaded strongly on the PANSS negative score, 
with contribution from PANSS general and negative cor-
relation with EASE domain 5 (negative symptom compo-
nent). The third component loaded strongly on PANSS 
positive symptoms, with some contribution from the EASE 
domain 5 and negative contribution from EASE domain 4 
(positive symptom component).

We found a weak but significant correlation between the 
total EASE score and self-recognition in the self-other di-
rection (r = .25; P = .03) among all participants, supporting 
the relationship of the self-disorder on the phenomenolog-
ical level to changes in self on the psychological level. Within 
the SCZ group separately, there was a nonsignificant weak 
negative correlation (r = −.25; P = .16).

Neuronal and Psychological Levels—Intrinsic Neural 
Timescale in Task and Task-Rest EEG

We observed significantly longer ACW in the Enfacement 
illusion task in SCZ compared with HC (P  =  .03) as 
obtained by cluster-based permutation that corresponds 
to FDR78,79 (which holds for all the following statistical 
values of ACW and PLE) (figure 1a). The PLE showed 
significant group difference during the Enfacement illu-
sion: Schizophrenia (SCH) exhibited higher PLE than HC 
(P  =  .03) meaning that the slope was steeper as shifted 
toward slower frequencies in SCH (reflecting higher reg-
ularity with more long-range correlation in arrythmic fluc-
tuations) (figure 1b). In contrast, no differences in ACW 
and PLE were obtained in the non-self-referential auditory 
oddball task (see supplementary figure S1 and table S3.1).

Next, given the known involvement of the resting state in 
self-referential task activity,32,37,41–43 we calculated the relative 

Table 1.  Component Weights From the Principal Component Analysis of Psychopathological Scalesa

Component 1 Component 2 Component 3

EASE domain 1 0.406283319 −0.09740349 −0.16122152
EASE domain 2 0.435772802 0.058453723 −0.05144734
EASE domain 3 0.391909064 0.068597697 −0.17367412
EASE domain 4 0.317294974 0.026237335 −0.46153488
EASE domain 5 0.289602831 0.419820488 0.404926189
Perceptual domain (Bonn) 0.414047859 0.063385769 0.105968483
PANSS Positive 0.208911823 0.211443414 0.740784151
PANSS Negative 0.067811038 0.734997141 0.036286068
PANSS General 0.295328966 0.465301588 −0.05395621
Explained variance 48.4% 16.8% 13.0%

Note: EASE, Examination of Anomalous Self-Experience.
aSince all variables were z-scored before being entered into the analysis, the weights are directly comparable between scales. Variance ex-
plained by each component is included at the bottom of the table. 
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difference between task (enfacement illusion and auditory 
oddball task) and rest in both ACW and PLE, ie, rest-task 
difference. We observed significantly lower task-rest differ-
ences in both ACW and PLE in specifically the Enfacement 
illusion (but not the auditory oddball task) among the SCZ 
(figures 2a and 2b; P = .0370 and .0020, respectively). Power 
spectra and best-fit line (figure 2c) did not show any change 
from rest to task in both ACW and PLE in SCZ, whereas 
there was a clear difference in HC (see circles on the right 
in figure 2c; see supplementary material for further results): 
during the task, HC tilted their slow-fast frequency fractal 
power balance toward faster frequencies, whereas SCH ex-
hibited no such shift (figure 2c).

Relation of Neuronal to Phenomenological and 
Psychopathological Levels—Moderation Analysis

ACW and PLE during Enfacement illusion were found 
to directly correlate with none of  the 3 components in 

a direct way. To investigate indirect relationships, we 
applied a moderation model80 to test for the differen-
tial impact of  high and low ACW/PLE values on the 
relationship of  the self-disorder (first component) with 
negative symptoms (second component) and posi-
tive symptoms (third component). Hence, rather than 
targeting the direct relationship of  ACW/PLE to each 
of  our 3 psychopathological PCA components (EASE 
and PANSS), the moderation analysis tests whether 
different levels of  ACW/PLE, ie, low and high, me-
diate the relationship between the 3 PCA components 
in different ways.

We observed a highly significantly different impact 
of  low and high ACW/PLE values on the relation-
ship of  the first component (self-disorders) with the 
second component (negative symptoms). When ACW/
PLE values are low, self-disorders correlate negatively 
with the negative symptom component (P  =  .02042 
for ACW and P  =  .02752 for PLE). In contrast, the 

Fig. 1.  (A) Altered autocorrelation window (ACW) and (B) power-law exponent (PLE) in enfacement task. Scalp topographies of the 
ACW and PLE values are shown on top, and violin plots of the average values are shown at the bottom. For each figure, white dots 
in the rightmost topoplot represent electrodes, which form part of the significant cluster (following the cluster-based permutation test 
described in the text). Black dots in this plot represent electrodes with significant results at the channel level, but which did not form part 
of the cluster. Violin plots show the average value of ACW or PLE over only the white electrodes. In each figure, insets on the very right 
show the extremes of individual subjects’ data—the schizophrenic participant shown has the highest mean ACW or PLE over the white 
electrodes, and the healthy participant shown has the lowest mean ACW or PLE. 
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2 psychopathological components correlate positively 
when the values of  ACW/PLE are high (P = .0054 for 
ACW and P  =  .00068 for PLE) (see supplementary 
figure S2 and supplementary tables S3.1–S3.3 for the 
detailed results). These results were obtained only for 
the enfacement illusion task, whereas no significant 
moderation effects were observed when testing for the 
effects of  ACW/PLE during the auditory oddball task 
on the 3 PCA components.

