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Dynamic relationships between spontaneous and
evoked electrophysiological activity
Soren Wainio-Theberge 1,2, Annemarie Wolff1 & Georg Northoff 1,3✉

Spontaneous neural activity fluctuations have been shown to influence trial-by-trial variation

in perceptual, cognitive, and behavioral outcomes. However, the complex electrophysiological

mechanisms by which these fluctuations shape stimulus-evoked neural activity remain lar-

gely to be explored. Employing a large-scale magnetoencephalographic dataset and an

electroencephalographic replication dataset, we investigate the relationship between spon-

taneous and evoked neural activity across a range of electrophysiological variables. We

observe that for high-frequency activity, high pre-stimulus amplitudes lead to greater evoked

desynchronization, while for low frequencies, high pre-stimulus amplitudes induce larger

degrees of event-related synchronization. We further decompose electrophysiological power

into oscillatory and scale-free components, demonstrating different patterns of spontaneous-

evoked correlation for each component. Finally, we find correlations between spontaneous

and evoked time-domain electrophysiological signals. Overall, we demonstrate that the

dynamics of multiple electrophysiological variables exhibit distinct relationships between

their spontaneous and evoked activity, a result which carries implications for experimental

design and analysis in non-invasive electrophysiology.
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Even in the absence of specific experimental stimulation,
neural activity displays spontaneous fluctuations with a
characteristic temporal and spatial structure1,2. This spon-

taneous neural activity has been associated with various forms of
internally-oriented cognition, such as mind wandering3,4, self-
referential processing5–7, mental time travel8–10 and social cog-
nition/theory of mind11. While spontaneous activity is typically
studied in stimulus-free “resting-state” designs, it persists in
cognitive tasks as trial-by-trial fluctuations in neural activity.
Multiple recent studies have now demonstrated that spontaneous
neural activity prior to stimulus onset can predict or influence the
subject’s stimulus-related perception12–14, sense of self15,16,
consciousness17–21, attention22, reaction time23, and working
memory24. This pervasive influence of pre-stimulus activity on
behavioral outcomes raises questions about the neural mechan-
ism of this effect. If spontaneous pre-stimulus neural activity is to
have behaviorally observable effects, then it must influence the
brain’s processing of external stimuli, and hence also influence
neural activity changes following stimulus onset. However, these
dynamic relationships between spontaneous pre-stimulus and
stimulus-evoked activity remain poorly understood.

Previous small-sample functional Magnetic Resonance Imaging
(fMRI) studies have revealed a negative correlation between
spontaneous and evoked Blood Oxygen Level Dependent signal
(BOLD) amplitudes25,26. In EEG investigations, the power of
cortical oscillations, in particular the alpha band, are thought to
reflect modulations of cortical excitability, and as such have been
investigated for their role in shaping stimulus processing27–32.
Other work has investigated the influence of more general phy-
siological variables such as desynchronization and arousal on
poststimulus activity, operationalizing these in various ways33–35,
or has conducted modeling work on the question36,37. While this
work has revealed useful insights into the relationship between
ongoing brain states and stimulus processing, the specific elec-
trophysiological variables which exhibit relationships between
their ongoing and evoked dynamics are not known, nor are the
form of these relationships (e.g., positive versus negative
correlation) clear.

Electroencephalography (EEG) and magnetoencephalography
(MEG) studies on the relationship of spontaneous and evoked
activity have typically focussed on different facets of neural
physiology on either side of stimulus onset, selecting particular
operational measures of pre-stimulus activity based on hypoth-
eses about more general physiological variables, such as desyn-
chronization. However, it remains unknown whether there are
systematic relationships between spontaneous and evoked activity
within the same electrophysiological features, rather than both
components being operationalized by distinct measures. Are
there, for instance, dynamic mechanisms by which spontaneous
pre-stimulus variation in gamma power affects stimulus-evoked
gamma responses, or, alternatively, are evoked responses influ-
enced primarily by more general brain states of excitability and
synchronization? While such a spontaneous-evoked relationship
has been shown in the dynamics of the BOLD signal in fMRI25,26,
it has never been investigated in MEG/EEG. This is of con-
siderable importance as the physiological interpretation of the
MEG/EEG signal is more feasible and includes a greater diversity
of neurophysiological processes.

EEG and MEG provide a window into an abundance of neu-
rophysiological phenomena38, and analyses in the time and fre-
quency domains reflect different underlying neurophysiological
processes, though these relationships are not necessarily specific
or fully understood. The time-domain electrophysiological signal
is known to reflect synchronous postsynaptic potentials of many
neurons39, while frequency domain analyses allow one to record
cortical oscillations such as alpha (8–13 Hz), theta (4–8 Hz), and

beta (13–25 Hz);38 these are thought to reflect cortical feedback
loops or neurotransmitter-related processes40,41. Frequency-
domain analyses also reveal arrhythmic “scale-free” activity,
which has been associated with excitation-inhibition balance42,43

and complex network models of self-organized criticality44,45.
Though many of these neurophysiological parameters have been
investigated in terms of their pre-stimulus or stimulus-evoked
activity, it remains unknown which of them, if any, shows a
correlation between spontaneous pre-stimulus and evoked
activity.

In the present study, we investigate the relationship between
spontaneous and stimulus-evoked neural activity for a diverse set
of electrophysiological variables. For this purpose, we employ a
large-scale MEG data set with a simple sensory paradigm46,47, as
well as a replication EEG dataset with a more complex cognitive
task;48 this allowed us to probe for task-specificity vs. -unspeci-
ficity of the pre-stimulus and stimulus-evoked relationship. In the
frequency domain, we observed widespread correlation between
spontaneous and evoked spectral power in multiple frequency
bands, a finding which was consistent across modalities and tasks;
however, the type and magnitude of this correlation varied
between frequency bands. Disentangling the contributions of
different physiological sources of spectral power, we found that
the correlations of spontaneous and evoked activity found in the
mixed power were largely recapitulated when examining purely
oscillatory power. Two parameters of scale-free activity (the
scaling exponent and broadband offset) also showed positive
correlations between their spontaneous and evoked dynamics.
Correlations between spontaneous and evoked activity were also
observed in the time domain, where they appeared to be task- or
modality-specific. Our study sheds new light on the different
relationships between spontaneous and evoked neural activity of
numerous common electrophysiological variables. In turn, this
may in future help explain the neurophysiological mechanism by
which trial-by-trial fluctuations in spontaneous activity affect
cognitive and perceptual outcomes.

Results
The relationship between spontaneous and evoked activity of the
same parameter can often be summarized by a simple correlation:
with a positive correlation, high prestimulus activity leads to
greater evoked responses, while for a negative correlation, low
prestimulus activity leads to greater evoked responses25,26.
However, the investigation of the relationship between sponta-
neous and evoked activity is routinely confounded by the con-
tinued presence of spontaneous activity during the post-stimulus
period; as such, when investigating dynamic relationships
between spontaneous and evoked activity within one and the
same variable, correlation as a method is insufficient. Two
methods are presently available to assess correlations between
spontaneous and evoked activity without circularity of analysis;
we term these the “TTV method” and “pseudotrial method”. For
the TTV method, trial-to-trial variability25 (TTV) is computed as
the standard deviation of the signal across trials: according to the
law of total variance (see Methods and Fig. 1c, right), a post-
stimulus reduction in TTV must be indicative of a negative
correlation between spontaneous and evoked activity.

Alternatively, one can calculate the influence of prestimulus
activity in a more direct way using the pseudotrial method (see
Fig. 1c, left). Trials are split into groups defined by above-median
and below-median pre-stimulus activity levels, and separate post-
stimulus activity time courses are computed relative to these
baselines. These time courses are then corrected by subtracting
“pseudotrials”26 drawn from the intertrial interval, on which the
same median-split grouping procedure has been applied (see
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Fig. 1c, left). This corrects for ongoing spontaneous fluctuations
with the same initial conditions, and thereby corrects for
regression to the mean of spontaneous activity49. If the trials with
high prestimulus activity show a greater evoked increase (or
smaller evoked decrease) than trials with low prestimulus activity,
this is evidence for a positive correlation between spontaneous
and evoked activity. If, by contrast, trials with high prestimulus

activity show a smaller evoked increase (or greater evoked
decrease) than trials with low prestimulus activity, then this is
evidence for a negative correlation. As the pseudotrial method is
capable of detecting both positive and negative correlations (and
following our simulation results in Figs. S2 and S3), we focused
our analysis on this method, using the TTV method to confirm
these findings.
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We applied both methods to detect the presence of a correla-
tion between spontaneous and evoked activity in both time-
domain and frequency-domain signals. To do this, we used both
an MEG and an EEG dataset. The Cambridge Centre for Aging
Neuroscience MEG dataset46,47 contains 474 subjects (in our
sample) completing a brief, multisensory stimulation task: parti-
cipants were asked to respond by pressing a button as soon as
they see a checkerboard appear and hear a tone presented
simultaneously. Our EEG dataset (n= 26) comes from a previous
study48 in which participants had to choose their answers to a
moral dilemma: participants had to decide whether they would
push some number of people to their deaths in order to save
another group. A control condition was also included where
participants simply had to evaluate which group had more peo-
ple. As our main questions did not relate to the particular cog-
nitive processes involved in these tasks, both conditions were
analyzed together here—they are compared in the supplementary
materials.

Spontaneous-evoked correlation in the frequency domain—
effects vary by frequency band. `The first aim of our study was
to investigate the relationship of spontaneous and evoked activity
in multiple parameters in both the time and frequency domains.
Following the observations in fMRI25,26, we hypothesized a
negative correlation between pre- and post-stimulus activity: that
is, high pre-stimulus activity should lead to a stronger decrease
(or weaker increase) in post-stimulus activity than low pre-
stimulus activity. Given that fMRI signals are known to be cor-
related with spectral power50,51, and following previous
findings relating spontaneous and evoked alpha-band power
which did not employ methods of separating spontaneous and
evoked activity32,52–54, we hypothesized a pre-post-stimulus
correlation to be visible primarily in frequency-domain repre-
sentations. Our second aim was then to assess the possible dif-
ferences between frequency bands in their relationship between
spontaneous and evoked activity, following previous findings of
differential trial-to-trial variability reduction in different fre-
quency bands48,55.

Using the method of pseudotrials, we first tested for the
presence of a correlation between spontaneous and evoked
activity in MEG by comparing evoked power in trials with low
vs. high pre-stimulus power (Fig. 2). We compared the
pseudotrial-corrected time courses of the prestimulus high
and low conditions using a Wilcoxon signed rank test at every
time point and sensor; multiple comparisons were corrected for
using a cluster-based permutation test over time points and
sensors. Note that permutation tests are limited in the
resolution of the p-values obtained (e.g., the minimum p-value
for a two-tailed test with 10,000 permutations is 0.0002), so in
cases where the minimum p-value was achieved it will be
indicated as p ≤ 0.0002. In the broadband data, we observed a
significant difference between the low prestimulus power and
high prestimulus power conditions beginning at around 200 ms

poststimulus (p ≤ 0.0002; average d= 0.301 for the positive
cluster, average d= 0.245 for the negative cluster). With respect
to specific frequency bands, our results show significant effects
of prestimulus power in multiple bands including delta (p ≤
0.0002, average d= 0.460), theta (p ≤ 0.0002 for both negative
and positive clusters, average d= 0.313 (positive cluster) and
0.201 (negative cluster)), alpha (p ≤ 0.0002, average d= 0.379),
beta (p ≤ 0.0002, average d= 0.315), and low gamma bands
(p ≤ 0.0002, average d= 0.159).

We observed both negative and positive correlations between
spontaneous and evoked activity in different frequency bands.
Correlations were negative (i.e., high-prestimulus trials lead to
lower evoked activity compared with low-prestimulus trials) in
beta and especially in alpha with a 17% peak difference between
the low and high prestimulus conditions, peaking between 300
and 400ms post-stimulus. In contrast, positive correlation was
found in the slower frequency bands of delta and theta, with a
33% maximum difference in delta peaking between 150 and 250
ms post-stimulus.

We next confirmed the findings of correlations between
spontaneous and evoked spectral power using the method of
trial-to-trial variability (TTV; Fig. 2b). We observed an early
increase in TTV (between 100 and 200 ms; p ≤ 0.0002, average d
= 0.432) and subsequent TTV decrease (peaking around 400 ms;
p ≤ 0.0002, average d= 0.283) in broadband (Fig. 2b; p ≤ 0.0002).
We then calculated TTV in different frequency bands. For the
theta (p ≤ 0.0002, average d= 0.251), alpha (p ≤ 0.0002, average d
= 0.616), beta (p ≤ 0.0002, average d= 0.961), and low gamma
(p ≤ 0.0002, average d= 0.535) bands, we observed a highly
significant decrease of the TTV (relative to the prestimulus
period), which peaked between 400 and 500 ms. High gamma
also exhibited a TTV decrease (p ≤ 0.0002), but the effect size was
negligible (average d= 0.0292).

In contrast, we observed an initial increase in TTV in delta
(p ≤ 0.0002, average d= 0.598) and theta (p ≤ 0.0002, average d=
0.564) bands, peaking between 150 and 250ms. These initial
increases were also observed in the alpha (p= 0.0008, average
d= 0.423), beta (p= 0.0140, average d= 0.398), and low gamma
bands (p= 0.0346, average d= 0.224), with these increases
occurring before the subsequent TTV decreases. A significant
TTV increase was also observed in high gamma (p= 0.0234,
average d= 0.152), though the magnitude of this effect was very
small (around 5%). Note that as discussed in the methods, the
presence of a TTV increase is not indicative of a correlation
between spontaneous and evoked activity in and of itself, as it
may simply reflect the summation of the variances of sponta-
neous and evoked activity independently;25 however, we note that
it does not contradict the results found using the pseudotrial
method.

In order to validate that the two methods (pseudotrial and
TTV) found similar magnitudes of the effect of spontaneous
activity on evoked activity, we calculated summary indices of
spontaneous-evoked relationship by taking the signed area under

Fig. 1 Schematic of the main aims and methods of the study. a Schematic of different interaction schemes between spontaneous and evoked activity.
With no spontaneous-evoked correlation, evoked amplitudes are identical regardless of the level of prestimulus spontaneous activity. With positive
correlation, higher prestimulus spontaneous activity leads to greater evoked amplitudes. With negative correlation, higher prestimulus spontaneous activity
leads to lower evoked amplitudes. b Aims of the study. The study aims to assess which electrophysiological processes exhibit relationships between
spontaneous prestimulus and evoked poststimulus activity. The study considers electrophysiological dynamics in the time and frequency domains, further
classifying frequency domain evoked power as reflecting oscillations or scale-free (fractal) dynamics. Each of these electrophysiological parameters is
associated with different physiological processes. c Methodology for assessing spontaneous-evoked correlation. In the method of pseudotrials, trials and
pseudotrials are split into prestimulus high and low conditions. They are then normalized relative to the mean prestimulus period, and the pseudotrial time
courses are subtracted: any difference is indicative of a relationship between spontaneous and evoked activity. In the method of trial-to-trial variability, a
negative correlation results in a reduction of the trial-to-trial standard deviation.
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the curve of the TTV or prestimulus high minus low time course
over each sensor and time point within the significant cluster (see
Methods for details). We then correlated these summary indices
across subjects at each electrode, correcting for multiple
comparisons using a cluster-based permutation test (as no
significant effect was observed using the pseudotrial method in
high gamma, we did not correlate this effect with the TTV
method). We found that the two indices were significantly
correlated in all frequency bands (Fig. 2c; p ≤ 0.0002 in all cases,
cluster-based test), suggesting that for spectral power, the two
methods yield similar results.