Discussion

We conducted an EEG rest and task study investigating the 
brain’s intrinsic neural timescale in order to relate temporal 
integration on the neuronal level to temporal integration of 
self on psychological and phenomenological levels. Main 
results are: (1) PCA revealed self-disorder as psychopath-
ological component distinct from negative and positive 
symptoms; (2) longer ACW and higher PLE only in self-ref-
erential (Enfacement illusion) but not non-self-referential 

Fig. 2.  Altered (A) autocorrelation window (ACW) and (B) power-law exponent (PLE) in the difference between Enfacement 
illusion and resting state. Scalp topographies of  the ACW and PLE values are shown on top, and violin plots of  the average 
values are shown at the bottom. The 2 left topoplots (for the 2 groups) represent the task values minus the resting-state values. 
The rightmost topoplot represents the group differences in this task-rest difference. White dots in the rightmost topoplot 
represent electrodes, which form part of  the significant cluster. Black dots in this plot represent electrodes with significant results 
at the channel level, but which did not form part of  the cluster. Violin plots show the average value of  ACW or PLE over only 
the white electrodes. (C) Fractal power spectra of  healthy and schizophrenia participants in rest and task states (x-axis: frequency 
range; y-axis: power). The actual data of  fractal power spectra (extracted from the IRASA method) are shown left, while the 
best-fit lines (as plotted onto the data) used to estimate the PLE are shown right. The slope of  the curve, which defines the PLE 
value, changes from rest to task in the healthy subjects (upper part) but not in the schizophrenia participants (lower part)—
circles (on the right) indicate the shift in the slope from rest to task in the slower (upper circle) and faster (lower circle) frequency 
ranges. The rest and task curves are mostly parallel in both slower and faster frequency ranges in schizophrenia participants 
(lower right). Healthy subjects, in contrast, show deviating curves with power increase in faster frequencies (relative to slower 
frequencies) during the task (relative to rest) (upper right).
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task (oddball); (3) reduced rest-task differences in ACW 
and PLE during the self-referential task; and (4) ACW and 
PLE values, ie, low or high, moderate the relation of basic 
self-disorder and negative symptoms.

We observed that ACW and PLE change only during the 
self-referential task but not during a non-self-referential 
task. Hence, temporal integration on the neuronal level 
in SCZ is primarily altered with respect to self-referen-
tial information on the psychological level. Given that 
self-referential information is closely associated with 
resting-state activity in healthy subjects,32,37,41,42 we tested 
for rest-task modulation of ACW and PLE. SCZ partici-
pants showed reduced rest-task difference: unlike healthy 
subjects, they could not modulate their resting-state ac-
tivity during self-referential task by shifting their neural 
activity toward shorter time scales (shorter ACW) and 
faster frequency power (lower PLE).81,82

Our results highlight a key role for abnormal temporal 
integration in basic self-disorder of SCZ. Longer intrinsic 
neural timescales (longer ACW and higher PLE) may fa-
cilitate abnormally strong integration of stimuli across 
different time points which otherwise, in the healthy state, 
would be segregated. Abnormally long ACW (and high 
PLE) may mediate temporal integration of face pictures 
over longer duration during enfacement—more face pic-
ture are consecutively integrated with self rather than being 
temporally segregated from self and related to non-self. 
Our moderation analysis suggests that such abnormal tem-
poral integration on neuronal and psychological levels is 
intimately related to the phenomenological level of basic 
self-disorder and its impact on negative symptoms.

Limitations

Our sample size is small but provides outstanding phe-
nomenological, psychological, and neuronal evalua-
tion that need to be complemented by more large-scale 

studies. EEG measurements were based on the recordings 
of the entire Enfacement illusion task rather than single 
trials, including facial recognition of both self  and other 
(see56 and supplementary material for more details).

Conclusions

We show prolonged intrinsic neural timescale in EEG of 
SCZ during specifically self-referential processing including 
its relation to basic self-disorder and its modulation of neg-
ative symptoms. These findings support our background 
assumption that abnormal temporal integration could pro-
vide the link or “common currency” 21 of neuronal, psycho-
logical, and phenomenological alterations of self in SCZ. 
Our results suggest that psychopathological symptoms 
may fundamentally be based on dynamic, ie, temporal 
(and spatial) abnormalities (rather than being primarily 
cognitive deficits)—this reflects the recently introduced 
“Spatiotemporal Psychopathology.” 83–86

Supplementary Material

Supplementary material is available at Schizophrenia 
Bulletin.
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