Spontaneous-evoked correlation in the time domain—conflict
between methodologies. We next tested for the possibility of a
non-additive relationship between prestimulus and post-stimulus
activity in the time domain, employing the pseudotrial and TTV
methods in the same way as for spectral power (Fig. 3). Using the
pseudotrial method, we observed a significant positive correlation
between spontaneous and evoked activity in the time domain
electrophysiological signal, indicated by more positive
pseudotrial-corrected post-stimulus magnetic fields for trials with
high (positive) prestimulus field strength than low (Fig. 3a; p ≤
0.0002, average d= 0.178). Interestingly, this effect was largely

Fig. 2 Correlation between spontaneous and evoked spectral power, assessed using the pseudotrial method and TTV method in the CamCAN dataset.
a Pseudotrial-corrected time courses for high prestimulus (red) and low prestimulus (blue) conditions. Line shows mean across all sensors and subjects,
shaded area indicates standard error of the channel-average time course across subjects. Effect topographies are shown at 100ms, 300ms, 500ms, and
700ms; white dots indicate sensors which are part of a significant cluster. Shaded overbars indicate the significance of the difference between prestim high
and low conditions. The shade of the bar indicates the percent of sensors which are part of a significant cluster at any given time point (i.e., darkest = all
sensors part of cluster, lightest/white = no sensors part of cluster); red indicates positive clusters (prestim high > prestim low), blue indicates negative
clusters. b Time course of TTV in each frequency band, expressed in terms of percent change from prestimulus levels. Lines, overbars, and topographies as
in a): red overbars indicate clusters with TTV increases, blue overbars indicate TTV decreases. c Across-subject correlation of the magnitude of
spontaneous-evoked relationship found using each method. Scatter plots show the correlation of the mean values of the summary indices across all
electrodes, while the topoplots show the correlations at each electrode, with white dots indicating significance following the cluster test. N = 474
participants.
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constant throughout the post-stimulus period, rather than peak-
ing and decreasing as with the power-based results. In contra-
diction to this finding, however, we observed (as seen in previous
studies48,55,56) a reduction in TTV, occurring from 200 ms to 700
ms post-stimulus (p ≤ 0.0002, average d= 0.528), as well as an
early increase in TTV (p= 0.0058, average d= 0.328). This
reduction in TTV, interpreted traditionally as in25, should imply a
negative correlation, in direct conflict with the results observed
using the method of pseudotrials. These effects were significantly
correlated (p ≤ 0.0002), indicating that less TTV reduction
implies greater positive nonadditivity. However, the magnitude
of the correlation was small (ρ of channel-average summary
indices = 0.218).

To examine possible sources of the discrepancy between the
two methods, we conducted a simulation (Fig. 4). As described in
greater detail in the Materials and Methods, we simulated both a
negative correlation between spontaneous and evoked voltages
with no change in oscillatory power, as well as an oscillatory
power reduction with no correlation between prestimulus and
poststimulus voltage. We found that in both simulations, TTV
decreased significantly (p ≤ 0.002 in each case). However, only in
the spontaneous-evoked correlation simulation did we observe a
significant difference between pseudotrial-corrected prestimulus
high and low using the pseudotrial method (p ≤ 0.002). This
suggests that the above findings of negative correlation using the
TTV method may be confounded by the reduction of alpha
power which also occurs following stimulus onset; for this reason,
we view the results obtained using the method of pseudotrials as
reflective of the genuine results in the time-domain signal.
However, the method of pseudotrials may also be affected by the
broadband nature of the ERP signal—this possibility is investi-
gated in Fig. S14 and is elaborated on in the Discussion.

Spontaneous-evoked correlation in the frequency domain -
oscillatory and fractal components. The third aim of our study
was to investigate the relationship between spontaneous and
evoked activity separately in both oscillatory and arrhythmic,
scale-free processes; further, we wished to examine which of these
parameters accounted best for the effects observed in the mixed
data. In order to examine more clearly the physiological sub-
strates of prestimulus-dependent activity, we used the IRASA
method57 to separate our data into oscillatory and scale-free (or
“fractal”) components. We report abbreviated results of the
application of this method to poststimulus activity in the Sup-
plementary Materials (Fig. S1) as the IRASA method has never
previously been applied to stimulus-locked activity; further detail
on these results will be presented in a forthcoming publication.
Following the results of Fig. 4, we focused our analysis of oscil-
latory and fractal power on the method of pseudotrials—results
using the method of TTV are reported in the Supplementary
Materials, and generally agree with the findings using pseudotrials
(Fig. S10).

The findings using the method of pseudotrials showed a
positive correlation between spontaneous and evoked oscillatory
activity in delta and theta (Fig. 5a; p ≤ 0.0002, average d= 0.812
and 0.681, respectively), as well as a negative correlation in alpha,
beta, and low gamma (p ≤ 0.0002 alpha and beta, p= 0.0004 low
gamma; average d= 0.763, 0.692, and 0.485, respectively); these
results resemble the results obtained earlier when considering
“mixed” power, where cortical oscillations and scale-free activity
were not disentangled, suggesting that stimulus-related changes
in scale-free activity did not strongly bias our previous results.
Further, we quantitatively compared the magnitudes of
spontaneous-evoked correlation between oscillatory and fractal
activity, finding that oscillatory activity within a given frequency

Fig. 3 Time-domain correlation of spontaneous and evoked magnetic field strength, assessed using both methodologies in the CamCAN dataset. a
Pseudotrial-corrected time courses for high prestimulus (red) and low prestimulus (blue) conditions. Line shows mean across all sensors and subjects,
shaded area indicates standard error of the channel-average time course across subjects. Effect topographies are shown at 100ms, 300ms, 500ms, and
700ms; white dots indicate sensors which are part of a significant cluster. Shaded overbars indicate the significance of the difference between prestim high
and low conditions. The shade of the bar indicates the percent of sensors which are part of a significant cluster at any given time point (i.e., darkest = all
sensors part of cluster, lightest/white = no sensors part of cluster); red indicates positive clusters (prestim high > prestim low), blue indicates negative
clusters. b Lines, overbars, and topographies as in a: red overbars indicate clusters with TTV increases, blue overbars indicate TTV decreases. c Correlation
between the methodologies. Channel-average values of the summary index are plotted in the scatterplot, and the correlation coefficient at each electrode is
plotted in the inset. White dots indicate sensors significant after cluster correction. N = 474 participants.
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Fig. 4 Results of simulation to disentangle methodological inconsistencies of Fig. 3. In each column, a schematic of the simulated effect is plotted
(“simulated effect”), along with the normalized trial-to-trial SD (“TTV”), and the results following application of the method of pseudotrials (“pseudotrial
method”). *p < 0.05, **p < 0.01. Bars at the right show a schematic of the results: both simulations show a decrease in TTV, but only the simulation with a
genuine correlation between spontaneous and evoked activity shows a difference with the method of pseudotrials. N = 48 simulated participants.

Fig. 5 Relationship of spontaneous and evoked activity for oscillatory and fractal components of the power spectrum, assessed using the method of
pseudotrials. a Pseudotrial-corrected time courses for oscillatory power in high prestimulus (red) and low prestimulus (blue) conditions. Line shows mean
across all sensors and subjects, shaded area indicates standard error of the channel-average time course across subjects. Effect topographies are shown at
100ms, 300ms, 500ms, and 700ms; white dots indicate sensors which are part of a significant cluster. Shaded overbars indicate the significance of the
difference between prestim high and low conditions. The shade of the bar indicates the percent of sensors which are part of a significant cluster at any
given time point (i.e., darkest = all sensors part of cluster, lightest/white = no sensors part of cluster); red indicates positive clusters (prestim high >
prestim low), blue indicates negative clusters. b As a, but for two parameters of scale-free activity: the slope (i.e., scaling exponent) and intercept (i.e.,
broadband offset). N = 49 participants.
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band generally displayed stronger correlations between sponta-
neous and evoked dynamics than fractal power within the same
frequency range (Fig. S11).

Scale-free activity can be described by activity which follows a
power-law distribution, with power distributed as 1/fβ: this can be
modeled by a linear fit on a log-log scale. Scale-free activity can thus
be described by two parameters: the scaling exponent, which reflects
the slope of this linear fit (the β parameter in the aforementioned
distribution), and the broadband offset, which reflects the y-
intercept of the fit (though see the Discussion on the issue of
multifractal dynamics, which are not considered here). We
therefore examined whether these two parameters associated with
scale-free activity, the scaling exponent and broadband offset,
exhibited correlations between their spontaneous and evoked
dynamics. We found that both the slope (scaling exponent) and
intercept (broadband offset) of fractal activity exhibited a positive
correlation between their spontaneous and evoked activity (Fig. 5b):
high values of each parameter in the prestimulus period led to
greater stimulus-evoked increases of each parameter (p ≤ 0.0002 in
both cases; average d= 0.651 for slope, 0.679 for intercept).
However, we also note a negative correlation between spontaneous
and evoked dynamics of the broadband offset over central sensors,
which reached significance using the method of TTV (see Fig. S10),
but not the method of pseudotrials. Together, our results suggest
distinct contributions of oscillatory and arrhythmic/fractal compo-
nents to positive and negative correlation schemes in spontaneous
and evoked activity, and that the correlations observed in the mixed
data are largely attributable to cortical oscillations, rather than scale-
free activity.

Replication of spontaneous-evoked correlation in an indepen-
dent EEG dataset. To ensure robustness of the findings, we
replicated our procedure in an independent EEG dataset (Figs. 6
and 7). This dataset consisted of a more cognitively demanding
paradigm, a moral decision-making task previously described in
Wolff et al48. in which participants decide whether they are
willing to sacrifice a group of people to save another. Using the
method of pseudotrials, we generally found the same pattern of
spontaneous-evoked correlation as in Fig. 2, with delta displaying
a positive correlation and alpha, beta, and gamma showing
negative correlation (Fig. 6a; p ≤ 0.0002 for each; delta: average
d= 0.787; alpha: average d= 0.884; beta: average d= 0.743;
gamma: average d= 0.543). In contrast, however, we observed a
negative correlation in the theta band in the EEG data (p ≤
0.0002; average d= 0.632), where we had observed a positive
correlation in MEG. We submit that this difference in theta may
be due to the band being a transition between the positive cor-
relation regime in delta and the negative one in alpha and beta. In
the EEG data, the evoked delta is smaller relative to the evoked
alpha than in the MEG data; regardless of whether this is due to
task effects or the difference in imaging modality, this difference
in relative contribution may explain the different correlation
scheme in theta.

The results using the method of trial-to-trial variability largely
confirm the results obtained using the method of pseudotrials
(Fig. 6b; p= 0.0274, average d= 0.691 for broadband; p= 0.0174,
average d= 0.564 for theta, p ≤ 0.0002 for each other band;
average d= 0.811 for delta, 1.01 for alpha, 1.35 for beta, 0.764 for
gamma). The only exception is that the TTV method does not
indicate a negative correlation in the theta band—however, as
mentioned by He25 and in the introduction, this does not mean
that such a correlation is definitively not present, only that in this
case the variability of the spontaneous and evoked activity is
sufficient to overwhelm the term related to their correlation. For
all bands, the effect magnitudes calculated with each method were

correlated (Fig. 6c; p= 0.0004 for alpha, p ≤ 0.0002 for each
otherband).

We also assessed spontaneous-evoked correlation in the time
domain in EEG data. Similar to the MEG data, we observed a
decrease in TTV over much of the poststimulus period (Fig. 7b;
p= 0.0008, average d= 0.704). However, in contrast to the MEG
findings, we observed a negative correlation between spontaneous
and evoked activity in the time-domain EEG data using the
method of pseudotrials (Fig. 7a; p= 0.0062, average d= 0.509).
Results from the method of pseudotrials and the TTV method
were uncorrelated (Figure 8c; p= 0.240). However, we note that
when accounting for filtering effects in the MEG data, a negative
correlation between spontaneous and evoked activity emerges
over central sensors, corroborating the EEG findings using the
method of pseudotrials—see the discussion and Fig. S12 for
further treatment of this difference from the MEG data.

Control analyses and simulations. We additionally ensured that
the length of the prestimulus period did not affect the findings. In
addition to the presently used 100 millisecond window, a 50-ms
prestimulus period (Figs. S4–S5) and a 200-ms prestimulus per-
iod (Figs. S6–S7) were used. We further attempted to control for
anticipation effects by taking only the longer ITIs and placing
pseudotrials randomly within these long ITIs (Figs. S8 and S9).
These values had little discernable effect on the main results,
though the time-domain data appeared sensitive to anticipation
effects.

In order to distinguish true correlations between spontaneous
and evoked activity from potentially spurious correlations due to
trial-by-trial variations in noise, we employed two simulations:
one with a purely additive relationship between spontaneous and
evoked activity (additive simulation; Fig. S2), and another in
which a negative correlation was present (non-additive simula-
tion; Fig. S3). In the additive simulation, no evidence of
spontaneous-evoked correlation was observed using the pseudo-
trial method. However, several significant decreases of TTV were
observed, as well as increases in different noise conditions. In
contrast, in the non-additive simulation, we observed consistent
negative correlation using the method of pseudotrials and the
method of TTV in the low-noise conditions. This confirms that
the method of pseudotrials is capable of detecting true
correlations between spontaneous and evoked activity given a
sufficient signal-to-noise ratio, and does not suffer from a high
degree of false positives due to time-varying noise. The method of
TTV also appears capable of detecting such correlations, but in
certain noise regimes it can be subject to false positives.

We also attempted to control for the potential inclusion of part
of the post-stimulus response in the pre-stimulus period. This
could occur for a variety of reasons, including high-pass filtering
in the case of the time-domain signal (Fig. S12), and because of
the inherent trade-off between time and frequency resolution in
the case of frequency-domain signals (Fig. S13). We found that
while these factors may have resulted in overestimation of the
magnitude of positive correlations in our data, these positive
correlations remained significant when controlling for them.

Behavioral analyses. While the primary focus of our paper was
on the relationship between spontaneous and evoked neural
activity, we also investigated behavioral relationships with the
available data we had. First, we related prestimulus and post-
stimulus spectral power changes with reaction times in the
CamCAN dataset using mixed-effects models, confirming
previously-reported relationships in a larger sample (Fig. S16).
Secondly, we assessed whether the different task conditions in the
EEG dataset led to different profiles of spontaneous-evoked
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correlation (Fig. S17): we found that spectral power (with the
minor exception of gamma-band power) showed similar patterns
of spontaneous-evoked correlation in both task conditions, fur-
ther supporting the assumption that relationships between
spontaneous and evoked activity in spectral power are task-
general.

Discussion
The goal of our study was to examine the dynamics of the rela-
tionship between spontaneous and evoked activity in multiple
electrophysiological parameters. For this purpose we used robust
methods which controlled for the carry-over of spontaneous

activity into evoked activity to assess their correlation. We show
strong and distinct relationships of spontaneous activity in the
prestimulus period with evoked activity in the poststimulus per-
iod in several neurophysiological variables. The observed corre-
lation was negative in the alpha and beta bands (such that high
alpha/beta amplitude pre-stimulus leads to greater stimulus-
evoked desynchronization), and positive in the delta band (such
that high delta amplitude pre-stimulus leads to greater stimulus
evoked synchronization). Moreover, we demonstrate that this
effect is primarily found in band-limited oscillatory dynamics,
rather than aperiodic, scale-free dynamics, though scale-free
activity also displays a relationship between spontaneous and

Fig. 6 Correlation of spontaneous and evoked spectral power in the replication EEG dataset (equivalent to Fig. 2 for the main dataset). a Pseudotrial-
corrected time courses for high prestimulus (red) and low prestimulus (blue) conditions. Line shows mean across all sensors and subjects, shaded area
indicates standard error of the channel-average time course across subjects. Effect topographies are shown at 100ms, 300ms, 500ms, and 700ms; white
dots indicate sensors which are part of a significant cluster. Shaded overbars indicate the significance of the difference between prestim high and low
conditions. The shade of the bar indicates the percent of sensors which are part of a significant cluster at any given time point (i.e., darkest = all sensors
part of cluster, lightest/white = no sensors part of cluster); red indicates positive clusters (prestim high > prestim low), blue indicates negative clusters.
b Time course of TTV in each frequency band, expressed in terms of percent change from prestimulus levels. Lines, overbars, and topographies as in a: red
overbars indicate clusters with TTV increases, blue overbars indicate TTV decreases. c Across-subject correlation of the two methods. Scatter plots show
the correlation of the mean values of the summary indices across all electrodes, while the topoplots show the correlations at each electrode, with white
dots indicating significance following the cluster test. N = 22 participants.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02240-9 ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:741 | https://doi.org/10.1038/s42003-021-02240-9 |www.nature.com/commsbio 9

www.nature.com/commsbio
www.nature.com/commsbio


evoked dynamics of the scaling exponent and broadband offset.
Finally, we also observed spontaneous-evoked correlation in the
time domain, with a positive correlation between spontaneous
and evoked activity observed in MEG in the multisensory task,
and a negative correlation in the EEG moral reasoning task.

These results show that for a variety of neurophysiological
parameters, trial-by-trial fluctuations in the pre-stimulus period
influence variation in post-stimulus neural responses to stimuli in
predictable ways. Our results extend recent findings relating
prestimulus spectral power to ERP components27,52–54,58–61, and
complement cellular and modeling research investigating this
question36,62–64. While negative correlation between spontaneous
and evoked alpha band power has been suggested by52–54, our
study is the first to provide robust evidence of this phenomenon
using (a) statistics which avoid circular analysis, (b) multiple
imaging modalities, and (c) a very large sample size. Further, we
show for the first time differential relationships between spon-
taneous and evoked activity in different electrophysiological
variables, including differences between frequency bands,
between oscillatory and scale-free processes, and between time-
domain and frequency-domain electrophysiological signals. In
future, such research may contribute to a more complete
understanding of how fluctuations in spontaneous activity med-
iate variability in behavioral and cognitive features like percep-
tion, self, attention, and consciousness.

Previous studies examining the relationship of spontaneous
and evoked activity in EEG have generally started from a phy-
siological background, assessing the influence of general states of
arousal and desynchronization on evoked responses. These stu-
dies usually assess different electrophysiological features in the
prestimulus and poststimulus periods, rather than examining the
same variable in both periods27–29,31,33. While this approach is

useful in demonstrating a link in principle between spontaneous
and evoked activity, it may miss subtler relationships present in
the dynamics of particular electrophysiological variables which
may be important to understanding how spontaneous pre-
stimulus activity shapes stimulus-evoked activity, or important to
applications or analyses which center on specific frequency bands
or electrophysiological quantities. Moreover, the characterization
of pre- and post-stimulus periods by distinct measures does not
necessarily avoid the methodological challenges of assessing the
relationship between spontaneous and evoked activity, as EEG
metrics are highly interrelated and confounded with one another:
ERP components are related to power and phase changes of
cortical oscillations52,65, entropy measures (such as those used
by33 to assess desynchronization) are related to spectral power66,
and, as previously mentioned, cortical oscillations and scale-free
activity are frequently confused for one another57,67. Given this,
correlations between seemingly different measures in the pre- and
post-stimulus periods may lead to spurious effects due to the non-
independence of the measurements in the pre- and post-stimulus
period. Using methods developed in fMRI to account for the
continued presence of spontaneous activity in the poststimulus
period, our paper addresses the correlation between spontaneous
and evoked activity in the dynamics of distinct electro-
physiological variables for the first time in EEG. Our results
confirm relationships between spontaneous and evoked activity
and extend this previous work by showing the specific relation-
ships between ongoing and evoked activity of different electro-
physiological variables of interest.

Our finding of widespread non-additive relationships between
pre- and post-stimulus activity of the same parameters carries
implications for the analysis of evoked activity in EEG/MEG,
where trial-based paradigms which assume linear superposition

Fig. 7 Correlation of spontaneous and evoked EEG voltage for the replication EEG dataset (equivalent to Fig. 3 in the main dataset). a Pseudotrial-
corrected time courses for high prestimulus (red) and low prestimulus (blue) conditions. Line shows mean across all sensors and subjects, shaded area
indicates standard error of the channel-average time course across subjects. Effect topographies are shown at 100ms, 300ms, 500ms, and 700ms; white
dots indicate sensors which are part of a significant cluster. Shaded overbars indicate the significance of the difference between prestim high and low
conditions. The shade of the bar indicates the percent of sensors which are part of a significant cluster at any given time point (i.e., darkest = all sensors
part of cluster, lightest/white = no sensors part of cluster); red indicates positive clusters (prestim high > prestim low), blue indicates negative clusters.
b Time course of trial-to-trial variability. Lines, overbars, and topographies as in a): red overbars indicate clusters with TTV increases, blue overbars
indicate TTV decreases. c Correlation of the two methods. Mean values of the summary indices across sensors are plotted in the scatterplot, and the
correlation coefficient at each electrode is plotted in the inset. White dots indicate sensors significant after cluster correction. N = 22 participants.
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of spontaneous and evoked activity are the dominant way of
conducting task-related neuroscience research68. Our results join
numerous others25,27,29,33 to suggest that by ignoring the impact
of prestimulus activity, this approach misses important data
related to the dependence of the evoked response on pre-stimulus
and ongoing activity (as noted previously in fMRI by25). For
example, averaging all trials may lead one to conclude that an
evoked response is small or zero, when in reality there are
opposite modulations depending on prestimulus activity; alter-
natively, interpretational difficulties may emerge if condition
differences in evoked activity are instead due to condition dif-
ferences in spontaneous activity. Our data, emphasizing the
impact of continuous fluctuations in spontaneous activity on
transient stimulus-evoked responses, provide support for recent
attempts to develop analysis strategies for continuous paradigms
which do not require the averaging of multiple trials68, and
encourages efforts to translate non-additive models of the rela-
tionship of spontaneous and evoked activity69–71 into flexible
experimental designs and analysis strategies.

Distinct relationships of spontaneous and evoked activity in
different electrophysiological variables - positive and negative
correlation in different frequency bands. We demonstrate a
non-additive relationship between prestimulus and poststimulus
activity in multiple electrophysiological variables. For spectral
power, we show similar patterns of correlation between sponta-
neous and evoked activity in different paradigms and modalities,
i.e., sensory in MEG and cognitive in EEG, as well as using dif-
ferent methods (TTV25 and pseudotrial26,48). This suggests that
the close relationship between spontaneous and evoked activity in
spectral power is a robust phenomenon that holds across different
tasks and methods. Most interestingly, we demonstrate two dif-
ferent correlation schemes holding in the spectral power of dif-
ferent frequency bands. Negative correlation between
spontaneous and evoked activity is predominant in alpha in the
later post-stimulus periods (around 400 ms). In contrast
with these results and with previous reports in fMRI, positive
correlation is observed in the delta band, occurring earlier around
200 ms.

The existence of a negative correlation between spontaneous
and evoked alpha power is noteworthy given prior data showing
the impact of pre-stimulus alpha on post-stimulus perception14,17,
self15, and conscious awareness of stimuli18,72. Prestimulus alpha
has also been well-studied for its influence on post-stimulus
ERPs28,54,61, with prestimulus alpha power being predictive of the
P1 and N1 ERPs in particular27,58. Alpha has traditionally been
regarded as an inhibitory process, with alpha desynchronization
reflecting release from inhibition; according to Klimesch73, this
reflects controlled access to the “knowledge system”. Furthermore,
prestimulus or anticipatory alpha desynchronization has been
associated with attention allocation and better subsequent
performance on perceptual tasks74. Given these observations, the
here observed negative correlation of spontaneous and evoked
alpha power may serve a cognitive purpose, though the exact
nature of this purpose remains unclear.

Additionally, we observed a positive correlation between
spontaneous and evoked activity in the delta band. Delta-band
activity has been shown to be involved in arousal and attention in
the waking state75,76, including mediating the p300 event-related
potential65. It is also known as an electrophysiological correlate of
activity in the default-mode network77, and as a modular of
motivation, arousal and homeostasis78. Prestimulus delta-band
power has been shown to be predictive of the P3 ERP component,
which itself is thought to reflect delta phase synchronization;79,80

our results extend this finding by showing that this effect is true

for delta power as well as phase, and is not influenced by the
carry-over of spontaneous activity into the poststimulus period.
Though our findings leave open the exact function of positive
correlation between spontaneous and evoked delta power, it may
provide a mechanism linking motivation and arousal with
responses to salient stimuli. However, we note that the magnitude
of the positive correlation in delta may be overestimated due to
the temporal imprecision associated with estimating slow-
frequency activity (see Fig. S14), and urge caution in the
interpretation of these results.

Interestingly, the consistency of our spectral power results
between different modalities and paradigms differs from previous
findings, which showed task-specific relationships between pre-
stimulus spectral power and poststimulus ERP components29,79,81.
This may, in part, be due to the fact that we investigated the same
neurophysiological variables during the transition from prestimu-
lus to post-stimulus period; alternatively, they may be due to the
use of time-domain signals to operationalize stimulus response, as
we likewise observed task-specific spontaneous-evoked correla-
tions in our ERP data. These findings encourage future research
on the question of the mechanisms underlying such task-general
relationships between spontaneous and evoked activity, building
on the accounts in79 for positive correlation and the models of70,82

for negative correlation.

Spontaneous-evoked correlation in different electro-
physiological variables—time vs. frequency domains, oscilla-
tory vs. fractal dynamics. Using the method of pseudotrials, we
observed a correlation between spontaneous and evoked activity
in the time-domain electrophysiological signal of both modalities;
however, we found differences in these correlations between the
MEG and EEG datasets. In the MEG dataset, we observed a
positive correlation between spontaneous and evoked magnetic
field strength over most of the prestimulus period, while in EEG
we observed a negative correlation in the late poststimulus period
(300 ms to 600 ms). This may reflect a difference between the two
modalities, as MEG and EEG are sensitive to different cortical
sources83. Alternatively, it could be that the task (simple sensory
vs. complex cognitive) may have an effect on the correlation
scheme exhibited by the time-domain signal. We note in parti-
cular that when an alternative high-pass filtering scheme is used
in the MEG data (using only the hardware filter at 0.03 Hz rather
than implementing Butterworth high-pass filtering at 1 Hz, as
done in the main text), these results appear more similar: the
positive correlation originally observed is now limited to the first
200 milliseconds, and the same negative correlation observed in
EEG now re-emerges. However, it may also be the case that the
whole poststimulus-period positive correlation is not observed in
EEG due to the effects of the reference: MEG signals, being
reference free, may be able to detect this effect.

Our results suggest that several common ERP components may
exhibit dependence on spontaneous activity. In particular, our
MEG results suggest that at the very least the early components,
i.e. N1 and P1, exhibit positive correlations with ongoing activity,
such that when voltage is high and membranes are strongly
depolarized, P1 amplitudes are greater and N1 amplitudes are
more positive (i.e., lower). This joins previous research which has
investigated the impact of ongoing spectral dynamics on N1 and
P1 amplitudes27,58,59. Further, our EEG results (and our MEG
results when high-pass filtering is removed) both suggest the
presence of a negative correlation between ongoing activity and
amplitudes of the late positive potential; this is consistent with the
non-zero-mean oscillation framework of52. However, because of
the methodological issues pointed out in Fig. 4 and Fig. S12, more
research is needed to investigate spontaneous-evoked correlation
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in time-domain electrophysiological signals and the conditions
that affect it.

Finally, we observed differential relationships between sponta-
neous and evoked activity in scale-free dynamics and cortical
oscillations. This complements recent observations of the
differential relationships of oscillatory and scale-free dynamics
to the fMRI signal50, differential contributions to cognitive
processing speed84, and differential modulation by psychedelic
drugs85. The patterns of correlation between spontaneous activity
and evoked activity observed in the mixed power were highly
similar to those observed in cortical oscillations; further, we
observed a larger influence of spontaneous activity on evoked
responses in the oscillatory rather than the scale-free component
of the power spectrum, reinforcing the central role of cortical
oscillations in stimulus response and suggesting that at least in
our case, scale-free activity did not exert a substantial bias on our
mixed-power results. Interestingly, we also found correlations
between spontaneous and evoked dynamics of both parameters
describing scale-free activity, the scaling exponent and broadband
offset: each of these displayed a positive correlation between their
spontaneous dynamics and evoked amplitudes. Given that the
scaling exponent of fractal activity has previously been related to
excitation-inhibition balance42,43, this raises intriguing questions
for future research about the dynamics of this balance and how it
is modulated by external perturbations.

Limitations. As discussed above, a central limitation of our study
(and others investigating the same question) is the methodolo-
gical difficulty of assessing correlations between spontaneous and
evoked activity when activity in the post-stimulus period reflects a
mixture of the two. While unlike previous studies in electro-
physiology, we employed methods to account for this issue, two
main challenges emerged in our study: the failure of the TTV
method in time-domain electrophysiological data, and the con-
founding of positive correlation estimates by temporal impreci-
sion. As shown in Fig. 4, TTV decreases in the raw
electrophysiological signal can be induced by desynchronization
of oscillations, precluding their interpretation as being indicative
of a correlation between spontaneous and evoked activity.

Alteratively, it may be the case that the pseudotrial method is
not suited for investigating broadband, time-domain electro-
physiological data. Since M/EEG data contains fluctuations in
multiple frequencies, it may be that a single prestimulus window
of fixed duration does not capture the “up and down” states of
different physiological processes which fluctuate at different time
scales, and as such the method of pseudotrials may fail (e.g., 100
ms, the prestimulus length employed in our study, may be too
long to capture meaningful variation in spontaneous beta or
gamma power, for instance). We attempted to address this
possibility in the supplementary materials (Fig. S14) by filtering
the time-domain data into frequency bands and assessing
spontaneous-evoked correlation in each band with a band-
dependent prestimulus window. While this procedure improved
the correspondence between the TTV and pseudotrial methods in
some cases (e.g. in the delta and alpha bands), notable
discrepancies remained (e.g., the beta band, where the two
methods again yielded opposite results). These data also yielded
some support for the assumption of non-zero mean oscillations52,
which may drive some part of the time-domain correlations:
however, since the filtering of time domain data to analyze
stimulus evoked changes in different bands is a fairly uncommon
procedure, more research is needed to investigate this and
interpret these findings in terms of traditional measures such as
ERP components, which we focused our time-domain analyses
on, or in terms of phase synchronization/shifting of oscillations.

In the case of positive correlations between spontaneous and
evoked activity, the method of pseudotrials can also be affected by
any mechanism which “smears” poststimulus activity back into
the prestimulus period, such as highpass filtering in the time
domain (Fig. S13), or the inherent imprecision in estimating low-
frequency power (Fig. S14). While all our results remain
significant while considering these effects, this issue does appear
to result in overestimation of the magnitude or temporal extent of
positive correlation, and as such more research is needed to
confirm the positive correlations between spontaneous and
evoked low-frequency power, time domain signals, and scale-
free parameters seen in our data. In particular, methods which
focus on inter-subject consistency of responses in order to isolate
task-evoked activity (such as the one applied by Lynch et al.86)
may be useful in these cases, but they have not yet been developed
for the purpose of relating spontaneous and evoked activity.
Alternatively, single-trial modeling procedures may be developed
based around the same principle as the method of pseudotrials
(i.e., controlling for the autocorrelation of spontaneous activity)
by, for instance, rank-ordering pseudotrials and real trials based
on their prestimulus activity, and treating the pseudotrials as
covariates—we encourage future researchers to take up this
challenge.

We were not able to determine a particular mechanism which
explained the correlation patterns we observed. In a preliminary
investigation, we found no influence of phase coherence or phase-
amplitude coupling (Fig. S15) on the negative correlation scheme
observed in our study between spontaneous and evoked high-
frequency power. However, we did not investigate these
possibilities in detail; further empirical and modeling work is
necessary to determine more precisely why and how spontaneous
and evoked activity interact in the ways we observed.

Finally, our investigation of spontaneous-evoked correlation in
scale-free activity was not able to address the issue of multifractal
dynamics. Recently, the possibility that multiple scaling regimes
exist in the brain has been raised by numerous publications67,87,88,
suggesting that a simple linear relationship between log power and
log frequency is insufficient to capture scale-free dynamics in the
brain. Unfortunately, the IRASA method which we employed is ill-
suited to examine different scaling regimes, as the resampling
procedure it employs blurs the boundaries between them57,67.
However, parametrization methods which have recently been
employed to estimate these “knee” frequencies face challenges
when operating on single-trial power spectra;67 in contrast, the
IRASA method, by estimating the fractal power spectrum as a
median of multiple resampled spectra, is robust to trial-level noise,
making it the ideal candidate for our purposes despite this
limitation. Future work should further explore the stimulus-evoked
dynamics of multifractal activity, including the relationship
between its spontaneous and evoked dynamics.

Conclusion
In this paper, we investigated the relationship between spon-
taneous pre-stimulus and stimulus-evoked activity in different
electrophysiological variables. Using both MEG and EEG and
applying robust analysis methods, we observed, as hypothe-
sized, that multiple electrophysiological variables exhibited
distinct relationships between their spontaneous activity in the
pre-stimulus period and their post-stimulus evoked activity.
Positive correlation between spontaneous and evoked activity
was found in delta power, while negative correlation occurred
in alpha and beta dynamics. Both forms of spontaneous-evoked
correlation were found robustly in the dynamics of spectral
power, and predominantly in oscillatory rather than arrhyth-
mic/scale-free dynamics. Analogously, positive and negative

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02240-9

12 COMMUNICATIONS BIOLOGY |           (2021) 4:741 | https://doi.org/10.1038/s42003-021-02240-9 | www.nature.com/commsbio

www.nature.com/commsbio


correlations could also be observed in the time-domain elec-
trophysiological signal.

This work carries methodological implications for our under-
standing of stimulus-induced or task-evoked activity by unra-
veling, in part, the mechanisms by which it is shaped by
spontaneous neural activity. More importantly, these findings in
future may provide novel insight into the neuronal mechanisms
of perception, cognition, and consciousness, as these phenomena
are influenced by the relationship between spontaneous and
evoked activity.

Materials and methods
Methodologies for assessing correlations between spontaneous and evoked
activity. fMRI studies investigating the relationship of prestimulus and post-
stimulus activity have employed two distinct methods: trial-to-trial variability
(TTV)25 and pseudotrials26. The method of trial-to-trial variability (TTV) makes
use of the law of total variance in assessing a correlative relationship between
spontaneous activity (X) and evoked activity (Y):

σ2XþY ¼ σ2X þ σ2Y þ 2rXYσXσY ð1Þ

A putative correlation between spontaneous and evoked activity is represented by
the correlation rXY. Since variances are always positive, the only circumstance in
which one could observe a reduction in trial-to-trial variability is if this coefficient
is negative—hence, a reduction in TTV implies a negative correlation between
spontaneous and evoked activity. However, an increase in TTV could be produced
by any of the three models. It was found that the trial-to-trial variability of the
fMRI response decreased following stimulus onset, a pattern which could only be
explained assuming a negative correlation between spontaneous BOLD dynamics
and the evoked BOLD signal. This phenomenon has frequently been associated
with attractor models of the brain89.

More recently, a more direct method has emerged to assess the presence of
correlations between spontaneous and evoked activity in fMRI26. An intuitive way
to assess this relationship would be to compare the time courses of trials with high
and low prestimulus activity, for instance by splitting trials based on the median
prestimulus values. However, such an approach can be confounded by regression
to the mean49—trials which are selected based on having high prestimulus activity
may naturally return to a more average value, simply because they are selected as
having “above average” values in the first place, or by other dynamical features of
the spontaneous activity. To correct for this, Huang et al26. applied the same
procedure to “pseudotrials”, segments of the task recording where no stimulus is
present. Pseudotrials are split into groups based on the median of their own
“prestimulus” activity (activity before pseudotrial onset): this provides an estimate
of the response of spontaneous activity to the median split procedure. Pseudotrial
time courses in each prestimulus condition are then subtracted from the real trial
time courses in each condition. The remaining differences between the real trial
prestimulus high and low groups reflects the genuine influence of spontaneous
activity on evoked activity. An advantage of this method is that it can theoretically
detect a positive correlation between spontaneous and evoked activity and
distinguish it from a negative one, which cannot be accomplished with the method
of trial-to-trial variability. Using this method, a negative correlation was observed
between the spontaneous and evoked BOLD signal, which correlated with the same
effect assessed with the TTV method26.

Datasets and experimental designs. We used two previously published datasets
to investigate our hypotheses, in two different imaging modalities. As our main
dataset, we used 474 subjects from the Cambridge Centre for Ageing and Neu-
roscience (CamCAN) MEG dataset46,47 (available at http://www.mrc-cbu.cam.ac.
uk/datasets/camcan/). Data were recorded using a Vectorview 306-channel MEG
system (Elekta Neuromag, Helsinki) in a light magnetically-shielded room. The
task associated with this dataset was a simple sensorimotor task, in which parti-
cipants were presented with a multimodal auditory (300 ms tone) and visual (34 ms
checkerboard pattern) stimulus. 120 trials were presented, and the inter-trial
intervals (ITIs) were jittered between 2 and 26 s. The auditory and visual stimuli
were presented simultaneously, and participants were required to respond with a
button press once they perceived the stimulus. Eight trials were also included of
unimodal auditory or visual stimuli (four trials each)—these were also included in
the analysis. Details of the task can be found in47.

To replicate the findings, we used data from a moral decision-making paradigm,
previously published in48. Participants (n = 26) in this task were presented with a
moral dilemma, in which participants would push a set of bystanders in front of a
trolley in order to save another group from death (Philippa Foot’s “Footbridge
dilemma”). Participants were asked to respond either yes or no to the ratio of those
killed to saved (in visual stimulus) by pushing a button. An additional externally-
guided condition required participants simply to compare the number of people on
the right side of the screen with the left. For the purposes of our study, we
considered both conditions together. A total of 420 trials were included in the

analysis, and the ITI was jittered between five and six seconds. Further details can
be found in Wolff et al.48.

Data preprocessing. At the time of analysis, fully preprocessed data were not
available from the CamCAN repository. As such, we applied standard preproces-
sing steps in Fieldtrip90 and MNE91 to further clean the data. Our starting point for
preprocessing was the MaxFiltered data provided in the CamCAN data release
(see46 for details of the MaxFilter steps). For ease of preprocessing and analysis,
gradiometer channels were removed, and only magnetometers were analyzed. Data
were first downsampled to 500 Hz, then bandpass filtered from 1 to 200 Hz with a
fourth-order Butterworth filter. In order to remove high-amplitude transient
artefacts which could bias independent component analysis (ICA) decomposition,
Autoreject92 was applied to find and label data epochs with artefacts. Following the
methods of the Human Connectome Project93, 20 ICA iterations were then per-
formed, with artefactual epochs from the previous step excluded from the ICA
training. Artefactual components were automatically labeled using in-house
modifications of scripts from the Human Connectome Project’s megconnnectome
software93 and removed from the original (pre-Autoreject) data. Data were then
epoched from 2 s prior to stimulus onset to 1.5 s poststimulus, and Autoreject was
run a second time to repair any trials with artefacts remaining.

Data from the moral decision-making paradigm were preprocessed in
EEGLAB94. First, data were downsampled to 500 Hz and bandpass filtered from 1
to 50 Hz. High-amplitude artifacts were removed prior to ICA using Artefact
Subspace Reconstruction95, and data were re-referenced to an average reference.
Data were then epoched from 3 s prior to stimulus onset to 2 s poststimulus. ICA
was then run on the data, and bad components were identified using an automated
algorithm96. For details of the data collection, see Wolff et al48.

Definition of real trials and pseudotrials. For each dataset, the prestimulus
period for real trials was taken as the interval from 100 milliseconds before sti-
mulus onset to stimulus onset, with the real trial poststimulus period falling from 0
to 800 milliseconds. Similarly, “pseudotrials” were defined as the period from 900
to 100 milliseconds pre-stimulus, with the period from 1000 to 900 milliseconds
pre-stimulus serving as the “prestimulus” period for that pseudotrial. We tried
several different lengths of the prestimulus interval, to ensure that this choice had
minimal impact on the results. These findings are reported in the supplementary
materials (Figs. S4–S7).

Estimating correlations between spontaneous and evoked activity. We used
both the method of pseudotrials26 and the method of trial-to-trial variability25 to
assess the presence of a non-additive relationship between spontaneous and evoked
activity in various signals. For each signal, we averaged the amplitude across time
points in the prestimulus window to get a single value characterizing prestimulus
amplitude for each subject, channel, and trial (including pseudotrials). For each
subject, we then split trials and pseudotrials separately into high or low prestimulus
amplitude groups based on the median of their respective prestimulus activity. For
spectral power, pseudotrial and real trial time courses were then normalized by the
average prestimulus value over all trials and expressed in terms of percent change
from this value. This normalization was not done for time-domain signals, as the
average prestimulus value was approximately zero.

We then computed the “corrected” time courses by subtracting the prestimulus-
normalized real trial time courses in each bin from the prestimulus-normalized
pseudotrial time courses (see ref. 26)—i.e., pseudotrials in the high prestim
condition were subtracted from real trials in the high prestim condition, and
pseudotrials in the low prestim condition were subtracted from real trials in the low
prestim condition. This “corrected” time series is now controlled for regression to
the mean, as this natural difference between prestim high and low is captured by
the pseudotrial dynamics and removed from the data. We then tested for whether
the corrected time series for high and low prestimulus amplitude were significantly
different from each other using the cluster-based procedure described below.

For the method of trial-to-trial variability, we calculated the standard deviation
across trials of the signal of interest. This time course was normalized to its mean
value in the 100 millisecond prestimulus period and expressed in percent change
from this value. A decrease in TTV indicates a negative correlation between
spontaneous and evoked activity, while an increase in TTV cannot distinguish
between no correlation and positive correlation25.

Time-frequency decomposition and definition of frequency bands. Time-
frequency decomposition was carried out using the wavelet transform, as imple-
mented in Fieldtrip. Three cycles of the default Morlet wavelet were used to esti-
mate 50 logarithmically-spaced frequencies from 2 to 200 Hz (or from 2 to 50 Hz in
the EEG case). The delta band was defined as 2–4 Hz, low gamma as 30–100 Hz (or
30–50 Hz in the case of the EEG dataset), and high gamma as 100-200 Hz. Since
alpha peak frequency and peak width varies significantly between individuals, we
followed the recommendations of Klimesch97 and defined the alpha, theta, and beta
bands individually for each subject. We estimated the alpha peak frequency and
width using the toolbox developed by98. The alpha band was then defined
according to this width: the theta band was subsequently defined as 4 Hz to the
lower bound of the alpha band, and beta was defined as the upper bound of the
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alpha band to 30 Hz. For subjects where no alpha peak was found, these bands were
defined in the standard way (theta as 4–8 Hz, alpha as 8–13 Hz, and beta as 13–30
Hz).

Separation of oscillatory and fractal components of evoked spectral power.
To distinguish oscillatory and fractal processes in the spectral power response, we
used the Irregular Resampling for Auto-Spectral Analysis (IRASA) method,
described in57. In brief, this method involves resampling the signal using a variety
of non-integer resampling factors and taking the median of the resulting power
spectra to represent the fractal component. For this analysis, we used a subset of
subjects from the main CamCAN dataset (n = 49), due to the extreme compu-
tational intensiveness of the time resolved IRASA procedure. Preprocessing for
these subjects differed slightly from the above: due to the potential effect of filtering
artefacts on the IRASA procedure, the IRASA data follows the preprocessing
scheme described in the supplement (Fig. S12), where the initial 1 Hz highpass
filter was omitted, and only the 0.03 Hz highpass filter implemented in the Elekta
system at the time of acquisition was used.

Following a previous publication85, we used resampling factors ranging from
1.1 to 2.9 in steps of 0.05, excluding the factor 2. To assess stimulus-related changes
in oscillatory and fractal power, we computed this method in a sliding window of
size 1.5 s and step size 20 ms. This allowed us to estimate fractal and oscillatory
power spectra across a range of 2 to 85 Hz. The oscillatory frequency bands for this
process were the same as for the wavelet-based procedure, but since only
frequencies up to 85 Hz could be resolved using the IRASA method, low gamma
was defined as 30 to 50 Hz and high gamma as 50 to 85 Hz.

Scale-free activity can be defined as activity possessing a distribution of the
form 1/fβ 88,99. As such, the fractal scaling exponent β was estimated as the slope
of a linear least-squares fit of power versus frequency on a log-log scale; in the
IRASA toolbox, this is computed by interpolating the data in order to be linearly
spaced on the log-log scale, in order not to bias the estimation by the larger
number of high-frequency estimates57. The broadband offset, which reflects the
amplitude of scale-free fluctuations, was then defined as the y-intercept of this
same linear fit. As the broadband offset is a power value, we exponentiated it
prior to applying the method of pseudotrials. For the supplementary analyses in
which the fractal power was analyzed in different frequency bands, this was
calculated simply as the mean power within each frequency range, exactly like
the oscillatory power. Note that despite this parametrization of the fractal power
in different bands, the IRASA procedure was run on the raw data, as
detailed above.

Occasionally, the IRASA method returns negative values of oscillatory power
because oscillatory power is computed as the difference of the mixed power
spectrum and the fractal component (which, due to its estimation as a median of
resampled power spectra, can occasionally be larger in magnitude than the original
mixed PSD). Negative values of oscillatory power were treated as missing data in
this study.

Statistics and reproducibility. In order to achieve good statistical power and
flexibility without a strong a-priori hypothesis as to the latency or topography at
which a correlation between spontaneous and evoked activity might manifest, we
opted to used cluster-based permutation tests100. Our time window of interest was
defined as the time between 0 and 800 milliseconds poststimulus. We tested for
significant difference between the corrected prestim low and high time courses
using a Wilcoxon signed-rank test at each time point and each sensor, using a
cluster-based permutation test with 10,000 permutations to correct for multiple
comparisons. Note that the resolution of the p-value is limited by the number of
permutations: numbers of permutations from 100070,101 to 10,000102 have been
reported in the literature. We chose the upper number as many of our effects were
highly significant, and frequently achieved the minimum possible p-value even
with this higher number of permutations: however, to reduce computational
burden, for our simulation analyses and analyses reported in the supplementary
materials we performed only 1000 permutations.

The cluster procedure works by summing the test statistics of all significant tests
in the time window which are adjacent in time and space (i.e. neighboring time
points and sensors). To generate a p-value, this summed cluster statistic is then
compared with a permutation distribution built from resampling the data a
number of times and repeating the same procedure. For the TTV-based method,
we used a signed-rank test against zero, similarly using a cluster-based permutation
test to address the multiple comparison problem. We also calculated effect size
(Cohen’s d for dependent samples, calculated as the mean difference divided by the
standard deviation of the difference103) at each sensor and time point, and report
the average of these effect size estimates over all points within each significant
cluster.

Summary indices of the magnitude of spontaneous-evoked correlation were
then calculated only for the sensors and time points which formed part of a
significant cluster, in both the pseudotrial and TTV methods. However, we note
that the permutation test does not establish the significance of the latency or
topography, per se—we considered it here merely as a useful prior for calculating a
summary index of the magnitude of spontaneous-evoked correlation. Summary
indices were calculated at each sensor by taking the area under the curve of the
difference between prestimulus high and low or the TTV time course across all

time points in a significant cluster. These indices were then correlated across
subjects at each sensor using Spearman’s rank correlation: significance of these
correlations was likewise computed with a cluster-based permutation test,
clustering across sensors. Permutations were carried out by randomly exchanging
conditions in the signed-rank tests, and by randomly shuffling subjects for the
correlation statistics.

As stated above, the sample size for the MEG dataset was 474, and the sample
size for the EEG dataset was 26.

Simulation of the discrepancy between pseudotrial method and TTV method.
It has recently been observed that in EEG, TTV and spectral power are closely
related55. This could present a confounding factor for the assessment of
spontaneous-evoked correlation in the time-domain signal. To assess this possi-
bility, we carried out two simulations: true correlation between spontaneous and
evoked activity in the time-domain signal, and oscillatory power reduction with no
additional time-domain stimulus response. Forty-eight subjects and 128 4-second
long trials were simulated using an in-house modification of Fieldtrip’s ft_freqsi-
mulation function. In each trial, electrophysiological data were simulated as a
summation of 1/fβ noise (β randomly chosen between 0.5 and 1.5) and an alpha
oscillation at 10 Hz. We modeled the amplitude of this oscillation itself as a 1/fß

process lowpass filtered at 1 Hz. In the spontaneous-evoked correlation simulation,
a stimulus related increase in the form of one lobe of a sine function was added to
the signal; the magnitude of this increase was varied according to the value of the
prestimulus voltage. In the oscillatory power reduction simulation, the amplitude
of the 10 Hz oscillation was reduced over the same time period, again with the
response taking the form of one lobe of a sine function. We then tested for a
correlation between spontaneous and evoked activity using the method of pseu-
dotrials and the method of TTV, as described above. As in our real data, we used a
cluster-based permutation test, clustering only across the time dimension as only
one channel was simulated.

Simulation of additive and non-additive models accounting for trial-varying
signal-to-noise ratio. A correlation between spontaneous and evoked activity
could conceivably be observed due to trial-varying signal-to-noise ratio. If SNR is
high on some trials, one may observe an association between higher prestimulus
power and a greater evoked response simply due to the evoked power estimation
being less corrupted by noise in these trials. To test for this possibility, we con-
ducted simulation experiments in which we systematically varied the signal-to-
noise ratio across trials (Figs. S2 and S3). We varied both the base SNR and the
across-trial variability of the noise across four orders of magnitude (from 1/64 to 64
in each case). Under each noise regime, we tested two models: one, in which the
evoked response and the ongoing dynamics were independent (negative control;
Fig. S2), and another in which the evoked response and ongoing dynamics were
correlated (positive control; Fig. S3). The simulation was carried out as described
above for the oscillatory power reduction simulation (though the evoked response
was extended to better match the observed temporal characteristics of the alpha
response). The magnitude of this decrease was either scaled by the spontaneous
amplitude in the 100 millisecond prestimulus period (positive control;
spontaneous-evoked correlation) or varied randomly (negative control; additive
relationship between spontaneous and evoked activity). Statistical tests were carried
out as described above.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
MEG data are available from the CamCAN repository (https://camcan-archive.mrc-cbu.
cam.ac.uk/dataaccess/). Data from the EEG replication study are available from the
corresponding author on reasonable request. Source data underlying the figures is
available at https://doi.org/10.5281/zenodo.4724018.

Code availability
Custom scripts were used for the analysis of correlation between spontaneous and evoked
activity; these are available from GitHub (https://github.com/SorenWT/spontevo2020)
and Zenodo (https://doi.org/10.5281/zenodo.4747781)104.
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